数列的极限教案

2024-09-28

数列的极限教案(共10篇)

1.数列的极限教案 篇一

目的:

要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。

重点:

1数列的概念。

按一定次序排列的一列数叫做数列。数列中的每一个数叫做数列的项,数列的第n项an叫做数列的通项(或一般项)。由数列定义知:数列中的数是有序的,数列中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。

2.数列的通项公式,如果数列{an}的通项an可以用一个关于n的公式来表示,这个公式就叫做数列的通项公式。

从映射、函数的观点看,数列可以看成是定义域为正整数集N*(或宽的有限子集)的函数。当自变量顺次从小到大依次取值时对自学成才的一列函数值,而数列的通项公式则是相应的解析式。由于数列的项是函数值,序号是自变量,所以以序号为横坐标,相应的项为纵坐标画出的图像是一些孤立的点。

难点:

根据数列前几项的特点,以现规律后写出数列的通项公式。给出数列的前若干项求数列的通项公式,一般比较困难,且有的数列不一定有通项公式,如果有通项公式也不一定唯一。给出数列的前若干项要确定其一个通项公式,解决这个问题的关键是找出已知的每一项与其序号之间的对应关系,然后抽象成一般形式。

过程:

一、从实例引入(P110)

1. 堆放的钢管 4,5,6,7,8,9,102. 正整数的倒数 3. 4.-1的正整数次幂:-1,1,-1,1,…5. 无穷多个数排成一列数:1,1,1,1,…

二、提出课题:

数列

1.数列的定义:

按一定次序排列的一列数(数列的有序性)

2. 名称:

项,序号,一般公式,表示法

3. 通项公式:

与 之间的函数关系式如 数列1: 数列2: 数列4:

4. 分类:

递增数列、递减数列;常数列;摆动数列; 有穷数列、无穷数列。

5. 实质:

从映射、函数的观点看,数列可以看作是一个定义域为正整数集 N*(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。

6. 用图象表示:

— 是一群孤立的点 例一(P111 例一 略)

三、关于数列的通项公式

1. 不是每一个数列都能写出其通项公式(如数列3)

2. 数列的通项公式不唯一 如: 数列4可写成 和

3. 已知通项公式可写出数列的任一项,因此通项公式十分重要例二(P111 例二)略

四、补充例题:

写出下面数列的一个通项公式,使它的前 项分别是下列各数:1.1,0,1,0. 2.,,3.7,77,777,7777 4.-1,7,-13,19,-25,31 5.,,五、小结:

1.数列的有关概念

2.观察法求数列的通项公式

六、作业:

练习P112习题 3.1(P114)

1、2七、练习:

1.观察下面数列的特点,用适当的数填空,关写出每个数列的一个通项公式;(1),,(),…(2),(),,…

2.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)

1、、、;(2)、、、;(3)、、、;(4)、、、3.求数列1,2,2,4,3,8,4,16,5,…的一个通项公式

4.已知数列an的前4项为0,0,则下列各式 ①an= ②an= ③an= 其中可作为数列{an}通项公式的是A ① B ①② C ②③ D ①②③

5.已知数列1,,3,…,…,则 是这个数列的()A. 第10项 B.第11项 C.第12项 D.第21项

6.在数列{an}中a1=2,a17=66,通项公式或序号n的一次函数,求通项公式。

7.设函数(),数列{an}满足

(1)求数列{an}的通项公式;

(2)判断数列{an}的单调性。

8.在数列{an}中,an=

(1)求证:数列{an}先递增后递减;

(2)求数列{an}的最大项。

答案:

1.(1),an=(2),an=

2.(1)an=(2)an=(3)an=(4)an=

3.an= 或an= 这里借助了数列1,0,1,0,1,0…的通项公式an=。

4.D

5.B

6.an=4n-2

7.(1)an=(2)<1又an<0, ∴ 是递增数列

2.数列的应用教案 篇二

教材:数列的应用

目的:引导学生接触生活中的实例,用数列的有关知识解决具体问题,同时了解处

理“共项” 问题。

过程:

一、例题:

1.《教学与测试》P93 例一)大楼共n层,现每层指定一人,共n人集中到设

在第k层的临时会议室开会,问k如何确定能使n位参加人员上、下楼梯所走的路程总和最短。(假定相邻两层楼梯长相等)解:设相邻两层楼梯长为a,则

Sa(12k1)0[12(nk)]

a[k(n1)kn2n

2]

当n为奇数时,取kn

1S达到最小值

当n为偶数时,取kn2或n

2S达到最大值

2.在[1000,2000]内能被3整除且被4除余1的整数有多少个?

解:不妨设an3n,bm4m1(m,nN*),则{cp}为{ an }与{ bn }的公共项构成的等差数列(1000≤cp≤2000)

∵an = bm ,即:3n=4m+1令n=3 , 则m=2∴c1=9且有上式可知:d=12 ∴cp=9+12(p1)(pN*)

由1000≤cn≤2000解得:83

712p1661112

∴p取84、85、„„、166共83项。

3.某城市1991年底人口为500万,人均住房面积为6 m2,如果该城市每年人

口平均增长率为1%,每年平均新增住房面积为30万m2,求2000年底该城市人均住房面积为多少m2?(精确到0.01)解:1991年、1992年、„„2000年住房面积总数成AP

a1 = 6×500 = 3000万m2,d = 30万m2,a10 = 3000 + 9×30 = 3270

1990年、1991年、„„2000年人口数成GP

b1 = 500 , q = 1% ,b9105001.015001.0937546.8

∴2000年底该城市人均住房面积为:

3270

.8

5.98m2546 4.(精编P175例3)从盛有盐的质量分数为20%的盐水2 kg的容器中倒出1

kg盐水,然后加入1 kg水,以后每次都倒出1 kg盐水,然后再加入1 kg水,问:1.第5次倒出的的1 kg盐水中含盐多少g?

2.经6次倒出后,一共倒出多少k盐?此时加1 kg水后容器内盐水的盐的质量分数为多少?

解:1.每次倒出的盐的质量所成的数列为{an},则:

a1= 0.2 kg ,a2=1×0.2 kg ,a3=(1)222×0.2 kg

由此可见:an=(12)n1×0.2 kg ,a5=(11

2)51×0.2=(2)4×0.2=0.0125 kg

2.由1.得{an}是等比数列a1=0.2 ,q=

1Sa(1q6)0.2(11

616)1q

0.3937kg11

50.40.393750.00625

0.0062520.003125

二、作业:《教学与测试》P94练习3、4、5、6、7

3.等差数列求和教案 篇三

教学目标

(1)通过教学使学生掌握等比数列前 项和公式的推导过程,并能初步运用这一方法求一些数列的前 项和.(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质.(3)通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度.教学重点,难点

教学重点是公式的推导及运用,难点是公式推导的思路.教学方法

引导发现法.教学过程

一、新课引入:

(问题见教材第26页)提出问题:1222…229=?

二、新课讲解:

记s1222229,式中有3项,后项与前项的比为公比2,当每一项都乘以2后,中间有29项是对应相等的,作差可以相互抵消.即s1222229,①

2s222229230, ②

②-①得 2ss2301,即s2301;由此对于一般的等比数列,其前n项和sna1a1qa1q2a1q3a1qn1,如何化简?

等比数列前项n和公式

仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比q,即

sna1a1qa1q2a1q3a1qn1 ③, 两端同乘以q,得

2sna1qa1q2a1q3a1qn1a1qn

④, ③-④得(提问学生如何处理,适时提醒学生注意 的(1-q)sna1a1qn ⑤,取值)

当q1时,由③可得snna1,(不必导出④,但当时设想不到)当q1时,由⑤得

a1(1qn)。

sn1q反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列.(板书)例题:求和:

s1234n 234n22222设, 其中n为等差数列,为2n等比数列,公比为1,利用错位相减法求和.2解:

s11111223344nn22222

两端同乘以1,得 2111111 s2233445nn1222222两式相减得

111111ns234nn12222222

于是,所以1n11s2n1n(1n)1222ns2n112212

说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题.公式其它应用问题注意对公比的分类讨论即可.三、小结:

1.等比数列前n项和公式推导中蕴含的思想方法以及公式的应用;

4.等差数列教案2 篇四

(二)目的:通过例题的讲解,要求学生进一步认清等差数列的有关性质意义,并且能够用定义与通项公式来判断一个数列是否成等差数列。过程:

一、复习:等差数列的定义,通项公式

二、例一 在等差数列an中,d为公差,若m,n,p,qN且mnpq

求证:1 amanapaq 2 apaq(pq)d

证明:1 设首项为a1,则amana1(m1)da1(n1)d2a1(mn2)dapaqa1(p1)da1(q1)d2a1(pq2)d

∵ mnpq ∴amanapaq 2 ∵apa1(p1)d

aq(pq)da1(q1)d(pq)da1(p1)d

∴ apaq(pq)d

注意:由此可以证明一个定理:设成AP,则与首末两项距离相等的两项和等于首末两项的和,即:a1ana2an1a3an2

同样:若mn2p 则 aman2ap

例二 在等差数列an中,1 若a5a a10b 求a15

解:2a10a5a15 即2baa15 ∴ a152ba 2 若a3a8m 求 a5a6

解:a5a6=a3a8m 3 若 a56 a815 求a14

解:a8a5(85)d 即 1563d ∴ d

3从而 a14a5(145)d69333

4 若 a1a2a530 a6a7a1080 求a11a12a1解:∵ 6+6=11+1 7+7=12+2 ……

∴ 2a6a1a11 2a7a2a12 ……

从而(a11a12a15)+(a1a2a5)2(a6a7a10)

∴a11a12a15=2(a6a7a10)(a1a2a5)=2×8030=130

三、判断一个数列是否成等差数列的常用方法

1.定义法:即证明 anan1d(常数)

例三 《课课练》第3课 例三

已知数列an的前n项和Sn3n22n,求证数列an成等差数列,并求其首项、公差、通项公式。

解:a1S1321

当n2时 anSnSn13n22n[3(n1)22(n1)]6n

5n1时 亦满足 ∴ an6n5

首项a11 anan16n5[6(n1)5]6(常数)

∴an成AP且公差为6 2.中项法: 即利用中项公式,若2bac 则a,b,c成AP。

例四 《课课练》第4 课 例一

已知111bccaab,成AP,求证,也成AP。abcbca11121

1证明: ∵,成AP ∴ 化简得:2acb(ac)

abcbac

bcabbcc2a2abb(ac)a2c22aca2c2 acacacac(ac)2(ac)2ac2 = b(ac)acb2bccaab ∴,也成AP

bca 3.通项公式法:利用等差数列得通项公式是关于n的一次函数这一性质。

例五 设数列an其前n项和Snn22n3,问这个数列成AP吗?

解: n1时 a1S12 n2时 anSnSn12n3

n12 ∵a1不满足an2n3 ∴ an

2n3n2 ∴ 数列an不成AP 但从第2项起成AP。

四、小结: 略

五、作业: 《教学与测试》 第37课 练习题

5.数列的应用举例教案说明 篇五

一、教材地位与作用

本节课是等差数列与等比数列在购物方式上的应用,此前学生已掌握等差数列,等比数列的通项公式及其前n项和公式,学生在知识和应用能力方面都有了一定基础,这节课对提高学生的应用意识具有很高的价值,帮助学生建立零存整取模型,自动转存模型,分期存款模型,提高学生在生活中应用知识的能力。

二、教学目标设计

1、使学生掌握等差数列与等比数列在购物付款方式中的应用;

2、培养学生搜集、选择、处理信息的能力,发展学生独立探究和解决问题的能力,提高学生的应用意识;

3、通过学生之间,师生之间的交流与配合培养学生的合作意识和团队精神,通过独立运用数学知识解决实际问题,使学生体会学习数学知识的重要性,增强他们对数学学习的兴趣和对数学的情感。

4、教学重点难点

重点:抓住分期付款问题的本质分析问题; 难点:建立数学模型,理解分期付款的合理性。

三、教法分析

为了让学生较好掌握本课内容,本节课主要采用自主探究教学方式,我通过创设实际问题情境,引导学生自主探索得到解决实际生活中的问题的方法。本节课在引导学生利用所学数列知识分析问题时,留出学生思考的余地,让学生去联想,探索,鼓励学生大胆质疑,把

需要解决的问题弄清楚,做好建模工作。

四、教学过程

复习引入:等差、等比、求和问题的实际应用。设计意图:通过复习为学生较好的学习本节课打下坚实的基础。

教授新课例题一:引领学生认真读题,审清题意,培养学生审题能力与处理信息的能力,通过递推归纳转化为等差数列求和问题。教授新课例题二:让学生自己读题,通过提问把握学生审题程度。引导学生把问题转化为利用等比数列的知识解决问题的方法上来。

五、思考交流:作为课堂练习

①便于观察学情,及时从中获取反馈信息,对其中偶发性错误进行辨析,指正。②通过形式性练习,培养学生的应变和举一反三的能力,逐步形成技能。

六、归纳小结

6.高中数学等差数列教案 篇六

《江苏教育出版社》必修5 第二章 第二节“等差数列”

二.设计思想

数列是刻画一类离散现象的数学模型,在我们的日常生活中,会遇到如存款利息、构房贷款、资产折旧等一些计算问题,数列模型可以帮助我们解决这类实际问题,学习数列知识对进一步理解函数的概念和体会数学的应用价值具有重要的意义。

本章主要通过对日常生活中大量的实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些性质,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。

“等差数列”第一课时是以概念为主的一节课,内容主要是等差数列的定义和通项公式。等差数列的通项公式与前n项和的公式的导出都离不开等差数列的定义,因此,教学中首先要讲清等差数列的定义,并且自始自终都要紧扣这个定义。

由于等差数列的定义学生较易理解,而且学生也具备这方面的基础,所以在本节内容的教学设计上,充分体现学生是学习的主体这一特点,首先从实际问题和学生已有知识出发,提供一组具体数列,然后引导学生通过观察、分析它们的规律,归纳出等差数列的定义。紧接着教师提出一个开放性的问题:“在等差数列 中,若公差为d,请根据等差数列的定义,写出与之相关的等式”。并用实物投影展示有代表性的学生的列式,由学生评价、补充。在这过程中,学生通过数学符号语言与文字语言的互译,加深了对定义的理解。而且用不同的方法推导出了通项公式,把等差数列的定义与通项公式有机地联系起来。让学生充分体验数学知识的形成过程,尽可能地让学生通过观察、分析、猜想、归纳、类比、推理等在发现探索知识的过程中体验数学,让学生在自主探求知识的同时,获得了分析问题、解决问题的能力,培养了创新意识。在教学设计上突出了数学思想方法,如对数列概念的介绍和通项公式的探究中充分体现函数思想和类比思想;在公式的运算中体现方程思想和数形结合思想。

在通项公式的应用中,有针对性地选择例题,充分挖掘教材例题的内涵。通过例1(教材例4)的教学,让学生感受等差数列与一次函数的关系,联系教材36页的“思考”进行教学设计,引导学生发现等差数列的公差d便是数列的各点所在直线的斜率,进一步得出公差d与等差数列函数单调性的关系。在例2(教材例2)的教学中,让学生初步感受数列通项公式的应用,并引导学生发现a6=a3+6d,进一步探索通项公式更一般的形式。

三.教学目标

1.认知目标:理解等差数列的定义,掌握等差数列通项公式的推导方法以及它的简单应用。

2.能力目标:在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维能力。

3.情感目标:通过学生自主的探索活动,获得新知识,让学生感受到成功的喜悦,从中培养他们的创新意识。

四.教学重点:

理解等差数列的定义,掌握等差数列通项公式的推导方法。

五.教学难点:

对等差数列通项公式的透彻理解以及通项公式的函数意义。

六.教学准备:

1、认真研读“数列”这一章新旧教材,比较它们的异同,以便备课时能更好地体现新课程理念。

2、课前发给每位同学一张白纸,要求学生带黑色水笔,以备课堂实物投影所需。

3、老师制作投影片,课前检查实物投影仪。

七.教学过程:

㈠引言:

从学生上一课所学的“剧场座位”的数列实例(教材P29)导入新课。

教师出示【投影片1】 某剧场有30排座位,第一排有20个座位,从第二排起,后一排都比前一排多2个座位,那么各排的座位数依次为20,22,24,26,28,…。

思考:第30排有多少个座位?

㈡关于等差数列定义的学习过程:

实例展示,引出定义

⑴教师出示【投影片2】并提出问题:观察下列数列有何共同特点?

(设计目的:①逐步引导学生自己描述出这些数列的共同特征,从第2项起,每一项与它的前一项的差等于同一个常数。②培养学生的观察能力和归纳、表达能力。)

⑵教师:揭示课题(板书),出示【投影片3】:

如果一个数列从第2项起,每一项与它前一项的差都等于同一个常数,这个数列就叫做等差数列。

(设计目的:加深对定义中关键词的理解。)

对定义的再认识:

⑴教师再次出示【投影片2】,并提出问题:以上四个等差数列从第2项起,每一项与前一项的差是多少?

(设计目的:引出公差的概念及符号表示。)

⑵教师提出问题:如果等差数列 : ,公差为d,根据等差数列的定义,写出与之相关的等式,选择列式有代表性的学生板演。(估计学生会出现以下几种状况)

7.等比数列说课教案 篇七

长沙市六中 钟辅君

(选自人教版高中数学第一册(上)第三章第五节)

一、教材分析

1.从在教材中的地位与作用来看

《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.

2.从学生认知角度看

从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错.

3.学情分析

教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨.

4.重点、难点

教学重点:公式的推导、公式的特点和公式的运用. 教学难点:公式的推导方法和公式的灵活运用. 公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点.

二、目标分析

知识与技能目标:

理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础 上能初步应用公式解决与之有关的问题.

过程与方法目标:

通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转 化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.

情感与态度价值观:

通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之 间等价转化和理论联系实际的辩证唯物主义观点.

三、过程分析

学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:

1.创设情境,提出问题

在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求.西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格.国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢?

设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点.

此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数 1+2+22+23++263.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定.

设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.2.师生互动,探究问题

在肯定他们的思路后,我接着问:1,2,2,„,2是什么数列?有何1+2+22+23++263应归结为什么数学问题呢? 特征?

设s64=1+2+22+23++263,记为(1)式,注意观察每一项探讨1: 的特征,有何联系?(学生会发现,后一项都是前一项的2倍)

探讨2: 如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有 2s64=2+22+23++263+264,记为(2)式.比较(1)(2)两式,你有什么发现?

263设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机.

经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把

64两式相减,相同的项就消去了,得到:s 6421.老师指出:这就是错位 相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?

设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心. 3.类比联想,解决问题

首项为a1,这时我再顺势引导学生将结论一般化,设等比数列an,公比为q,如何求前n项和sn?这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导.

设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感.

a1-a1qnn 在学生推导完成后,我再问:由(1-q)sn=a1-a1q 得sn=1-q

对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础.)

n-1再次追问:结合等比数列的通项公式an=a1q,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)

设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用. 4.讨论交流,延伸拓展

在此基础上,我提出:探究等比数列前n项和公式,还有其它方法吗?我们知道, sn=a1+a1q+a1q2++a1qn-1=a1+q(a1+a1q++a1qn-2)那么我们能否利用这个关系而求出sn呢?根据等比数列的定义又有a2a3a4an,能否联想到等比定理从而求出sn呢? =====qa1a2a3an-1设计意图:以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围.以上两种方法都可以化归到sna1qsn1, 这其实就是关于sn的一个递推式,递推数列有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用.5.变式训练,深化认识

求等比数列1,1,1,1, 例1: 前8项和;24816631、等比数列1,1,1,1,前多少项的和是?2481664

11112、等比数列,,,求第5项到第10项的和.248163、等比数列1,1,1,1,求前2n项中所有偶数项的和.24816 首先,学生独立思考,自主解题,再请学生上台来幻灯演示他们的解答,其它同学进行评价,然后师生共同进行总结.

设计意图:采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成.通过以上形式,让全体学生都参与教学,以此培养学生的参与意识和竞争意识.

6.例题讲解,形成技能

例2:求和 1+a+a2+a3++an-1.设计意图:解题时,以学生分析为主,教师适时给予点拨,该题有意培养学生对含有参数的问题进行分类讨论的数学思想. 7.总结归纳,加深理解

以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结.

设计意图:以此培养学生的口头表达能力,归纳概括能力. 8.故事结束,首尾呼应

最后我们回到故事中的问题,我们可以计算出国王奖赏的小麦约为191.84×10粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽10米、厚8米的大道,大约是全世界一年粮食产量的459倍,显然国王兑现不了他的承诺.

设计意图:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维. 9.课后作业,分层练习

必做: P129练习1、2、3、4 选作: 思考题(1):求和 x+2x2+3x3++nxn.(2)“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首中国古诗的答案是多少?

设计意图:出选作题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间.

四、教法分析

对公式的教学,要使学生掌握与理解公式的来龙去脉,掌握公式的推导方法,理解公式的成立条件,充分体现公式之间的联系.在教学中,我采用“问题――探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段.

利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率.

五、评价分析

8.数列通项公式的求法教案 篇八

题:数列通项公式的求法 课题类型:高三第一轮复习课

授课教师:孙海明

1、知识目标:使学生掌握数列通项公式的基本求法:(1)利用公式求通项(2)累加法求通项(3)累乘法求通项,并能灵活地运用。

2、能力目标:通过例题总结归纳数列通项公式基本求法,培养学生观察、辨析、运用的综合思维能力,掌握由特殊到一般、无限化有限的化归转化的数学思想,提高学生数学素质。

3、情感目标:通过本节的学习,进一步培养学生的“实践—认识—再实践”的辨证唯物主义观点。

教学重点、难点:

点:数列通项公式的基本求法 难

点:复杂问题的化归转化 教学方法与教学手段:

教学方法:引导发现法(注重知识的发生过程,培养学生创新精神和实践能力)教学手段:多媒体辅助教学 教学过程:

一、创设情境,引出课题:

1、数列在历年的高考中都占有非常重要的地位。以近三年的高考为例:每年都出一道选择或填空、一道解答题,总分值为17分,占高考总成绩的百分之十。所以,希望同学们认真总结归纳基本方法,灵活运用解题。请同学们思考解决数列问题的关键是什么?(同学们一起回答:通项公式),那么这节课我们就来总结一下数列通项公式的基本求法。

《板书标题:数列通项公式的求法》

[设计意图]

使学生掌握数列在高考中的地位,从而使学生对数列的学习引起足够的重视,提高学习的积极性。

二、启发诱导、总结方法

1、利用公式求通项

《先给出例题,分析总结方法》

例、(07高考卷一)设an为等差数列,bn是各项都为正数的等比 数列,且ab1,ab21,ab13,求a,b的通项公式师生互动: 113553nn请同学分析叙述解题过程,老师板书。

an的公差为d,等比数列bn的公比为q,q0依题得解:设等差数列74222ab12dq21,ab14dq13,解得q4或q(舍)因为q0553 32 所以q2,所以d2,则a12(n1)2n,b2n1nn 教师引导学生分析例题题干,总结特点:“明确数列是等差还是等比数列”得出方法:利用公式求通项,并板书标题,再次强调使用类型。

《多媒体》给出同类的练习让学生巩固方法及解题过程。练:(06高考卷一)等比数列a,n中,a32,a2a43

求通项公式an

解:设等比数列{an}的公比为q,则q0 a22201a23,a4a3q2q2q解得q3或q qqq33 当q3时,ana3qn323n3 1当q时,ana3qn3233n

32、累加法求通项

回忆等差数列定义式及通项公式的推导过程,引出“累加法求通项”,并板书标题。引导学生分析条件,得出已知给出了数列相邻两项之差等于常数的结构,老师提出新问题:差值不是常数此法是否适用?给出例题让学生动手体会。

例、数列{an}中,a11,an1ann1,求通项公式an

解:由an1ann1得: a2a12 a3a23 a4a34  anan1n

学生通过亲身验会发现也可以用,从而总结得到:已知数列相邻两项之差的结构,可以使用累加法。

《多媒体》给出练习让学生进一步巩固此法的解题过程。

练:已知数列an满足a11,an3n1an1(n2), 求通项公式an左边各式等号两边分别相加得:ana1234n因a11,则an1234nn(n1)2

3、累乘法求通项

回忆等比数列定义及通项公式的推导过程,引出“累乘法求通项”,并板书标题。利用类比的方法引导学生自己总结累乘法所适合的结构类型:已知数列相邻两项之比。给出例题让学生分析叙述解题过程。并用多媒体展示解题过程,让同学对比找出不足。

例、已知数列{an}中,a12,an13nan,求通项公式ann13 解:由an13an得:n

aanna3an2a43 则a231,3,3,,3n1a1a2a3an1

相乘得: 以上各式等号左右分别n(n1)an123(n1)3则an232 a1

《多媒体》给出练习让学生进一步巩固此法的解题过程。

an1nan中,a12,练:在数列,求通项anan1 n[设计意图]

通过例题培养学生发现问题,总结规律的能力,利用对比方式提高学生举一反三的能力,通过练习巩固结论,从而达到培养学生“实践——认识——再实践”的辩证唯物主义观点。

三、知识拓展

发散思维

深化目标 《用多媒体展示四道习题》

bn是等差数列()求证: 1

an中,a11,an12an2n,设bn

1、(08高考)已知数列an,n12an的通项公式(2)求数列

2、在数列an中,a11,an1an,求通项an1nan

an中,a12,an0,an1an2an1an,3、已知数列 求通项an

4、已知数列{an}的递推关系为an22an1an4,且a11,a23,求通项an

浅析:

1、3两题通过等式两边分别某个量,从而构造出等差数列,转化为利用公式求通项。2题通过两边取倒数的方法,从而构造出数列相邻两项之差的结构,转化为累加法求通项。4题较难,需先通过重新分组结合,从而构造等差数列,求得通项后又出现数列相邻两项之差的结构,再用累加法求通项。

[设计意图]

给出几个有深度难度的题,分析总结几种重要的变形方法,从而深化学习目标,培养学生发散思维,展示化归转化的数学思想,提高运用知识解决问题的能力。

四、总结本节主要内容

学生总结老师补充,并用多媒体展示。

小结:

数列通项公式的求法:

一、利用公式求通项

二、累加法求通项

三、累乘法求通项

五、布置作业

an的前n项和为Sn,S41,S817,1、(06高考卷)已知等比数列求数列an的通项公式an的公比q1,前n项和为Sn,(07高考卷二)设等比数列

2、的通项公式 已知a32,S45S2,求数列an

an满足a11,a33,3、(06高考福建)已知数列an23an12an,求数列an的通项公式an4、已知数列{an},a11,ann1an1(n2),求通项公式ann

[设计意图]

作业选择高考题,主要让学生再次感受到本节内容的重要,增强高考应变能力,提高学生的高考意识。

板书:

通项公式的求法

一、利用公式求通项(明确数列等差还是等比)

例、(07高考卷一)设an为等差数列,bn是各项都为正数的等比数列,且a1b11, ab21,ab13,求a,b的通项公式3553nn 解:设等差数列an的公差为d,等比数列bn的公比为q,q0依题得 7a3b512dq421,a5b314dq213,解得q24或q2(舍)因为q0 2 所以q2,所以d2,则an12(n1)2n,bn2n1

二、累加法求通项

(已知数列相邻两项之差)例、数列{an}中,a11,an1ann1,求通项公式an

解:由an1ann1得: a2a12 a3a23 a4a34  aannn1

三、累乘法求通项

(已知数列相邻两项之比)

左边各式等号两边分别相加得:ana1234n因a11,则an1234nn(n1)2例、已知数列{an}中,a12,an13nan,求通项公式an 解:由aan1n3a得:3n1nann则aaa2a31,332,433,,n3n1a1a2a3an1 以上各式等号左右分别相乘得:n(n1)an123(n1)3则an232 a1

[设计意图]

9.数列的极限教案 篇九

一、教学目标

1.掌握等差、等比数列的性质;

2.能用类比的思想来研究等差、等比数列,体会它们的区别和联系;

3.理解等差数列前n项和Sn与二次函数的关系;掌握求等差数列前n项和最值的基本方法。

二、基础知识回顾与梳理

1、已知an是公差为d的等差数列,下列命题是否正确?

①a2,a4,...a12是等差数列 ;②an,an1,...a1是等差数列;③ca1,ca2,...can(c为常数)是等差数列. 【教学建议】本题选自书本第35页习题,主要复习等差数列的概念,让学生学会用定义判断一个数列是否为等差数列.

2、设an是等比数列,下列命题正确吗?

2①an是等比数列; ②anan1是等比数列;③1是等比数列; ④lgan是等比数列; an⑤anan1是等比数列.

【教学建议】本题选自课本第60页习题,提问学生:如何判断一个数列是否为等比数列,学会用定义判断一个数列是否为等比数列,第⑤小题学生容易忽略等比数列各项不能为零.

3、下列说法是否正确?

①1与4的等比中项是2; ②等比数列an中a11,a54,则a32;

【教学建议】本题考察等比中项的概念,学生可能在概念上犯错,教师在讲解时不需要避免学生出错,让学生暴露问题,老师进一步理清概念.

4、数列1,x,x2,...xn1的前n项和Sn_________.

【教学建议】本题选自书本第56页习题,等比数列求和学生使用时很容易忘记讨论q1,主要让学生加深印象,对等比数列求和一定要考虑q1的特殊情形,进一步练习:等比数列an中,S33a3,则公比q______,说明一些特殊情况下可以回避用求和公式,避免讨论.

三、诊断练习

1、教学处理:数列小题解法较多,要重视学生自己思路解法。课前学生自主完成,黑板板演,老师点评 学生思路方法,比较多种解法,比较优劣,归纳总结.

2、诊断练习点评

题1:在等差数列an中,若S1590,则a8=______________.【分析与点评】提出问题:条件S1590如何使用,引导学生思考用等差数列求和公式的两种表示形式来翻译条件,归纳思路:(1)完全化归为基本量表示,S1515a1寻求Sn和an的关系,S151514d90,化简得a8a17d6;(2)215(a1a15)90,利用性质2a8a1a15,解得a86.

2题2:公比不为1的等比数列an的前n项和为Sn,且3a,若a11,则S4=________.a2,a3成等差数列,1答案为:20

【分析与点评】(1)等差等比数列的计算强调基本量的运算:化归为a1,d(q)的计算;(2)本题“递增”是关键,学生容易得到a11,a34q24q2,代入公式求解;也可以得到

a1a34,a1a35q24q2.

题3:等比数列an的各项均为正数,且a1a54,则log2a1log2a2log2a3log2a4log2a5.第3题答案为:5

题4::等差数列{an}的公差是2,若a2,a4,a8成等比数列,则{an}的前n项和Sn第4题答案为:Sn_______ n(a1an)n(n1)2

3、要点归纳

(1)强化等差(比)数列的重要性质,对于下标和相等,等差(比)子数列的性质不同,要注意区别;(2)等差(比)数列的前n项和的性质也不同,特别注意有关等差数列前n项和Sn取最值问题,如“诊断练习”第3题;

(3)要重视等差(比)数列的性质在解题中的运用.

四、范例导析

例

1、数列an的前n项和为Sn,若a12且SnSn12nn2,nN

(1)求Sn;

(2)是否存在等比数列bn满足b1a1,b2a3,b3a9?若存在,求出数列bn的通项公式;若不存在,说明理由.【教学处理】让学生板演,了解学生读题后的第一想法,加以点评总结,同时规范学生的书写 【引导分析与精讲建议】

1、第1问强调等差数列的证明,注意n1的验证;

2、第2问注重等差等比数列基本量的计算.解析:(1)因为SnSn12nn2,nN,所以有SnSn12n对n2,nN成立.即an2n对n2,nN成立,又a1S121,所以an2n对nN成立.所以an1an2a对nN成立,所以an是等差数列,所以有Sn(2)存在.由(1)知,an2n对nN成立,所以有a36,a918,又a12,所以有b12,b26,b318,则a1annn2n,nN.2b2b33,b1b2所以存在以b12为首项,以3为公比的等比数列bn.练习:(1)已知等差数列{an}的前n项和为Sn,若S10100,S10010,求S110;(2)已知等比数列{an}中,a1a2a37,a1a2a38,求an。

变式题:等差数列an的前m项和Sm30,前2m项和S2m100,求前3m项和S3m [点评]:这里变式题起到巩固知识的作用,引导学生用多种思路来求解. 例2:已知数列{an}的前n项和为Sn.(Ⅰ)若数列{an}是等比数列,满足2a1式;(Ⅱ)是否存在等差数列{an},使对任意nN*都有anSn2n2(n1)?若存在,请求出所有满足条件的等差数列;若不存在,请说明理由.第2题答案为:

解:(Ⅰ)设等比数列

a33a2, a32是a2,a4的等差中项,求数列an的通项公an的首项为a1,公比为q,a1(2q2)3a1q,(1)2a1a33a2,依题意,有即32aa2(a2).432a1(qq)2a1q4.(2)由(1)得 q23q20,解得q1或q当q当q2.1时,不合题意舍;2时,代入(2)得a12,所以,an22n12n

(Ⅱ)假设存在满足条件的数列{an},设此数列的公差为d,则

[a1(n1)d][a1nn(n1)d]2n2(n1),得 2d22331n(a1dd2)n(a12a1dd2)2n22n对nN*恒成立, 2222d222,32则a1dd2,21223aadd0,1212解得d2,d2,或此时an2n,或an2n.a2,a2.112故存在等差数列{an},使对任意nN*都有anSn2n(n1).其中an2n, 或an2n

3、已知等差数列{an}的首项a11,公差d0,且第2项、第5项、第14项分别是等比数列{bn}的第2项、第3项、第4项.

(1)求数列{an}与{bn}的通项公式;

(2)设数列cn对nN均有cc1c2nan1成立,求c1c2c2015. b1b2bn11an.22备用题:已知数列{an}的前n项和Sn与通项an满足Sn(1)求数列{an}的通项公式;

(2)设fxlog3x,bnfa1fa2fan,Tn(3)若cnanfan,求cn的前n项和Un.111,求T2015; b1b2bn【教学处理】第(1)题,可由学生自行解答;第(2)题教师可引导学生进行观察和思考,教师点评时要侧重学生解题方法,注意运用函数的思想,注意对n1时情况的关注,培养学生严密的思维和严谨的学习态度。【引导分析与精讲建议】

(1)用方程思想求出首项和公差公比是解决问题的基础;

(2)对于等差等比综合问题学生会有困难,要引导学生抓住关键,注意等比数列证明方法;

(3)用函数的思想是解决第(2)题的关键所在,解题中要注意培养学生思维的严谨性,对表达中字母n的取值范围加以重视,注意对n1时情况的关注。

五、解题反思

10.等差数列复习课教案 篇十

(一)三维目标

1. 知识与技能:复习等差数列的定义、通项公式、前n项和公式及相关性质.2. 过程与方法:师生共同回忆复习,通过相关例题与练习加深学生的理解.3. 情感与价值:培养学生观察、归纳的能力,培养学生的应用意识.(二)教学重、难点

重点:等差数列相关性质的理解。难点:等差数列相关性质的应用。(三)教学方法

师生共同探讨复习本课时的主要知识点,再通过例题、习题加深学生的应用意识,本节课采用多媒体辅助教学。(四)课时安排 1课时

(五)教具准备 多媒体课件(六)教学过程 Ⅰ知识回顾

1、等差数列定义

一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

2、等差数列的通项公式

如果等差数列an首项是a1,公差是d,则等差数列的通项公式是ana1(n1)d。注意:等差数列的通项公式整理后为annd(a1d),是关于n的一次函数。

3、等差中项

如果a,A,b成等差数列,那么A叫着a与b的等差中项。即:Aab,或 2Aab。

24、等差数列的前n项和公式

等差数列an首项是a1,公差是d,则Sn注意:

1)该公式整理后为snn(a1an)n(n1)d。=na122d2dn(a1)n,是关于n的二次函数,且常数项为0。222)等差数列的前n项和公式推导过程中利用了“倒序相加求和法”。

5、等差数列的判断方法 a)定义法:

对于数列an,若an1and(常数),则数列an是等差数列。b)等差中项法:

对于数列an,若2an1anan2,则数列an是等差数列。

6、等差数列的性质

1.等差数列任意两项间的关系:如果an是等差数列的第n项,am是等差数列的第m项,公差为d,则有anam(nm)d。

2.对于等差数列an,若 nmpq 则,anamapaq。

3.若数列an是等差数列,Sn是其前n项的和,kN,那么Sk,S2kSk,*S3kS2k成公差为n2d的等差数列。

II例题解析

例1:等差数列an中,若a2 = 10,a6= 26,求a14 解:略

练习1:等差数列an中,已知a1=,a2+ a5 =4 3an = 33,则n是()

A.48

B.49

C.50

D.51 例2:在三位正整数的集合中有多少个数是5的倍数?求它们的和。解:略

练习2:等差数列an中, a1a2a324,a18a19a2078,则此数列前20项的和等于()

A.160

B.180

C.200

D.220 例3:已知数列an的前n项和snn23,求 an 解:略

练习3:设等差数列an的前n项和公式是sn(5n23n),求它的通项公式__________ 例4:已知等差数列an , 若a2+ a3 +a10+a11 =36,求a5+ a8 解:略

练习4:已知等差数列an中, a2+a8=8,则该数列前9项和等于()

A.18

B.27

C.36

D.4 5 例5:已知数列 an是等差数列, bn= 3an + 4,证明数列bn 是等差数列。证明:略

2练习5:已知数列an的通项公式anpn3n

(pR)

当p满足什么条件时,数列an是等差数列。III课堂练习见课件

IV课时小结

上一篇:高中生运动会宣传稿下一篇:杭州申请专利的费用标准