人教版数学选修精品--§2. 2 .1直接证明--综合法与分析法

2025-01-08

人教版数学选修精品--§2. 2 .1直接证明--综合法与分析法

1.人教版数学选修精品--§2. 2 .1直接证明--综合法与分析法 篇一

2.2.1椭圆及其标准方程

◆ 知识与技能目标

理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.

◆ 过程与方法目标(1)预习与引入过程

当变化的平面与圆锥轴所成的角在变化时,观察平面截圆锥的截口曲线(截面与圆锥侧面的交线)是什么图形?又是怎么样变化的?特别是当截面不与圆锥的轴线或圆锥的母线平行时,截口曲线是椭圆,再观察或操作了课件后,提出两个问题:第一、你能理解为什么把圆、椭圆、双曲线和抛物线叫做圆锥曲线;第二、你能举出现实生活中圆锥曲线的例子.当学生把上述两个问题回答清楚后,要引导学生一起探究P41页上的问题(同桌的两位同学准备无弹性的细绳子一条(约10cm长,两端各结一个套),教师准备无弹性细绳子一条(约60cm,一端结个套,另一端是活动的),图钉两个).当套上铅笔,拉紧绳子,移动笔尖,画出的图形是椭圆.启发性提问:在这一过程中,你能说出移动的笔小(动点)满足的几何条件是什么?〖板书〗2.1.1椭圆及其标准方程.

(2)新课讲授过程

(i)由上述探究过程容易得到椭圆的定义.

〖板书〗把平面内与两个定点F1,F2的距离之和等于常数(大于F1F2)的点的轨迹叫做椭圆(ellipse).其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.即当动点设为M时,椭圆即为点集PM|MF1MF22a.

(ii)椭圆标准方程的推导过程 提问:已知图形,建立直角坐标系的一般性要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系.

无理方程的化简过程是教学的难点,注意无理方程的两次移项、平方整理.

设参量b的意义:第一、便于写出椭圆的标准方程;第二、a,b,c的关系有明显的几何意义.

y2x2 类比:写出焦点在y轴上,中心在原点的椭圆的标准方程221ab0.

ab(iii)例题讲解与引申

例1 已知椭圆两个焦点的坐标分别是2,0,2,0,并且经过点标准方程.

分析:由椭圆的标准方程的定义及给出的条件,容易求出a,b,c.引导学生用其他方法来解.

53,,求它的22x2y253另解:设椭圆的标准方程为221ab0,因点,在椭圆上,ab2292512a102则4a. 4ba2b24b6例2 如图,在圆x2y24上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹是什么?

分析:点P在圆x2y24上运动,由点P移动引起点M的运动,则称点M是点P的伴随点,因点M为线段PD的中点,则点M的坐标可由点P来表示,从而能求点M的轨迹方程.

x2y21上动点,求线段AP中点M的轨迹方引申:设定点A6,2,P是椭圆

259程.

解法剖析:①(代入法求伴随轨迹)设Mx,y,Px1,y1;②(点与伴随点的关

x12x6系)∵M为线段AP的中点,∴;③(代入已知轨迹求出伴随轨迹),∵

y2y21x3y1x12y121M1,∴点的轨迹方程为;④伴随轨迹表示的范围.

2592594例3如图,设A,B的坐标分别为5,0,5,0.直线AM,BM相交于点M,且它们的斜率之积为224,求点M的轨迹方程. 9分析:若设点Mx,y,则直线AM,BM的斜率就可以用含x,y的式子表示,由于直线AM,BM的斜率之积是的关系式,即得到点M的轨迹方程.

解法剖析:设点Mx,y,则kAM4,因此,可以求出x,y之间9yx5,x5yx5; x5yy4,化简即可得点M的轨迹方程. 代入点M的集合有x5x59kBM

引申:如图,设△ABC的两个顶点Aa,0,Ba,0,顶点C在移动,且kACkBCk,且k0,试求动点C的轨迹方程. 引申目的有两点:①让学生明白题目涉及问题的一般情形;②当k值在变化时,线段AB的角色也是从椭圆的长轴→圆的直径→椭圆的短轴.

◆ 情感、态度与价值观目标

通过作图展示与操作,必须让学生认同:圆、椭圆、双曲线和抛物线都是圆锥曲线,是因它们都是平面与圆锥曲面相截而得其名;必须让学生认同与体会:椭圆的定义及特殊情形当常数等于两定点间距离时,轨迹是线段;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,及引入参量ba2c2的意义,培养学生用对称的美学思维来体现数学的和谐美;让学生认同与领悟:例1使用定义解题是首选的,但也可以用其他方法来解,培养学生从定义的角度思考问题的好习惯;例2是典型的用代入法求动点的伴随点的轨迹,培养学生的辩证思维方法,会用分析、联系的观点解决问题;通过例3培养学生的对问题引申、分段讨论的思维品质.

◆能力目标

(1)想象与归纳能力:能根据课程的内容能想象日常生活中哪些是椭圆、双曲线和抛物线的实际例子,能用数学符号或自然语言的描述椭圆的定义,能正确且直观地绘作图形,反过来根据图形能用数学术语和数学符号表示.

(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考,培养学生的数形结合的思想方法;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.

(3)实践能力:培养学生实际动手能力,综合利用已有的知识能力.

(4)数学活动能力:培养学生观察、实验、探究、验证与交流等数学活动能力.(5)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的一般的思想、方法和途径.

练习:第45页1、2、3、4、作业:第53页2、3、

上一篇:大学论文参考文献格式下一篇:中国歌剧地位