传感器原理与应用

2025-02-01

传感器原理与应用(精选12篇)

1.传感器原理与应用 篇一

《传感器原理与应用》课程复习纲要

一、课程内容

1.基本概念名词解释,要完整。

例如:压电效应:名词解释要包括两部分(正、逆压电效应),材料等。

2.传感器的工作原理

例如:电涡流式测厚传感器:说明传感器的组成结构、写出原理图、叙述工作过程和相关的表达式(或数学模型或物理模型)等。

3.基础知识和基本常识(包括传感器的分类)

例如:(1)动态模型中,“标准”输入只有三种:正弦周期输入、阶跃输入和线性输入,而经常使用的是前两种。

(2)在光线作用下能使物体产生一定方向电动势的称光生伏特效应,如光电池。

(3)电涡流式位移传感器有高频反射式和低频透射式两种。

(4)看图分析并叙述图上提供的信息。

4.计算

例如:(1)金属应变片如何贴片分布于在等强度梁上?电阻变化计算和输出电压计算。

(2)用于测量转速的传感器有哪些?结构如何?如何计算转速?测速误差多少?

5.测量电路简图和作用

例如:金属应变片全桥电路、半桥电路等测量电路图,及相应的作用。

6.有关误差补偿

例如:非线性补偿可用差动结构;温度补偿也可差动结构,还有其它方法等。

7.看图设计叙述

例如:(1)8个实验内容:金属应变片、差动变压器、扩散硅压阻式压力传感器、霍尔传感器和光纤传感器等。

(2)看图叙述某传感器的结构组成,如何工作的及优缺点。

二、考试形式

1.闭卷考试

考试时间:120分钟。

2.考试题型

填空题(10分)、单项选择题(10分)、简述题(4*8分)、计算题(2*10分)和设计题(2*14分)

三、各章需掌握的内容

绪论

什么是传感器,传感器的物理基础、传感器的分类等。

第1章 传感器技术基础

传感器的数学模型、物理模型、静态特性(包括其指标,如线性度等)、动态特性(包括其指标,如二阶系统的参量分析等)、标定和校准、传感器的分析手段

和传感器材料。

第2章 电阻式传感器

电阻式传感器的结构、组成和工作原理,测量电路及有关信号输出计算,及应用。

第3章 变磁阻式传感器

电感式传感器的分类、组成和工作原理、测量电路的作用等;电涡式传感器的分类、组成和工作原理;霍尔式传感器的组成、工作原理和所用材料,及应用;磁阻效应的有关知识。

第4章 电容式传感器

电容式传感器分类、组成和工作原理、测量电路的作用等,如何解决存在的问题。

第5章 磁电式传感器

磁电式传感器分类、组成和工作原理、测量电路的作用,材料,及有关应用等。

第6章 压电式传感器

压电式传感器材料、分类、组成和工作原理、测量电路,如何解决存在的问题。

第7章 光电式传感器

光电式传感器材料、分类、组成和工作原理、测量电路,光源要求;包括模拟式光电传感器、开关式光电传感器、光纤传感器、电荷耦合器件CCD等。

第9章 智能传感器

智能传感器的分类、组成和工作原理,数据采集和数据处理技术等。

第10章 数字式传感器

哪些是直接以数字量形式输出的传感器、以脉冲形式输出的传感器和以频率形式输出的传感器。

2.传感器原理与应用 篇二

1 生物传感器原理

生物传感器是一种以生物活性物质如酶、蛋白质、微生物、DNA及生物膜等作为敏感元件与适当的物理或化学转换器有机结合而组成的分析检测装置。

其工作原理[1]如下:待测物质经扩散作用进入分子识别元件 (生物活性材料) , 经分子识别作用与分子识别元件特异性结合, 发生生物化学反应, 产生的生物学信息通过相应的信号转换元件转换为可以定量处理的光信号或电信号, 再经电子测量仪的放大、处理和输出, 即实现分析检测的目标。

如图1所示, 生物物传感器具有接受器与转换器的功能, 由分子识别元件、转换器和信号放大装置组成。其中分子识别元件即固定化的生物敏感材料或者生物敏感膜, 主要包括酶、抗体、抗原、微生物、细胞、组织、核酸和高分子聚合物等;转换器的作用在于将各种生物的、化学的和物理的信息转换成电信号。微电子学和传感器技术的不断发展为检测生物学反应过程产生的信息提供了丰富的手段, 常见的转换器有氧电极、光敏管、场效应管和压电晶体等。

生物传感器存在多种分类方式。 (1) 是按照生物活性物质实施分类, 主要可以划分成酶传感器、微生物传感器、组织传感器、免疫传感器、细胞传感器以及DNA传感器等; (2) 是按照具体检测原理进行划分, 可以划分成光学生物传感器、压电传感器以及电化学传感器等; (3) 是根据相应的生物敏感物质之间的作用类型实施分类, 主要可以划分成亲和型与代谢型; (4) 是按照所监测到的生物量、物理量以及化学量情况, 将其划分成胰岛素传感器、热传感器以及光传感器等。

从生物传感器的具体特点进行分析, 具体情况如下。

(1) 生物传感器的速度相对较快, 且成本较低。比如, 固定化酶生物传感分析仪主要是利用固定化酶膜为相应的分析工具, 其酶法分析试剂能够进行反复使用, 大约可以利用数千次, 这种情况下, 其分析成本仅仅是手掌型血糖分析仪的大约十分之一。而且具有相对较高的分析速度, 一般情况下不到二十秒就会得到相应的分析结果与检测结果。 (2) 具有较强的专一性, 通常情况下, 生物传感器仅仅只对一些特定物质起反应, 不会受到颜色以及浊度等的影响, 也不需要实施样品预处理。 (3) 稳定性较好, 具有较强的分析精度。最后, 操作系统相对简单, 非常容易实现自动化分析处理。

2 生物传感器的应用

2.1 在食品工业中的应用

主要包括如下几点:

(1) 食品品质检测[3]包括畜禽肉、鱼肉和牛乳新鲜度的评定上, 目前, 加拿大、日本正在出售检测鱼新鲜度的生物传感器;还有食品滋味及熟度的检测, 日本农林水产省研制出一种传感器, 可“品尝”肉汤的风味; (2) 食品成分快速分析包括蛋白质和氨基酸的检测, 糖含量的检测, 有机酸和醇类等物质的检测等; (3) 食品安全检查包括食品中微生物的检测, 生物毒素的检测, 残留农药的检测, 食品添加剂的检测[2]。

2.2 在环境监测中的应用

(1) 水质监测, 目前, 生物传感器已用水中生化需氧量 (BOD) , 酚、三氯乙烯、硝酸盐及其他有机污染物的检测。 (2) 大气质量监测, 生物传感器可监测大气中的CO2, NOx, NH3CH4等[3]。

2.3 在医学的应用

生物传感器在医学领域发挥的作用越来越大。例如, 在临床医学中, 酶电极是最早研制且应用最多的一种传感器。利用具有不同生物特性的微生物代替酶, 制成微生物传感器。在军事医学中, 生物毒素的及时快速检测是防御生物武器的有效措施。目前, 生物传感器已应用于监测多种细菌、毒素与病毒, 还可以测量乙酸、乳酸以及尿酸等[4]。

2.4 在其他领域的应用

生物传感器在发酵工业和军事领域等也有广泛的应用。例如, 微生物传感器已用于发酵工业中的原材料、代谢产物和微生物细胞数目的测定, 在军事上, 生物传感器在化学、生物战剂的侦检方面具有独特的优势, 已应用于监测多种细菌、病毒等[2]。

3 结语

生物传感器技术已经取得了长足的发展和进步, 未来还将遇到各种问题和挑战, 但是它的应用前景和自身优势毋庸置疑。可以预见, 未来的生物传感器将实现功能多样化、微型化、智能化、集成化等特点, 并成为人们生产和生活中不可缺少的重要工具。

摘要:现阶段, 生物传感器的敏感元件是生物活性单元, 借助相应的物理转换装置以及化学转换装置可以对所规定的被分析物实施检测与分析, 由于其具有相对较高的灵敏度、检测速度以及相对较低的成本, 故可以实施连续性的动态化监测。该文首先描述生物传感器工作原理、结构、特点和分类等, 然后描述生物传感器在食品工业、环境监测和医学等领域中的应用现状。

关键词:生物传感器,原理,应用

参考文献

[1]马莉萍, 毛斌, 刘斌, 等.生物传感器的应用现状与发展趋势[J].传感器与微系统, 2009, 28 (4) :1-4.

[2]陈辉, 朱鸿杰.生物传感器研究进展[J].河北农业科学, 2010, 14 (9) :149-151.

[3]蒋雪松, 王剑平, 应义斌, 等.用于食品安全监测的生物传感器的研究进展[J].农业工程学报, 2007, 23 (5) :272-277.

3.传感器原理与应用 篇三

摘要:本文基于近几年的教学实践,结合实际,打破了传统的教材上分章教学的方法,探讨了理科专业传感器原理及应用课程新的教学尝试。

关键词:理科专业;传感器教学;教学方法

【中图分类号】TP212-4

1.绪论

随着电子计算机、生产自动化、现代信息、交通、环保、遥感等科学技术的发展,社会对传感器的需求量与日俱增,其应用的领域已渗透到国民经济的各个部门以及人们的日常文化生活之中。

《传感器原理及应用》这门课程已作为应用物理学专业、机械类、电气信息类等国内外理工科学生的专业基础课或专业方向课,在教学中占有重要的地位。掌握传感器技术,不仅有助于学生对专业知识技能的提高和动手能力与创新精神的培养,更重要的是能够获得实用的技能,增强就业竞争力。

然而一直以来,理科的学生学习传感器原理及应用这门课程的效果都不太理想,造成教学效果不理想的原因主要有:(1) 对物理学原理的学习本身就是非常枯燥的;(2) 对于大多数的传感器教材[1-4]来说,其章节的划分都是根据传感器的工作原理进行分类的,如应变式、电容式、压电式、磁电式等。章节的划分太过于固定,致使教学缺乏灵活性;(3) 教学手段为单一的课堂教学。

针对学生学习过程中出现的这些问题,作者在传感器原理及应用课程的教学过程中从现实生活中遇到的实际问题出发,打破了教材上的分章教学体系,并采用多种教学手段,进行了一些新的教学尝试。

2.新的教学尝试

(1) 从生活中遇到的实际问题出发。我们学习传感器的目的,就是将学到的基本知识应用到实际生活中去。因此学习的出发点也应源于现实生活中遇到的各种问题,为了解决这些问题,我们应该如何去做?按照这个思路逐渐引出所需要的传感器,进而再去分析该类传感器的原理及实际应用过程。

例如,随着社会经济的不断发展,人均汽车拥有量越来越多,汽车成为了人们的代步工具。这样不仅提高了人们的出行效率,而且缩短了时空距离。因此汽车成了现在人们经常谈论的话题,并且在高校里面,拿到驾照似乎成了必修课,学生逃课去考驾照的现象已屡见不鲜。然而,在汽车使用的过程中也随之出现了各种各样的问题。在汽车这样一个狭小的空间内,空气的质量显得尤为重要。由于汽车内部不通风、车体装修等原因,通常情况下车内空气质量极差,这种车内空气污染对人们的身体健康会带来严重的影响。据统计,我国每年冬、夏两季都会发生多起空调车内一氧化碳中毒死亡的事故,是有车族必须警惕的另类“车祸”。除了一氧化碳,汽车内还存在二氧化碳、苯、甲醛、二甲苯等。如何来有效的检测出这些气体,几乎成了每一个人关注的问题。由此便可引出对红外探测器,各种气敏传感器的原理及使用的了解。爆胎是汽车在行驶过程中、尤其是在高速公路上行驶时遇到的非常危险的情况。怎么样提前预防这些危险呢?可以在车上安装胎压监测系统。而胎压监测系统最主要的部分就是压力传感器,由此便又可引出对各种压力传感器的学习。

(2) 有效使用多种教学手段。为了达到应用为本、学以致用的教学目标,国内外学者对传感器教学在教学体系、教学理念、教学方法、考试方法等方面都在进行研究,并将项目化教学法、仿真教学法、多媒体教学法等先进的教学方法引入到传感器教学当中。基于自身的特点,我们在教学过程中也采用了多种教学手段。

多媒体教学。多媒体“声、图、文、颜色、光彩、视听”并举的特点,使得其在教学的过程中被广泛使用。多媒体的优点很多,如多媒体教学可以激发学生的学习兴趣,多媒体教学可以启发学生的想象力,多媒体教学可以扩大信息容量,满足学生的求知欲等。

注重实验。加强实验教学,有助于培养学生的观察能力、操作能力、独立分析问题解决问题的能力以及实事求是的科学态度和创新意识和创造能力。对照各种实实在在的传感器,使教学更形象、直观。我们在理论教学结合实验的过程中主要注重了:① 把部分演示实验改成学生上台演示形式,给学生提供更多的亲自动手操作机会,这些做法可以让学生亲身体验研究过程,激发兴趣。② 培养学生严肃认真,实事求是的科学态度和独立分析问题、解决问题的能力。③ 提供适当的机会让学生能根据所学的知识自己设计实验,培养创新意识。

考察传感器实际生产过程。现在很多的高校为了提高学生的就业率,也给学生提供实习的机会,都会与一些企业建立联系,一些企业成为了学生的实习基地。如作者所在的学校与格利尔数码科技股份有限公司建立了合作关系。该公司有一个传感器加工车间。借助于合作关系,带学生亲临车间去观看实实在在的传感器生产过程。

考查方式多样。把考查方式由单一的试卷考试转换到多种考查模式。如在教学中,给学生留下这样的一个问题:根据所学的传感器理论知识,解决生活中存在的一个问题。再比如,把考试的时间和空间都扩展到教室外面,我们曾经让学生写出一天之中见到的传感器以及可能和传感器有关的器件等。学生对这些课外考查方式更感兴趣。

(3) 师生互动讨论,发挥学生的主观性。爱因斯坦曾指出:“提出一个问题往往比解决一个问题更为重要。因为解决问题,也许仅是技能而已,而提出新的问题,新的可能性,从新的角度去看旧的问题却需要创造性的想象力,而且标志着科学的真正进步。”因此,鼓励让学生去主动提出问题。并且,学生提出的问题才是他们真正关注、感兴趣的问题。

针对以上学生提出的问题,鼓励学生上讲台提出来并给出自己设计的解决方案,然后师生集体讨论优缺点。在相互探讨的过程中需注意:① 让学生成为学习的主人。苏霍姆林斯基曾说过:“人的心灵深处,总有一种把自己当作发现者、研究者、探索者的固有需要。”② 营造良好氛围。在教学中营造宽松、民主的课堂氛围,营造师生间,生生间相互尊重,接纳的学习氛围。③ 给学生空间。给学生质疑的空间,给学生求同存异的空间。

3.结论

本文针对理科学生在学习传感器原理及应用课程中出现的问题,从现实生活中遇到的实际问题出发,打破了教材上的分章教学体系,并采用多种教学手段,结合近几年的教学经验,我们发现,通过这些新的尝试,学生学习的主动性有所提高,学生的学习兴趣也有所增强。更重要的是,培养了学生提出问题、分析问题、解决问题的能力。

参考文献

[1] 郁有文,常健,程继红编著,传感器原理及工程应用[M],西安电子科技大学出版社,2003.

[2] 孟立凡,藍金辉主编,传感器原理及应用[M],电子工业出版社,2011.

[3] 何道清,张禾,谌海云编著,传感器与传感器技术[M],科学出版社,2014.

4.传感器原理与应用 篇四

摘要:根据“传感器原理及应用”这门课程的特点,以课堂高效率教学高质量为教学目的出发,本文探讨了从四个方面进行教学方法的改进。

关键词: 传感器原理及应用 天之信多媒体资源 实验教学 任务式教学

《传感器原理及应用》是电子信息科学系的主干专业课, 具有较强实践性,课程涉及的知识面广,是一门工程性、应用性都非常强的课程。其教学质量的好坏,直接影响到许多后续专业课的教学效果。该课程知识覆盖面广、内容多而且更新发展快,理论性和应用性都很强,再加上教学过程中的一些难点,为了达到课堂高效率教学高质量,迫切需要改进教学方法。本人从事了一段时间的传感器课程的教学,对教学方法有了一些个人的看法,可以从以下四个方面进行尝试,以达到课堂高效率,教学高质量。

一、充分利用多媒体资源,将实际应用的场景融入到教学课件中,让学生对这门课程产生浓厚的学习兴趣。给学生展示传感器的实际应用场景,使理论知识在实际应用场合中慢慢渗入,充分调动学生的积极性,在课堂让学生思维充分动起来,充分发挥学生的主观能动性,引导学生积极思维,从思想上行动起来,把课堂变成老师和学生共同学习,解决问题的场所。在讲解某种具体的传感器之前,演示几个生活中的传感器实例,例如:在进行电容式传感器的教学之前,用多媒体播放几个实际的应用实例,电容式扩音器的示意图和工作过程,电容式接近开关的工作原理,电容式双联收音机等的工作原理,让学生在进入具体的理论知识学习之前对这种传感器有个感性认识,提高学生的积极性和兴趣。再比如,在讲温度传感器时,如果配以动画演示热电偶中电流是如何随着两端温度的变化而变化时,学生就会很容易接受温度传感器的工作原理。

二、将实际事例的简明工作原理演示之后,再来解剖实际应用场景中的电路框图,这样让学生对传感器的理解从感性过渡到理性,对所用到的传感器的工作原理进行讲解说明,让学生掌握该传感器的工作原理和设计思路;进一步分析传感器的测量电路,让学生了解传感器的设计原理。例如,当教师讲解了红外自动干手器的工作原理时,再配上实际电路进行具体分析,会激发学生的自己动手设计的欲望,也会对相应的传感器了解得更透彻。

三、实验教学,单纯的理论知识对于学生而言比较枯燥无味,应配以实验课让学生对具体的传感器有所接触,加深印象。例如教师在讲解电桥式测量电路时过于理论化,学生只是硬性的记住公式,如果配以实验课用CSY-传感器系统实验仪验证单臂、半桥、全桥的性能,比较它们的测量结果了解交流供电的四臂应变电桥的原理、工作情况和实际应用,会让学生对电桥式,相敏检波电路有比较深刻的印象。实验教学不仅能帮助学生巩固和加深理解所学的理论知识,更重要的是能训练学生的实验技能,培养学生的动手能力,树立工程实际观点和严谨的科学作风,使他们能独立的进行实验。

四、任务式教学,布置相关的任务,在学生掌握了一定程度的传感器原理之后自己根据实际应用去设计合适的传感器。要求学生了解传感器的选型原则,让学生掌握不同传感器的优缺点以及相应的应用场合。例如,液位的测量有很多种测量方式,分接触式和非接触式,有浮体式、电容式、差压式、超声波式、光纤式、核辐射式等。那么要测量储水池的液位应该选择哪种传感器呢?密闭容器的液位检测又该怎么选择?布置适当的任务不仅能让学生加深对所学知识的印象,更能培养学生的设计思维和激发学生的设计欲望。

5.陶瓷压力传感器原理及应用 篇五

陶瓷压力传感器原理及应用

工作原理:抗腐蚀的陶瓷压力传感器没有液体的传递,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥闭桥,由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,标准的信号根据压力量程的不同标定为2.0 / 3.0 / 3.3 mV/V等,可以和应变式传感器相兼容。通过激光标定,传感器具有很高的温度稳定性和时间稳定性,传感器自带温度补偿0~70℃,并可以和绝大多数介质直接接触。

陶瓷是一种公认的高弹性、抗腐蚀、抗磨损、抗冲击和振动的材料。陶瓷的热稳定特性及它的厚膜电阻可以使它的工作温度范围高达-40~135℃,而且具有测量的高精度、高稳定性。电气绝缘程度>2kV,输出信号强,长期稳定性好。高特性,低价格的陶瓷传感器将是压力传感器的发展方向,在欧美国家有全面替代其它类型传感器的趋势,在中国也越来越多的用户使用陶瓷传感器替代扩散硅压力传感器。

6.传感器原理与应用 篇六

基本原理

化学传感器主要由两部分组成:识别系统;传导或转换系统。

识别系统反待测物的某一化学参数(常常是浓度)与传导系统连结起来。它主要具有两种功能:选择性地与待测物发生作用,反所测得的化学参数转化成传导系统可以产生响应的信号。分子识别系统是决定整个化学传感器的关键因素。因此,化学传感器研究的主要问题就是分子识别系统的选择以及如何反分子识别系统与合适的传导系统相连续。化学传感器的传导系统接受识别系统响应信号,并通过电极、光纤或质量敏感元件将响应信号以电压、电流或光强度等的变化形式,传送到电子系统进行放大或进行转换输出,最终使识别系统的响应信号转变为人们所能用作分析的信号,检测出样品中待测物的量。

化学传感器在环境与卫生监测中的应用

(一)空气检验

1、湿度传感器 湿度是空气环境的一个重要指标,空气的湿度与人体蒸发热之间有着密切关系,高温高湿时,由于人体水分蒸发困难而感到闷热,低温高湿时,人体散热过程剧烈,容易引起感冒和冻伤。人体最适宜的气温是18~22℃,相对湿度为35%~65%RH。

在环境与卫生监测中,常用于湿球温湿度计、手摇湿温度计和通风湿温度计等仪器测定空气湿度。近年来,大量文献报道用传感器测定空气湿度。用于测定相对湿度的涂覆压电石英晶体用传感器,通过光刻和化学蚀刻技术制成小型石英夺电晶体,在AT切割的10MHZ石英晶体上涂有4种物质,对湿度具有较高的质量敏感性.该晶体是振荡电路中的共振器,其频率随质量变化,选择适当涂层,该传感器可用于测定不同气体的相对湿度.该传感器的灵敏度、响应线性、响应时间、选择性、滞后现象和使用寿命等孝怪癖于涂层化学物质的性质。1986年,德国ErbenUwe[提出了一种测定湿度用的传感器,并获得专利。该传感器采用以硅为基体的金属-绝缘体-半导体(MIS)型结构。在MIS型结构中涂有二氧化硅和敏湿层,敏湿层的材料包含有金属氧化物、氧化物以及低极性组分的聚合物。敏湿材料的吸水量与每湿材料的相对介电常数的变化有关,该传感器可用准表态和支态两种方法进行测定,不过前者比后者更为方便省力,在空气调节系统、建筑工地和日常生活环境中都能监测、控制和调节湿度。

我国科技工作者采用最新研制的氧化钽薄膜湿敏电容,推出一种稳定性好,调节十分方便的通用湿度控制器。这种传感器可用于恒湿箱、计算机房、防湿机等许多场合的空气湿度监测,是一种性能价格比很高的通用型湿度传感器,有人利用磷酸盐涂膜的感湿性研制出性能十分可靠的湿度传感器。它的主要电极为不锈钢线材,直径0.4~1.0mm,表层涂有磷酸薄膜,在膜上再旋绕一层镀金丝作为主电极的对置电极,两电极间仅仅相隔一层20~50um厚的涂膜,距离大大小于一般的湿度传感器,响应速度得到提高,改变磷酸盐涂膜,又能制成特性不同的多种感湿元件。传感器工作期间,由于磷酸盐涂膜表面吸附水分而产生的离子在电极间来回运动,致使传导发生变化,从而显示感湿性。若对传感器元件加以交流负荷,则可借检测阻抗的变化测定出空气湿度。该传感器何种小,可封闭在注射器针关内,利用针尖可插入狭窄的被测处,使用方便,检测迅速,还可用于露点测定。

现在日本制造销售湿度传感器及湿度测量控制仪器的公司已超过30家。温度传感器数量大,品种多,使用的感湿材料有电解质陶瓷和有机高分子膜等,范围甚广,大部分检测精度高,结构简单,具有超小型化和集成化的特点。

2、氧化氮传感器 氧化氮是氮的各种氧化物所组成的气体混合物的总称,常以NOX表示。在氧化氮中,不同形式的氧化氮化学稳定性不同,空气中常风的是化学性质相对稳定的一氧化氮和二氧化氮,它们在卫生学上的意义显得较其它形式氧化氮更为重要。在环境分析中,氧化氮一般指一氧化氮二氧化氮。

我国监测氧化氮的标准方法是盐酸萘乙二胺比色法,方法灵敏度为0.25ug/5ml,方法转换系数受吸收液组成、二氧化氮浓度、采气速度、吸收管结构、共存离子及温度等多种因素的影响,目前沿末完全统一。传感器测定是近年发慌起来的新方法。

文献报道,用交指型栅极电极场效应晶体管的微电子集成电路与化学活性电子束蒸镀酞花青铜薄膜相结合,获得了新型气体敏感微传感器,可选择性检测mg/m3级二氧化氮和二惜内基甲基膦酸盐(DIMP)。它利用电压脉冲激发传感器,测量时域和频域响应,测定的峰形与归一化差分傅立叶变换频谱有关,能清晰地区分二氧化氮和DIMP的响应,每个峰面积可以相应地反应出传感器对特定气体浓度的灵敏度,科技人员研究了工作频率600MHZ的高频表面声波(SAW)气敏装置。该装置包括三个分离的SAW延迟线,它们是振荡电路的频率测定元件,在其表面涂了一层有机膜,作为气体吸附剂,该膜为1~15nm厚酞花青铅膜或由可溶酞花青铁衍生物组成的LB(Langmuir-Blodgett)膜。在吸附过程中,薄膜质量增加,引起表面波速的降低,随即引起振荡频率的降低,达到测定二氧化氮浓度的目的。

锡在高于熔点的温度下沉积,而镉在室温下沉积,利用加热蒸镀新方法可制得掺有1%~6%镉的二氧化锡薄膜。在520℃下缓慢氧化该膜,便形成了二氧化锡和氧化镉的多晶体,薄膜表面对低浓度氧化氮和二氧化氮有吸附。在300℃条件下,该膜对10g/m3的一氧化氮和二氧化氮具有最高灵敏度,按电导率相对变化百分比计,其值分别为10000%和400%,相同条件下,对空气中0.01%的一氧化碳、甲烷、丁烷和氢气的灵敏度都在300%以下,这种基于掺镉二氧化锡薄膜组成的传感器,对氧化氮和二氧化氮的测定不仅灵敏度高,而且具有很好的选择性。半导体本花青膜的电导率对电子受体气体具有极佳的灵敏度,这一特点给人们提供了制造廉价、低能耗、体积小的二氧化氮传感器系统的理论基础。但是,这种膜用于传感器也有一缺点,如响应慢,在潮湿条件下,响应呈可逆地降低等。为此,WilsonA等人研制了一种微处理控制传感系统。该系统通过控制取样和传感器操作条件,获得可再现的动力学过程,从而把上述缺点带来的影响降低到了最低点。

3、硫化氢气体传感器 硫化氢是一种无色、具有特殊腐蛋臭味的可燃气体,具有刺激性和窒息性,对人体有较大危害。目前大多用比色法和气相色谱法测定空气中硫化氢。

对含量常常低至mg/m3级的空气污染物进行测定是气体传感器的一项主要应用,但在短时期内半导体气体传感器还不能满足监测某些污染气体灵敏度和选择性要求。他提出利用掺银薄膜传感器监测实验室和城市空气中的硫化氢。该传感器阵列由四个传感器构成,通过基于库化滴定的通用分析装置和半导体气体传感器阵列的信号,同时记录二氧化硫和硫化氢浓度,实践表明,在150℃下以恒温方式盍的掺银薄膜传感器用于监测城市空气中的硫化氢含量,效果良好。Yomogoe N对半导体气体传感器进行了改进和研究,克服了它检测硫化氢等气体的不足之处。他通过控制能影响接收和转换功能的基本因素,改进了二氧化锡半导体气体传感器的传感性能。他发现,转换功能与元件的微观结构密切相关,如与二氧化锡的粒度大小(D)和表面空间电荷层的厚度(L)相关。当D≤2L时,传感器的灵敏度大幅度提高。在二氧化锡表面引入其它受体,极大地改善了传感器的受体功能,特别是用银和钯作助催化剂,在空气中形成的氧化物与二所化锡表面相互作用,产生缺电子实质问题电荷,大大提高了检测气体的灵敏度。用CaO-SnO2元件能十分灵敏地检测空气中的硫化氢。

4、二氧化硫传感器 二氧化硫是污染空气的主要物质之一,检测空气中二氧化硫尝试是空气检验的一项经常性工作。应用传感器监测二氧化硫。从缩短检测时间到降低检出限,都显示出极大的优越性。

7.传感器原理与应用 篇七

“微课件”不只是视频微课 ,动画、仿真单元、flash小游戏、思维导图及传统ppt等形式的载体都属于微课件[4]。“微课件”具有教学时间精练、知识点针对性强、配套习题交互检测等特点,在教师授课、学生学习、课后练习与评价等方面,能够弥补传统课件的不足之处,提高学生的学习成绩,大幅度提高教师的教育教学水平。

一、微课件的特点

所谓微课件, 是指讲授某个知识点的动画或教学视频或仿真单元或与知识点相关的小游戏, 内容聚焦于知识点的讲解,授课时间一般在10分钟左右;通过微课件破解知识点的重点和难点,帮助学生对某个知识的理解与掌握[3]。

微课件的特点可以概括如下:

1. 每个微课件只讲解 一个知识 点 , 配套有互 动习题 , 突出本知识点的重点,并将难点以动画、视频或小游戏的形式展现。

2.整门课程的知识点微课件既相对独立 ,又有机联系 ;所有知识点可组合成一个课程体系,各微课件之间难易结合,互相衔接。

3.知识点中的难点问题可视化和游戏化 , 多方位增强学习效果。

4.动画 、视频 、仿真 、小游戏等媒体形式 ,均具备可控性与互动性,颠覆传统课件的单一表现形式。

5. 为加深学生对基础知识内容的理解与掌握 , 每个知识点微课件中间或微课件的后面都配备上简要问答或典型习题,且此类习题具有交互性,能够自动判断答案对错或给出提示。

6.微课件最终形成多个版本的文件格式 ,既可独立运行 ,又能以scorm标准的形式,在教学平台上使用,让拥有教学平台软件的学校随时随地地介入系统,通过系统集群应用、组合搭建微课件资源,适用于不同的区域、不同的教学对象和不同的教学支撑环境[3]。

二、传感器原理的微课件教学设计

《传感器原理与应用》课程历来是电子技术应用 、电子电器应用与维修、机电一体化等专业课程的重要专业基础课,本课程的微课件设计以知识点为单位,聚焦新知识讲解,形式上强调片段化、碎片化、积件化,便于网络平台学习与课件之间的组合,强调知识点的原理的动态展示与技能的可视化。

1.微课件设计原则

《传感器原理与应用》课程传统的教学内容侧重于原理分析、信号调节与转换电路分析与讲解,这种教学方式缺乏感性认识,不适合中职教学。

(1)针对中职学生的认知规律 ,笔者在传感器课程教学中进行了改革,根据微课件的上述特性分割知识点,采用了项目式教学,整门课程根据不同类型传感器划分15个项目122个知识点;对于原理部分只进行了定性分析,采用了动画、教学视频、仿真单元、小游戏等形式,突破了重点和难点,突出了对传感器的应用技能[1]。

(2)每个微课件的时间轴中部设置一个小问题 ,结尾配合两三道交互式习题,习题题型以客观题为主,主观题为辅;且客观题在交互测试时提供准确答案, 主观题在交互测试时弹出要点与提示。

(3)每个知识点微课件先做出教学设计 ,之后写出知识点脚本和试题脚本,最后加工制作,如图1、2所示。

2.原理动画与仿真单元

采用flash制作的原理动画和仿真单元, 具有很强的直观感、动态新鲜感,使学生感知直接,理解容易,避免对抽象语言进行理解的复杂过程。

知识点原理动画或仿真的设计,必须明确知识点的重点或难点,把教育性、科学性、技术性、艺术性有机结合起来,化解理论性强、抽象、难讲的观点和概念,以多彩多姿、有声有色的画面,将抽象的、深奥的学习内容具体化、形象化,生动活泼。

如卡门式超声波流量传感器是流量传感器的重点与难点,图3所示的动画,在传感器的剖面上,除显示出结构组成外,动态地展示出当气体流过时,卡门涡流的产生,超声波发射头发出超声波,穿越卡门旋涡,接收头提取超声波相位变化信息,转换为信号输出,整个工作原理与过程具体、形象、完整地呈现,如图3。

此外, 动画图像与仿真单元展示的某些动态或微观过程必须清晰稳定,构图与色彩要正确,尺寸大小要根据需要;而仿真单元除了具备上述各要点之外,还需画面衔接自然,音响效果好,要注意保持声画同步;要保证在播放动画时能播放流畅,可控性和交互性好,进行实时控制,便于学习者仔细观察和分析。

3.微视频

微视频只是微课件的一个表现形式, 不是教学过程的全部。微视频要抓住知识点最基础且关键的部分,而非试图解决学生学习的全部问题。微视频只有界面简洁、与学生的年龄特点和心理特点相符合,才更有利于学生学习。

如在视觉传感器中,截取美国电影《碟中谍4》中特工通过装在眼中的隐形眼镜传感器, 对暗杀对象进行人脸识别的片段,阐述视觉传感器系统组成,音乐与画面效果非常紧张与震撼,学生印象相当深刻,如图4、5所示。

又如在烟雾传感器应用这个知识点中的微视频,3分钟的视频画面和解说词展现烟雾传感器接线端测量、接线过程和喷吐烟雾时传感器的反应等局部细节,场景简洁清晰,重点突出,技能目标一目了然。

4.交互式试题与小游戏

交互式与演示型课件相比,既可以用于课堂教学,又可以用于可后练习, 能更好地提高学生的学习效率与激发学生的学习兴趣,练习过程由被动接受转变为主动学习;而且可以及时对学生的学习成果进行反馈,更直观地反映出对知识掌握的成效。

试题题型可以是选择题、判断题、填空题、简答题、连线题、排序题及综合题;表现形式上既可为常用的试题格式,又可做成小游戏的形态,如射击、打地鼠、钓鱼、寻宝等。这些题型不仅适合交互式制作,而且符合中职学生的认知规律,体现出较高的应用价值。如图6、7所示

交互式的试题与小游戏, 完全改变了传统课件单纯演示的模 式 ,为学生提 供了独立 思考、自主 学习的环 境 ,不仅提高了学生在课堂上的主体地位, 而且培养了学生主动学习的能力。

5.其他形式与版本

思维导图、PPT等文档形式媒体,具有多重刺激、小步调、结构清晰的特点,而且制作简单、操作方便、修改容易及表现手法的丰富多样性, 由此引申出来的多媒体教学课件是微课件的载体之一。

作为一个微课件,它的成果简化、容量微小、用时简短,除了PC机单机运行之外,转换成scorm标准版后,可以实现传播平台的多样化,网络教学、手机传播、微博讨论等多样传播。

三、应用与推广

《传感器原理与应用》课程中微课件的实践应用环境无特殊要求,自适应WEB页面无需增加其他任何控件,运行环境要求简单, 学校部署在服务器上或单机终端设备上均可实现无缝操作。笔者主持的国家示范性数字化资源共建共享课题组所有41所共享学校的课堂教学应用中, 得到授课教师的充分肯定。

1.改变传统的教学模式 ,以单机版、普通网络版和SCORM标准版的三种版本,可结合教学网络平台实现网络教学,自适应WEB页面,打破本专业在教与学中所受到的设备、微观、安全、时间、空间、耗材等方方面面的限制,手机、PC机互联终端均可进行有效访问和使用,教学无边界。

2.改变传统的教学方法 , 打破传统的依照教材按部就班的教学方法,以微课件为核心组成一个完整的知识点项目,突破纯理论教学的单一性,真正得以实现自主学习与协助学习,有效地实现项目化教学, 让教师的面授与学生的网络学习产生根本变化。

3.创新教学管理的网络智能化 , 在教学平台上轻松地实现教学评价的自动化。教师可对不同班级学生设定不同组别、学习目的、布置不同工作任务,从交互式习题中有效地进行跟踪学习进度,学习效果,优化教学评价[2]。

4.有效地提高教学质量,培养学生的可持续发展能力。《传感器原理与应用》微课件的教学设计,集合了几十所共建学校广大一线专业骨干教师的知识和技能, 在中职教育中首次完整地对此课程中的各个知识点进行了共资源开发, 突出了重点,解决了难点,任务多样,目标明确,视频、动画及仿真表现效果好,不受章节及时间、空间的限制,学习自主,探究性强,有效提高了教学质量。

《传感器原理与应用》微课件已通过教育部信息化委员会专家组的验收合格,现已在全国不同地区的41个职业院校的电类专业的教学中使用,有了较大创新,取得了良好的教学效果。

摘要:微课件内容具体主题突出,成果简化并且传播多样化。在传感器原理与应用教学中引入设计合理科学,具备直观感强、画面动态新鲜感,包含交互性的微课件,达到有效破解重点与难点,确实强化本课程的教学效果。

8.传感器原理与应用 篇八

关键词 电子汽车衡 称重传感器 工作原理 技术故障 解决方法

一、前言

电子汽车衡是一种利用力—电变换原理将非电量的重力转变为电量的称重设备。而能实现这一目的的关键装置就是称重传感器( 即被称为一次仪表元件) ,它处于称重台面的着力支点上, 必须具有良好的刚度、强度、抗疲劳等机械性能,并承载着台面所受负载的合力。目前普遍采用电阻应变式称重传感器。

二、称重传感器的工作原理

弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。电阻应变片、弹性体和检测电路是电阻应变式称重传感器中不可缺少的几个主要部分。

1.电阻应变片。电阻应变片是把一根电阻丝机械的分布在一块有机材料制成的基底上,即成为一片应变片。它的一个重要参数是灵敏系数K。我们来介绍一下它的意义。

设有一个金属电阻丝,其长度为L,横截面是半径为r的圆形,其面积记作S,其电阻率记作ρ,这种材料的泊松系数是μ。当这根电阻丝未受外力作用时,它的电阻值为R:

当它的两端受F力作用时,将会伸长,也就是说产生变形。设其伸长ΔL,其横截面积则缩小,即它的截面圆半径减少Δr。此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。

对式(2-1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。我们有:

用式(2-1)去除式(2-2)得到ΔR/R = Δρ/ρ + ΔL/L - ΔS/S (2-3)

另外,我们知道导线的横截面积S = πr2,则 Δs = 2πr×Δr,所以

从材料力学我们知道:

其中,负号表示伸长时,半径方向是缩小的。μ是表示材料横向效应泊松系数。

把式(2-4)(2-5)代入(2-3),有

式(2-6))说明了电阻应变片的电阻变化率(电阻相对变化)和电阻丝伸长率(长度相对变化)之间的关系。

需要说明的是:灵敏度系数K值的大小是由制作金属电阻丝材料的性质决定的一个常数,它和应变片的形状、尺寸大小无关,不同的材料的K值一般在1.7-3.6之间;其次K值是一个无因次量,即它没有量纲。

在材料力学中,ΔL/L称作为应变,记作ε,用它来表示弹性往往显得太大,很不方便。常常把它的百万分之一作为单位,记作με。这样,式(2-6)常写作:

2.弹性体。弹性体是一个有特殊形状的结构件。它的功能有两个,首先是它承受称重传感器所受的外力,对外力产生反作用力,达到相对静平衡;其次,它要产生一个高品质的应变场(区),使粘贴在此区的电阻应变片比较理想的完成应变棗电信号的转换任务。

以托利多公司的SB系列称重传感器的弹性体为例,来介绍一下其中的应力分布。

设有一带有肓孔的长方体悬臂梁。肓孔底部中心是承受纯剪应力,但其上、下部分将会出现拉伸和压缩应力。主应力方向一为拉神,一为压缩,若把应变片贴在这里,则应变片上半部将受拉伸而阻值增加,而应变片的下半部将受压缩,阻值减少。下面列出肓孔底部中心点的应变表达式,而不再推导。

其中:Q-截面上的剪力;E-扬氏模量:μ-泊松系数;B、b、H、h-为梁的几何尺寸。

需要说明的是,上面分析的应力状态均是“局部”情况,而应变片实际感受的是“平均”状态。

3.检测电路。检测电路的功能是把电阻应变片的电阻变化转变为电压输出。因为惠斯登电桥具有很多优点,所以惠斯登电桥在称重传感器中得到了广泛的应用。称重传感器均采用全桥式等臂电桥。

三、称重传感器常见技术故障及解决方法

l.由于称重不当使传感器受损。(1)被称车辆( 或物体) 严重超载。(2)在称重过程中产生撞击,此时物体自身重量加上因重力下坠而产生的动能使物体在接触称重平台时产生的撞击力大大超过传感器的额定载荷, 导致传感器受损。

解决的方法:(1)必须严禁超负荷称量。(2)为称重平台安装减震或防撞击保护装置。(3)增加称重传感器的额定载荷, 电子汽车衡器使用中时有出现丢车、测量不准的现象,多数是由于称重传感器发生的故障引起的。确认是传感器故障后,可通过更换传感器使动态衡 恢复正常工作。

2.由于选用传感器密封方式不当,使传感器受损。电子汽车衡器经常在恶劣环境下使用,如果使用了密封性能较差的传感器,由于工业粉尘、各类腐蚀性介质等因素的影响, 极易使电阻应变片的阻值发生改变, 使得称量结果产生误差。 此时可用数字万用表对传感器的输入、输出阻抗进行测量。当测量值与产品提供的技术参数或合格证书所标示值的偏差较大时,即可认定该传感器已损坏,此时应更换密封性能优良的传感器( 如选用硅胶密封方式甚至焊接密封方式的称重传感器) 。

3.由于受潮使称量时产生偏差。当传感器受潮后,显示仪表经常出现无法自动回零,数字来回变动等现象。用手动进行复零后,仍会出现数字跳动现象,在空称状态下跳动的数字在某区间范围内无规律波动。当用万用表对其输入、输出阻抗进行测量时,测量值却并不超差, 此时可按下述方法进行判断处理:

(1) 拆下所有称重传感器,将其逐一单独进入测量电路,空秤状态下,未受潮的传感器会立即自动回零且显示值稳定。而受潮后的传感器就可能出现数字跳动,无法回零等现象。手动回零后,上述现象又会重复出现。

(2)若上述方法仍无法判断时,可采用标准计量法进行分辨,方法是用标准砝码( 或标准比对物) 对所有传感器逐一进行载荷标定。未受潮的传感器所显示的测量值即为逐渐加载的标准砝码值,而受潮后的传感器显示的测量值会与标准砝码( 或比对物) 值产生较大的偏差( 汽车衡或轨道衡出现显示偏差般≤5 t ) 。故在易受潮的场所除选用合适的密封方式外, 在安装之前先用黄油涂抹整个传感器,当所有传感器安装完毕,有必要对传感器与安装基座接触处、接线口、接线盒缝等易受潮处涂抹黄油进行彻底密封。

4.其他因素的影响。由于客观环境 的制约,许多电子衡器 ( 特别是大型电子轨道衡) 的电源线、信号线、屏蔽线、接地线等通过穿线管与传感器与显示器进行连接,有时穿线管道必须埋设在地下,而雨水的作用易使导线短路、断路及接地现象。各线路间的绝缘性能降低,也会对称重测量产生一定的误差。

摘 要 电子汽车衡是一种利用力—电变换原理将非电量的重力转变为电量的称重设备,而能实现这一目的的关键装置就是称重传感器( 即被称为一次仪表元件) ,它处于称重台面的着力支点上, 必须具有良好的刚度、强度、抗疲劳等机械性能。

关键词 电子汽车衡 称重传感器 工作原理 技术故障 解决方法

一、前言

电子汽车衡是一种利用力—电变换原理将非电量的重力转变为电量的称重设备。而能实现这一目的的关键装置就是称重传感器( 即被称为一次仪表元件) ,它处于称重台面的着力支点上, 必须具有良好的刚度、强度、抗疲劳等机械性能,并承载着台面所受负载的合力。目前普遍采用电阻应变式称重传感器。

二、称重传感器的工作原理

弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。电阻应变片、弹性体和检测电路是电阻应变式称重传感器中不可缺少的几个主要部分。

1.电阻应变片。电阻应变片是把一根电阻丝机械的分布在一块有机材料制成的基底上,即成为一片应变片。它的一个重要参数是灵敏系数K。我们来介绍一下它的意义。

设有一个金属电阻丝,其长度为L,横截面是半径为r的圆形,其面积记作S,其电阻率记作ρ,这种材料的泊松系数是μ。当这根电阻丝未受外力作用时,它的电阻值为R:

当它的两端受F力作用时,将会伸长,也就是说产生变形。设其伸长ΔL,其横截面积则缩小,即它的截面圆半径减少Δr。此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。

对式(2-1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。我们有:

用式(2-1)去除式(2-2)得到ΔR/R = Δρ/ρ + ΔL/L - ΔS/S (2-3)

另外,我们知道导线的横截面积S = πr2,则 Δs = 2πr×Δr,所以

从材料力学我们知道:

其中,负号表示伸长时,半径方向是缩小的。μ是表示材料横向效应泊松系数。

把式(2-4)(2-5)代入(2-3),有

式(2-6))说明了电阻应变片的电阻变化率(电阻相对变化)和电阻丝伸长率(长度相对变化)之间的关系。

需要说明的是:灵敏度系数K值的大小是由制作金属电阻丝材料的性质决定的一个常数,它和应变片的形状、尺寸大小无关,不同的材料的K值一般在1.7-3.6之间;其次K值是一个无因次量,即它没有量纲。

在材料力学中,ΔL/L称作为应变,记作ε,用它来表示弹性往往显得太大,很不方便。常常把它的百万分之一作为单位,记作με。这样,式(2-6)常写作:

2.弹性体。弹性体是一个有特殊形状的结构件。它的功能有两个,首先是它承受称重传感器所受的外力,对外力产生反作用力,达到相对静平衡;其次,它要产生一个高品质的应变场(区),使粘贴在此区的电阻应变片比较理想的完成应变棗电信号的转换任务。

以托利多公司的SB系列称重传感器的弹性体为例,来介绍一下其中的应力分布。

设有一带有肓孔的长方体悬臂梁。肓孔底部中心是承受纯剪应力,但其上、下部分将会出现拉伸和压缩应力。主应力方向一为拉神,一为压缩,若把应变片贴在这里,则应变片上半部将受拉伸而阻值增加,而应变片的下半部将受压缩,阻值减少。下面列出肓孔底部中心点的应变表达式,而不再推导。

其中:Q-截面上的剪力;E-扬氏模量:μ-泊松系数;B、b、H、h-为梁的几何尺寸。

需要说明的是,上面分析的应力状态均是“局部”情况,而应变片实际感受的是“平均”状态。

3.检测电路。检测电路的功能是把电阻应变片的电阻变化转变为电压输出。因为惠斯登电桥具有很多优点,所以惠斯登电桥在称重传感器中得到了广泛的应用。称重传感器均采用全桥式等臂电桥。

三、称重传感器常见技术故障及解决方法

l.由于称重不当使传感器受损。(1)被称车辆( 或物体) 严重超载。(2)在称重过程中产生撞击,此时物体自身重量加上因重力下坠而产生的动能使物体在接触称重平台时产生的撞击力大大超过传感器的额定载荷, 导致传感器受损。

解决的方法:(1)必须严禁超负荷称量。(2)为称重平台安装减震或防撞击保护装置。(3)增加称重传感器的额定载荷, 电子汽车衡器使用中时有出现丢车、测量不准的现象,多数是由于称重传感器发生的故障引起的。确认是传感器故障后,可通过更换传感器使动态衡 恢复正常工作。

2.由于选用传感器密封方式不当,使传感器受损。电子汽车衡器经常在恶劣环境下使用,如果使用了密封性能较差的传感器,由于工业粉尘、各类腐蚀性介质等因素的影响, 极易使电阻应变片的阻值发生改变, 使得称量结果产生误差。 此时可用数字万用表对传感器的输入、输出阻抗进行测量。当测量值与产品提供的技术参数或合格证书所标示值的偏差较大时,即可认定该传感器已损坏,此时应更换密封性能优良的传感器( 如选用硅胶密封方式甚至焊接密封方式的称重传感器) 。

3.由于受潮使称量时产生偏差。当传感器受潮后,显示仪表经常出现无法自动回零,数字来回变动等现象。用手动进行复零后,仍会出现数字跳动现象,在空称状态下跳动的数字在某区间范围内无规律波动。当用万用表对其输入、输出阻抗进行测量时,测量值却并不超差, 此时可按下述方法进行判断处理:

(1) 拆下所有称重传感器,将其逐一单独进入测量电路,空秤状态下,未受潮的传感器会立即自动回零且显示值稳定。而受潮后的传感器就可能出现数字跳动,无法回零等现象。手动回零后,上述现象又会重复出现。

(2)若上述方法仍无法判断时,可采用标准计量法进行分辨,方法是用标准砝码( 或标准比对物) 对所有传感器逐一进行载荷标定。未受潮的传感器所显示的测量值即为逐渐加载的标准砝码值,而受潮后的传感器显示的测量值会与标准砝码( 或比对物) 值产生较大的偏差( 汽车衡或轨道衡出现显示偏差般≤5 t ) 。故在易受潮的场所除选用合适的密封方式外, 在安装之前先用黄油涂抹整个传感器,当所有传感器安装完毕,有必要对传感器与安装基座接触处、接线口、接线盒缝等易受潮处涂抹黄油进行彻底密封。

4.其他因素的影响。由于客观环境 的制约,许多电子衡器 ( 特别是大型电子轨道衡) 的电源线、信号线、屏蔽线、接地线等通过穿线管与传感器与显示器进行连接,有时穿线管道必须埋设在地下,而雨水的作用易使导线短路、断路及接地现象。各线路间的绝缘性能降低,也会对称重测量产生一定的误差。

摘 要 电子汽车衡是一种利用力—电变换原理将非电量的重力转变为电量的称重设备,而能实现这一目的的关键装置就是称重传感器( 即被称为一次仪表元件) ,它处于称重台面的着力支点上, 必须具有良好的刚度、强度、抗疲劳等机械性能。

关键词 电子汽车衡 称重传感器 工作原理 技术故障 解决方法

一、前言

电子汽车衡是一种利用力—电变换原理将非电量的重力转变为电量的称重设备。而能实现这一目的的关键装置就是称重传感器( 即被称为一次仪表元件) ,它处于称重台面的着力支点上, 必须具有良好的刚度、强度、抗疲劳等机械性能,并承载着台面所受负载的合力。目前普遍采用电阻应变式称重传感器。

二、称重传感器的工作原理

弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。电阻应变片、弹性体和检测电路是电阻应变式称重传感器中不可缺少的几个主要部分。

1.电阻应变片。电阻应变片是把一根电阻丝机械的分布在一块有机材料制成的基底上,即成为一片应变片。它的一个重要参数是灵敏系数K。我们来介绍一下它的意义。

设有一个金属电阻丝,其长度为L,横截面是半径为r的圆形,其面积记作S,其电阻率记作ρ,这种材料的泊松系数是μ。当这根电阻丝未受外力作用时,它的电阻值为R:

当它的两端受F力作用时,将会伸长,也就是说产生变形。设其伸长ΔL,其横截面积则缩小,即它的截面圆半径减少Δr。此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。

对式(2-1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。我们有:

用式(2-1)去除式(2-2)得到ΔR/R = Δρ/ρ + ΔL/L - ΔS/S (2-3)

另外,我们知道导线的横截面积S = πr2,则 Δs = 2πr×Δr,所以

从材料力学我们知道:

其中,负号表示伸长时,半径方向是缩小的。μ是表示材料横向效应泊松系数。

把式(2-4)(2-5)代入(2-3),有

式(2-6))说明了电阻应变片的电阻变化率(电阻相对变化)和电阻丝伸长率(长度相对变化)之间的关系。

需要说明的是:灵敏度系数K值的大小是由制作金属电阻丝材料的性质决定的一个常数,它和应变片的形状、尺寸大小无关,不同的材料的K值一般在1.7-3.6之间;其次K值是一个无因次量,即它没有量纲。

在材料力学中,ΔL/L称作为应变,记作ε,用它来表示弹性往往显得太大,很不方便。常常把它的百万分之一作为单位,记作με。这样,式(2-6)常写作:

2.弹性体。弹性体是一个有特殊形状的结构件。它的功能有两个,首先是它承受称重传感器所受的外力,对外力产生反作用力,达到相对静平衡;其次,它要产生一个高品质的应变场(区),使粘贴在此区的电阻应变片比较理想的完成应变棗电信号的转换任务。

以托利多公司的SB系列称重传感器的弹性体为例,来介绍一下其中的应力分布。

设有一带有肓孔的长方体悬臂梁。肓孔底部中心是承受纯剪应力,但其上、下部分将会出现拉伸和压缩应力。主应力方向一为拉神,一为压缩,若把应变片贴在这里,则应变片上半部将受拉伸而阻值增加,而应变片的下半部将受压缩,阻值减少。下面列出肓孔底部中心点的应变表达式,而不再推导。

其中:Q-截面上的剪力;E-扬氏模量:μ-泊松系数;B、b、H、h-为梁的几何尺寸。

需要说明的是,上面分析的应力状态均是“局部”情况,而应变片实际感受的是“平均”状态。

3.检测电路。检测电路的功能是把电阻应变片的电阻变化转变为电压输出。因为惠斯登电桥具有很多优点,所以惠斯登电桥在称重传感器中得到了广泛的应用。称重传感器均采用全桥式等臂电桥。

三、称重传感器常见技术故障及解决方法

l.由于称重不当使传感器受损。(1)被称车辆( 或物体) 严重超载。(2)在称重过程中产生撞击,此时物体自身重量加上因重力下坠而产生的动能使物体在接触称重平台时产生的撞击力大大超过传感器的额定载荷, 导致传感器受损。

解决的方法:(1)必须严禁超负荷称量。(2)为称重平台安装减震或防撞击保护装置。(3)增加称重传感器的额定载荷, 电子汽车衡器使用中时有出现丢车、测量不准的现象,多数是由于称重传感器发生的故障引起的。确认是传感器故障后,可通过更换传感器使动态衡 恢复正常工作。

2.由于选用传感器密封方式不当,使传感器受损。电子汽车衡器经常在恶劣环境下使用,如果使用了密封性能较差的传感器,由于工业粉尘、各类腐蚀性介质等因素的影响, 极易使电阻应变片的阻值发生改变, 使得称量结果产生误差。 此时可用数字万用表对传感器的输入、输出阻抗进行测量。当测量值与产品提供的技术参数或合格证书所标示值的偏差较大时,即可认定该传感器已损坏,此时应更换密封性能优良的传感器( 如选用硅胶密封方式甚至焊接密封方式的称重传感器) 。

3.由于受潮使称量时产生偏差。当传感器受潮后,显示仪表经常出现无法自动回零,数字来回变动等现象。用手动进行复零后,仍会出现数字跳动现象,在空称状态下跳动的数字在某区间范围内无规律波动。当用万用表对其输入、输出阻抗进行测量时,测量值却并不超差, 此时可按下述方法进行判断处理:

(1) 拆下所有称重传感器,将其逐一单独进入测量电路,空秤状态下,未受潮的传感器会立即自动回零且显示值稳定。而受潮后的传感器就可能出现数字跳动,无法回零等现象。手动回零后,上述现象又会重复出现。

(2)若上述方法仍无法判断时,可采用标准计量法进行分辨,方法是用标准砝码( 或标准比对物) 对所有传感器逐一进行载荷标定。未受潮的传感器所显示的测量值即为逐渐加载的标准砝码值,而受潮后的传感器显示的测量值会与标准砝码( 或比对物) 值产生较大的偏差( 汽车衡或轨道衡出现显示偏差般≤5 t ) 。故在易受潮的场所除选用合适的密封方式外, 在安装之前先用黄油涂抹整个传感器,当所有传感器安装完毕,有必要对传感器与安装基座接触处、接线口、接线盒缝等易受潮处涂抹黄油进行彻底密封。

9.传感器原理 试题 篇九

1、有一温度计,它的量程范围为0∽200℃,精度等级为0.5级。该表可能出现的最大误差为,当测量100℃ 时的示值相对误差为。

2、在选购线性仪表时,必须考虑应尽量使选购的仪表量程为欲测量的倍左右为宜。

3、传感器由、、三部分组成。

4、利用热敏电阻对电动机实施过热保护,应选择型热敏电阻。

5、已知某铜热电阻在0℃时的阻值为50Ω,则其分度号是,对

于镍铬-镍硅热电偶其正极是。

6、霍尔元件采用恒流源激励是为了。

7、用水银温度计测量水温,如从测量的具体手段来看它属于测量。

二、选择题(30分,每题2分)

1、在以下几种传感器当中属于自发电型传感器。

A、电容式B、电阻式C、压电式D、电感式

2、的数值越大,热电偶的输出热电势就越大。

A、热端直径B、热端和冷端的温度

C、热端和冷端的温差D、热电极的电导率

3、将超声波(机械振动波)转换成电信号是利用压电材料的。

A、应变效应B、电涡流效应C、压电效应D、逆压电效应

4、在电容传感器中,若采用调频法测量转换电路,则电路中。

A、电容和电感均为变量B、电容是变量,电感保持不变

C、电感是变量,电容保持不变D、电容和电感均保持不变

5、在两片间隙为1mm的两块平行极板的间隙中插入,可测得最大的容量。

A、塑料薄膜B、干的纸C、湿的纸D、玻璃薄片

6、热电阻测量转换电路采用三线制是为了

A、提高测量灵敏度B、减小非线性误差

C、提高电磁兼容性D、减小引线电阻的影响

7、当石英晶体受压时,电荷产生在。

A、Z面上B、X面上C、Y面上D、X、Y、Z面上

8、汽车衡所用的测力弹性敏感元件是。

A、悬臂梁B、弹簧管C、实心轴D、圆环

9、在热电偶测温回路中经常使用补偿导线的最主要的目的是。

A、补偿热电偶冷端热电势的损失B、起冷端温度补偿作用

C、将热电偶冷端延长到远离高温区的地方D、提高灵敏度

10、减小霍尔元件的输出不等位电势的办法是。

A、减小激励电流B、减小磁感应强度C、使用电桥调零电位器

11、测得某检测仪表的输入信号中,有用信号为20毫伏,干扰电压也为20毫伏, 则此时的信噪比为。

A、20dBB、1 dBC、0 dB12、发现某检测仪表机箱有麻电感,必须采取措施。

A、接地保护环B、将机箱接大地C、抗电磁干扰

13、在仿型机床当中利用电感式传感器来检测工件尺寸,该加工检测装置是采了测量方法。

A、微差式B、零位式C、偏差式

15、在实验室中测量金属的熔点时,冷端温度补偿采用。

A、计算修正法B、仪表机械零点调整法C、冰浴法

三、证明热电偶的参考电极定律:EAB(t,t0)= EAC(t,t0)-EBC(t,t0),并画出原理图(本

题10分)

四、有一额定荷重为20×103N的等截面空心圆柱式荷重传感器,其灵敏度KF为2mV/V。

激励源电压为12V,求:

1、在额定荷重时的输出电压Uom,2、当承载为5×103N时的输出电压Uo。(本题10分)

六、已知待测拉力约为70N左右,现有两只测力仪表,一只为0.5级,测量范围为0∽500N;

另一只为1.0级,测量范围为0∽100N。问选用哪一只测力仪表较好?为什么?(写出计算过

程)(本题10分)

参考答案

一、填空题:

1、±1℃,±1%

2、1.5倍

3、敏感元件、传感元件、测量转换电路

4、NTC突变

5、CU50,镍铬

6、减小温漂

7、偏位式

8、干扰源,干扰途径,敏

感接收器

9、屏蔽,浮置,接地,滤波,光电隔离

10、X面

二、选择题

1、C2、C3、C4、B5、D6、D7、B

8、C9、C10、C11、C12、B13、B14、C15、C

四、24 mV,6 mV

五、K拨至1位,反复调节R0,使仪表指示为0,K拨至3位,反复调节RF,使仪表指示

为满偏,K拨至2位,进行测量。

六、选用1.0级,测量范围为0∽100N的测力仪表。

一、填空(本题共39分,每空1.5分)

1、传感器由、、三部分组成。

2、在选购线性仪表时,必须考虑应尽量使选购的仪表量程为欲测量的倍左右为宜。

3、有一温度计,它的量程范围为0∽200℃,精度等级为0.5级。该表可能出现的最大误差

为,当测量100℃ 时的示值相对误差为。

4、利用热敏电阻对电动机实施过热保护,应选择型热敏电阻。

5、在压电晶片的机械轴上施加力,其电荷产生在。

6、霍尔元件采用恒流源激励是为了。

7、用水银温度计测量水温,如从测量的具体手段来看它属于测量。

8、已知某铜热电阻在0℃时的阻值为50Ω,则其分度号是,对于镍铬-镍硅热电偶

其正极是。

9、压电材料在使用中一般是两片以上,在以电荷作为输出的地方一般是把压电元件起

来,而当以电压作为输出的时候则一般是把压电元件起来。

10、热电阻主要是利用电阻随温度升高而这一特性来测量温度的。

12、金属电阻的是金属电阻应变片工作的物理基础。

14、在动圈式表头中的动圈回路中串入由NTC组成的电阻补偿网络,其目的是为了。

二、选择题(本题共30分,每题2分)

3、在电容传感器中,若采用调频法测量转换电路,则电路中。

A、电容和电感均为变量B、电容是变量,电感保持不变

C、电感是变量,电容保持不变D、电容和电感均保持不变

4、在仿型机床当中利用电感式传感器来检测工件尺寸,该加工检测装置是采用了测量

方法。

A、微差式B、零位式C、偏差式

5、热电阻测量转换电路采用三线制是为了

A、提高测量灵敏度B、减小引线电阻的影响

C、减小非线性误差D、提高电磁兼容性

10、在实验室中测量金属的熔点时,冷端温度补偿采用。

A、冰浴法B、仪表机械零点调整法C、计算修正法

11、自感传感器或差动变压器采用相敏检波电路最重要的目的是为了。

A、提高灵敏度B、将输出的交流信号转换为直流信号

C、使检波后的直流电压能反映检波前交流信号的幅度和相位

12、要测量微小的气体压力之差,最好选用变换压力的敏感元件。

A、悬臂梁B、平膜片C、弹簧管D、膜盒

13、以下四种传感器中,属于四端元件的是。

A、霍尔元件B、压电晶体C、应变片D、热敏电阻

14、下列不能用做加速度检测传感器。

A、电容式B、压电式C、电感式D、热电偶

15、将超声波(机械振动波)转换成电信号是利用压电材料的。

A、应变效应B、电涡流效应C、压电效应D、逆压电效应

三、我国的模拟仪表有哪些精度等级?现欲测量240V左右的电压,要求测量示值相对误差的绝对值不大于0.6%,问:若选用量程为250V的电压表,其精度应选哪一级?若选用量

程为500V的电压表,其精度又应选哪一级?(本题10分)

四、热电偶参考电极定律有何实际意义?以知在某特定条件下材料A与铂配对的热电动势为13.967mv, 材料B与铂配对的热电动势为8.345mv,求出在此特定条

件下材料A与B配对后的热电动势?此时哪种材料为正极?(本题10分)

五、根据你所学的传感器相关知识,请分别列出下列物理量可以使用什么传感器来测量?(本

题11分)

1、加速度:

2、温度:

3、工件尺寸:

4、压力:

参考答案

一、填空题:

1、敏感元件、传感元件、测量转换电路2、1.5倍

3、±1℃,±1%

4、NTC突变

5、X面

6、减小温漂

7、偏位式

8、CU50,镍铬

9、并联,串联

10、增大

11、屏蔽,浮置,接地,滤波,光电隔离

12、应变效应

13、干扰源,干扰途径,敏感接收器

14、温度补偿

二、选择题

1、C2、D3、B4、B5、B6、A7、C8、C9、A10、C11、D12、A13、D14、C15、C

三、0.10.20.51.01.52.55.0

选用量程为250V的电压表,其精度应选0.5级,选用量程为500V的电压表,其精度应选0.2级

四、大大简化了热电偶的选配工作,5.622 mv,A为正极

五、1、电阻应变片,电容等

2、热电偶,热电阻等

3、电感,电容等

4、压电,霍尔等

二、如图所示电路是电阻应变仪中所用的不平衡电桥的简化电路,图中R2=R3=R是固定电

阻,R1与R4是电阻应变片,工作时R1受拉,R4受压,ΔR=0,桥路处于平衡状态,当应变片受力发生应变时,桥路失去平衡,这时,就用桥路输出电压Ucd表示应变片变后电阻值的变化量。试证明:Ucd=-(E/2)(ΔR/R)。(10分)

证明:

10.光电传感器工作原理 篇十

光电传感器是通过把光强度的变化转换成电信号的变化来实现控制的。

光电传感器在一般情况下,有三部分构成,它们分为:发送器、接收器和检测电路。

发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管(LED)、激光二极管及红外发射二极管。光束不间断地发射,或者改变脉冲宽度。接收器有光电二极管、光电三极管、光电池组成。在接收器的前面,装有光学元件如透镜和光圈等。在其后面是检测电路,它能滤出有效信号和应用该信号。

此外,光电开关的结构元件中还有发射板和光导纤维。

三角反射板是结构牢固的发射装置。它由很小的三角锥体反射材料组成,能够使光束准确地从反射板中返回,具有实用意义。它可以在与光轴0到25的范围改变发射角,使光束几乎是从一根发射线,经过反射后,还是从这根反射线返回。

分类和工作方式

⑴槽型光电传感器

把一个光发射器和一个接收器面对面地装在一个槽的两侧的是槽形光电。发光器能发出红外光或可见光,在无阻情况下光接收器能收到光。但当被检测物体从槽中通过时,光被遮挡,光电开关便动作。输出一个开关控制信号,切断或接通负载电流,从而完成一次控制动作。槽形开关的检测距离因为受整体结构的限制一般只有几厘米。

⑵对射型光电传感器

若把发光器和收光器分离开,就可使检测距离加大。由一个发光器和一个收光器组成的光电开关就称为对射分离式光电开关,简称对射式光电开关。它的检测距离可达几米乃至几十米。使用时把发光器和收光器分别装在检测物通过路径的两侧,检测物通过时阻挡光路,收光器就动作输出一个开关控制信号。

⑶反光板型光电开关

把发光器和收光器装入同一个装置内,在它的前方装一块反光板,利用反射原理完成光电控制作用的称为反光板反射式(或反射镜反射式)光电开关。正常情况下,发光器发出的光被反光板反射回来被收光器收到;一旦光路被检测物挡住,收光器收不到光时,光电开关就动作,输出一个开关控制信号。

⑷扩散反射型光电开关

11.浅谈传感器与逻辑电路的应用 篇十一

关键词传感器;逻辑电路

中图分类号TM925文献标识码A文章编号1673-9671-(2009)121-0007-01

电子技术及产品的应用已经非常广泛,住宅小区的楼道内常用声光控延时开关,在天黑以后有人走过发出声音时,楼道灯会自动点亮,延时几分钟后会自动熄灭。在声光控延时开关的设计过程中要用到许多传感器和逻辑电路的知识。

1关键的电学元件

电路中的主要控制元器件是使用了集成电路CD4011。与非门集成电路CD4011(如图1),与课本上介绍的集成电路74LS00相似,其内部含有4个独立的与非门vd1~vd4,用VDD和Vss两脚供电(如图2)。与非门是与门之后加一个非门组成,其真值表如图3。

电路中的主要传感器元器件是驻极体话筒(如图4)和光敏电阻器(如图6)

驻极体电容话筒有两块金属板(如图5),其中一块表面涂有驻极体薄膜,当膜片受到振动、摩擦时,膜片上会出现表面电荷。驻极体膜片上的电荷量由于声音气流变化而发生变化微弱电流。

光敏电阻器又称光导管,特性是在特定光的照射下,其阻值迅速减小,可用于检测可见光。根据光敏电阻的光谱特性,可分为三种光敏电阻器:紫外光敏电阻器,红外光敏电阻器和可见光光敏电阻器。广泛应用于各种自动控制电路(如自动照明灯控制电路、自动报警电路等)、家用电器(如电视机中的亮度自动调节,照相机的自动曝光控制等)及各种测量仪器中。

电路中的主要执行元器件是可控硅。与三极管的外观类似,可控硅也有三极,是一种具有三个PN 结的四层结构的大功率可控整流电子元件。它的功用不仅是整流,还可以用作无触点开关以快速接通或切断电路。要使可控硅导通,一是在它的阳极A与阴极K之间外加正向电压,二是在它的控制极G与阴极K之间输入一个正向触发电压。导通后,去掉触发电压,仍然维持导通状态。如果阳极或控制极外加的是反向电压,晶闸管就不能导通。

三极管的有三个极,发射极E、基极B和集电极C。工作时,在BE极间加上很小的电流IB,就可以控制CE极间很大的电流Ic,放大率β=Ic/Ib。可见三极管是成比例的放大电流的元件。

2电路的工作原理

1)供电线路,如(图9)整流二极管vd1~vd4将交流220v进行桥式整流,变成脉动直流电,又经R1降压,C2滤波后即为电路的直流电源,为BM、VT、通过7和14号腿给集成块的CD4011供电。

2)控制电路,电路原理(图10)

(1)声音传感器信号通过放大电路得到一路信号,光传感器得到另一路信号一起进入与非门D1进行判定。声音信号(脚步声、掌声等)由驻极体话筒BM接收并转换成电信号,经C1耦合到VT的基极进行电压放大,放大的高电平信号送到D1的2脚(图11)。为了使声光控开关在白天开关断开,由光敏电阻RG等元件组成光控电路,R5和RG组成串联分压电路,夜晚环境无光时,光敏电阻的阻值很大,RG两端的电压高,高电平信号送到D1的1脚(图12)。与非门(D1)的两脚都是高电平(值为1)时,在3脚输出低电平(值为0)。

(2)D1的3脚输出低电平(值为0)信号同时输入与非门(D2)的5.6两脚,D2的输出端4脚会输出高电平(值为1)经二极管进入延时控制电路。给C3充电,充满电后经R8放电。高电平间t=2πR8C3,改变R8或C3的值,可改变延时时间。高电平信号再经与非门(D3.D4)两级整形电路,将方波信号进行整形,从11腿输出还是高电平信号。

(3)D4的11腿输出高电平信号使单向可控硅导通,电子开关闭合;c3充满电后只向r8放电,当放电到一定电平时,经与非门(D3、D4)输出为低电平,使单向可控硅截止,电子开关断开,完成一次完整的电子开关由开到关的过程。

3结论

12.超声波传感器原理及应用 篇十二

20 世纪中叶, 人们发现某些介质的晶体 (如石英晶体、酒石酸钾钠晶体、PZT晶体等) 在高电压窄脉冲作用下, 能产生较大功率的超声波。它与可闻声波不同, 可以被聚焦, 能用于集成电路的焊接、显像管内部的清洗。现在超声波的应用已经渗透到我们生活中的许多领域, 例如B超、遥控、防盗、无损探伤, 等等, 为人类的生活带来极大的便利。

1 超声波传感器的工作原理

超声波是指频率高于20KH z的机械波。为了以超声波作为检测手段, 必须产生超生波和接收超声波。超声波传感器是一种可逆换能器, 利用晶体的压电效应和电致伸缩效应, 将机械能与电能相互转换, 实现对各种参量的测量。

目前常用的是压电式超声波发生器, 它是利用压电晶体的谐振来工作的, 该传感器有两个压电晶片和一个共振板, 当其两极外加脉冲信号, 且频率等于压电晶片的固有振荡频率时, 压电晶片将会发生共振, 并带动共振板振动产生超声波。反之, 如果两电极间未外加电压, 当共振板接收到超声波时, 将迫使压电晶片振动, 将机械能转换为电信号, 这时它就成为超声波接收器。

2 超声波传感器的应用

超声波传感器具有成本低、安装维护方便、体积小、可实现非接触测量, 同时不易受电磁、烟雾、光线、被测对象颜色等影响, 能实现在黑暗、有灰尘、烟雾、电磁干扰和有毒等环境下工作, 因此在工业领域得到广泛的应用。

本文结合超声波传感器的工作原理, 简单论述了超声波在测井仪、自动焊缝跟踪、液位测量、液体浓度检测等方面的应用。

2.1 超声波传感器在测井仪中的应用

煤矿立井往往是采用钻井法施工, 在施工过程中可以对已成井控的半径, 井斜进行测量, 然后根据测量结果来确定井孔的偏斜程度及井壁有无塌方、缩径等现象, 并且及时采取措施, 保证成井井筒质量。对井径、井斜进行测量的方法一般有灯光测量法、重锤打印测量法、机械测井仪测量法和超声波测量法等。前两种测量方法测量精度低, 不能连续测量, 无法测出井径, 日前主要采用后两种测量方法。超声波井径、井斜测量具有测量精度高, 使用方便, 测量结果直观等特点, 它是种非接触式的检测方式。与其它方法相比, 它不受光线、被测对象颜色等影响对于被测物处于黑暗、有灰尘、烟雾、电磁干扰、有毒等恶劣的环境下有较强适应能力。

2.2 超声波在测量液位中的应用

超声波测量液位的基本原理是:由超声探头发出的超声脉冲信号在液体中传播, 遇到空气与液体的界面后被反射, 接收到回波信号后根据超声波的往返时间就可以推算出距离或液位高度, 这种利用超声波进行测量的方法相比其它测量方法有很多优点:不需要任何机械传动部件, 无需接触被测液体, 不怕电磁干扰, 属于非接触式测量。因此性能稳定, 可靠性高, 寿命长, 响应时间短, 可以方便地实现无滞后的实时测量。

2.3 超声波自动焊缝跟踪

由于超声波传感器具有不受弧光和强电磁十扰、对检测物体表面起伏变化敏感、性价比高、可穿透烟尘等优点, 近年来在焊缝跟踪中得到了一定的应用。

用超声波传感器跟踪波纹板的一个波纹周期, 对输出信号进行快速傅立叶变换和巴特沃兹滤波后, 求出波纹板槽面与斜边交接处的折弯位置, 实现了波纹板折线焊缝自动跟踪。

2.4 超声波液体浓度检测

超声波液体浓度检测原理是基于超声波在液体中传播速度与液体浓度和温度之间存在着函数关系。根据声学原理, 液体中超声波传播的速度是液体弹性模量和密度的函数, 超声波的速度随液体弹性模量或密度而变, 同时也是溶液质量浓度和温度的函数。因此只要在不同温度下测得超声波的传导速度, 即可求出液体的质量浓度。

3 超声波传感器的发展趋势

超声波传感器作为典型的非接触检测技术, 同时具有体积小、成木低, 不受电磁、光线、烟雾等干扰的优点, 具有广阔的发展前景。以上综合分析了超声波传感器在工业几个典型方面的应用, 以下对超声波传感器的发展趋势做简单展望:

一是智能化、数字化, 新型超声波传感器应用于调整、适应不同的测量距离, 输出的信号有多种类型, 使得应用更加灵活。

二是多种传感器融合技术, 随着工业现场对传感器的检测精度和可靠性要求越来越高, 多种传感器 (如激光测距、红外线等) 与超声波传感器冗余结合使用, 充分发挥各自的优势, 提高传感器的总体性能, 也将成为超声波传感器的一个发展趋势。

4 总结

本文简要介绍了超声波的工作原理, 结合超声波传感器的特征, 给出了超声波传感器的在工业方面的几种典型应用, 并对传感器的发展趋势作了简单的展望。为今后对超声波传感器的进一步学习和研究提供一定的参考价值和实用价值。

摘要:本文简要介绍了超声波的工作原理、特点, 并分析了超声波传感器在工业的几个典型方面如测井仪、自动焊缝跟踪、液位测量、液体浓度检测等方面的应用。最后, 对超声波的发展趋势做了展望。

关键词:超声波传感器,原理,应用

参考文献

[1]赵小强, 赵连玉.超声波测距系统中的温度补偿[J].组合机床与自动化加工技术, 2008.

[2]李敏哲, 赵继印, 李建坡.基于超声波传感器的无线液位测量系统[J].仪表技术与传感器, 2005.

[3]施涌潮等.传感器检测技术[M].北京:国防工业出版社, 2007.

上一篇:传统文化社会实践报告推荐下一篇:校运会总结报告