变频器恒压供水方案(共14篇)(共14篇)
1.变频器恒压供水方案 篇一
变频器恒压供水教学演示系统设计.txt31岩石下的小草教我们坚强,峭壁上的野百合教我们执著,山顶上的松树教我们拼搏风雨,严寒中的腊梅教我们笑迎冰雪。本文由shinyqb123贡献
pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。
第 31 卷第 2 期 2010 年 2 月
通化师范学院学报 JOURNAL OF TONGHUA TEACHERS COLLEGE Vol 31 №2.Feb.2010 变频器恒压供水教学演示系统设计
王立忠 ,王广德 ,刘洪波 ,韩 ,孟昭晖 ,丛
强 琳(吉林师范大学 信息技术学院 ,吉林 四平136000)摘 : 为了锻练学生的职业技能 ,在分析和比较国内外供水自动控制系统的发展现状和特点的基础上 , 结合城市供水的现 要 状 ,设计了一套以变频调速技术为基础的恒压供水控制系统.该系统综合运用继电控制技术、变频调速技术以及自动控制技术 , 实 现了恒压供水的参数整定 ,保证了供水系统维持在最佳运行状况 ,同时培养了学生的系统设计能力和对专业的学习兴趣.关键词 : 恒压供水;变频调速;节能 中图分类号 : T M301.2 文献标志码 : A 文章编号 : 1008002310),男 ,吉林公主岭人 ,硕士 ,吉林师范大学信息技术学院副教授.传统的小区供水方式有恒速泵加压供水、水塔 高位水箱供水、气压罐供水等.这些传统的供水方式 不同程度的存在效率低、可靠性差、自动化程度不高 等缺点 ,难以适应当前人们生活中供水的需要.目前 的供水方式正朝着高效节能、自动可靠方向发展.因 此开发自动的变频调速恒压供水系统 , 越来越受到 人们的重视.为满足供水质量的要求 , 降低能耗 , 实 现全自动、可靠稳定的供水 ,利用变频恒压供水具有 全自动恒压运行、自动工频运行、远程手动控制和现 场手动控制等功能.结合学生职业技能训练 , 在教师指导下学生设 计并安装调试变频恒压供水系统 , 可以锻炼学生的 综合设计能力和工程意识.作为教学演示系统也可 以通过演示效果激发学生对专业知识兴趣 , 了解变 频器的应用方法.系统通过对变频器内置 P I 模块参数的预置 , D 利用远程压力表的水压反馈量 ,构成闭环系统 ,根据 用水量的变化 ,在全流量范围内利用变频泵的连续 调节实现恒压供水.1 变频恒压供水演示系统的构成 [14] 成.系统构成如图 1 所示.变频恒压供水系统能 够实现水泵的软启动 , 进而减小水泵启动时的冲击
系统启动时首先闭合空气开关 , 把转换开关达 到变频位置 ,三相交流电通过开关送到交流接触器 和热继电器加载到变频器上 , 变频器输出驱动变频 电机启动运行 ,把蓄水池的水抽到上水池中 ,在此过 ?23? 1994-2010 China Academic Journal Electronic Publishing House.All rights reserved.http://ki.net 1
All rights
2.变频器恒压供水方案 篇二
供水控制系统是以某一参量作为控制目标, 对水泵电机进行控制, 来改变水泵的运行工况 (如流量、扬程、功率) , 以达到用户的需求。根据控制目标对象的不同可分为压力控制、液位控制及其他特殊控制方式, 如温度、差压和温差。从电控系统类型上分有普通继电控制型和变频调速控制型, 普通继电型通过控制交流接触器控制水泵电机的起停, 水泵电机处于工频及停止状态, 起动方式有软起动、自耦变压器起动或直接起动。变频调速系统对电机的转速实现无级调速, 根据用水量大小进行变速供水, 保证出水压力不变。既节约电能, 又保证水泵软启动 (对电网电压冲击不大) , 延长了水泵寿命。高层建筑及生活小区供水系统的发展方向是采用现代检测技术、计算机控制技术、交流调速技术, 形成组合化、模块化、可编程、可通信的系统。主要组成部分是PLC系统、PID控制器、变频器、电机、水泵、压力传感器。
2 供水系统方案及比较
水池-水泵 (恒压变频或气压罐) -管网系统-用水点是目前国内外普遍采用的方法。该系统供水采用变频泵循环方式, 以“先开先关”的顺序关泵, 工作泵与备用泵不固定。这样, 既保证供水系统有备用泵, 又保证系统泵有相同的运行时间, 有效地防止因为备用泵长期不用发生锈死现象, 提高了设备的综合利用率, 降低了维护费用。
水池-水泵-高位水箱-用水点这种供水方式通过水泵抽水送至高位水箱, 再由高位水箱向下供水至各用户。但是这第种二次供水方式不可避免造成二次污染, 影响居民的身体健康, 所以这种方案终将淘汰。
3 变频恒压供水系统控制方案
供水系统主要应用PID恒压控制功能、多泵循环控制功能以及睡眠功能, 不同水泵厂商会采用不同方案来的实现这些功能。
方案一:
采用PLC控制系统实现PID控制和多泵循环功能, 变频器仅做基本调速。在工作过程中, 压力传感器将管网水压变换为电压或电流信号, 经模拟量输入通道输入PLC系统, PLC根据给定的压力设定值与实际检测值进行PID运算, 由PLC将速度命令发送至变频器, 调节水泵电机的频率, PLC与变频器间采用Modbus通信、0-10V/4-20m A控制。
方案二:
不配置PLC, 采用变频器内部的PID功能, 变频器驱动水泵台数较少, 一般为两台, 水泵的切换循环功能也由变频器控制
方案三:
采用变频器内部PID控制功能, 水泵数量较多, 一般在三台以上, 由PLC实现灵活的循环控制及故障切换保护。
4 变频器功能与设置
4.1 PID控制功能
变频器内部PID回授信号可以选择正回授及负回授两种方式.负回授应用于当输出频率增加, 电机运转速度增大时, 检测反馈信号也会增大的应用场合;当需要减小输出频率时检测反馈信号增大时, 选择正回授.
4.2 睡眠唤醒功能
可设置睡眠频率, 睡眠时间和苏醒频率, 当频率命令低于睡眠频率时, 在睡眠时间内, 变频器运转频率为睡眠频率;当给定低于睡眠频率的时间超过睡眠时间时, 变频器进入睡眠状态, 输出频率为0, 直至速度命令达到苏醒频率时, 变频器进入苏醒状态, 按频率给定命令运行。
4.3 多泵循环功能
4.3.1 定时循环
变频器让每台电机工作于变频或停止状态, 每个时刻有一台电机运行, 电机按顺序运行设定的时间后停止, 延时后, 起动下一台电机, 循环控制多台电机, 防止某些电机长期工作, 而某些电机长期不工作的情况出现。
4.3.2 定量循环
变频器让每台电机可以工作于变频和工频状态。
加泵过程, 当现有运行电机不能满足压力或流量要求时, 将变频运行的电机加速后切换至工频电源驱动, 再变频起动下一台电机, 依次增加电机数量, 最后工作于若干台电机工频运行与一台电机变频运行模式。
减泵过程, 当运行时的压力 (或) 流量大于设定值时, 需要减泵降速运行, 变频电机开始减速, 若减速到某转速时, 满足要求, 系统维持状态继续运行, 若变频电机速度停止运行后, 压力 (或流量) 仍大于设定值, 系统将停止一台工频电机, 若此时压力 (或流量) 仍大于设定值, 则系统再停止一台工频电机, 若此时压力或 (流量) 小于设定值时, 将一台电机启动工作于变频状态, 保持若干电机工频运行、一台电机变频运行的模式。
4.3.3 定量控制
加泵过程, 第一台电机变频运行到切换频率后, 如果压力 (或流量) 小于设定值, 系统增加一台工频运行的电机, 最后系统工作于一台电机变频运行、若干台电机工频运行状态。
减泵过程, 若系统的压力 (或流量) 大于设定值, 首先变频运行的电机开始减速, 根据给定与反馈值比较, 直至速度减到最小设定频率, 若压力 (或流量) 仍大于设定值, 减少工频运行电机, 直到反馈值小于给定值时, 变频电机加速到合适转速, 最后系统也工作于一台电机变频运行、若干台电机工频运行状态。
4.3.4 定时循环+定量循环
系统处于定量循环模式工作时, 压力 (或流量) 需求较少时, 只有部分电机工作, 有的电机可能处于较长时间不运行, 这时可以用定时循环的模式循环运行电机。
4.3.5 定时循环+定量控制
3.章村矿循环水泵恒压供水变频改造 篇三
关键词:变频调速;恒压供水;节能;PID
1 概述
现章村矿洗煤厂压滤车间使用2台循环水泵,互为备用。水泵的规格型号是200ZJ-Ⅰ-65A,额定流量是350m3/h,,扬程是40M ,配套使用电机型号:Y355L-6,额定功率220KW,额定电压 380V, 控制手段相对比较传统依靠调节阀门开度来调节介质流量,供水量不能根据生产工艺的要求精确调整,电机做功部分消耗在挡板阀门之间的“頂牛”状态中,存在电能浪费。
2 改造的必要性
2.1 操作简便可控:循环水泵设备的开停车在集控操作界面对该设备实现控制,同时针对重介洗选工艺与脱介筛相关设备设置联锁,大大满足生产需要。
2.2 优化指标控制:循环水泵实现变频调速可分为自动和手动,手动状态下可通过电位器调节速度,自动状态是通过PLC模拟输入信号输入指定频率控制,自动状态下根据工况实时调速,提高了生产效率,为优化运营提供了可靠保证。
2.3 节能节电效果显著:采用变频调节后,系统实现软启动,软停车等功能,系统效率得到提高,节约能源,为降低企业用电率提供了良好的途径。
3 现场情况及节电效果分析
3.1 工频状态下的耗电量计算
Pd:电动机功率;Cd:年耗电量值; U:电动机输入电压;I:电动机输入电流;cosφ:功率因数; T:年运行时间;δ:单负荷运行时间百分比。
电机耗电功率计算公式:Pd=×U×I×cosφ ①
累计年耗电量公式:Cd=T×∑(Pd×δ) ②
其中取电机输入电流为320A, cosφ为0.85,设备运行每年按运行5440小时(340天)340天计算。
根据计算公式①②,通过计算可得出工频情况下各负载的耗电量如下:
Pd=179(kW) Cd=97.4万kW·h
3.2 变频下单位时间耗电量计算
根据流量、压力、轴功率与其转速的关系
用文字表述为:流量与转速成正比、压力与转速的平方成正比、轴功率与转速的立方成正比。
变频状态下的计算如下:
P':泵实际轴功率;P0:水泵额定轴功率 ;Cb:年耗电量值;
Q':水泵实际流量;Q0:水泵额定流量;H':水泵出、入口压力差;
H0:水泵额定压力。
低压配电系统运行电压380V,电机实际运行电流201A,水泵电机功率l10kW、极数4极、实际出力为55%~83%,取Q/QN=0.80得:
即流量为改造前的80%,则转速为当转速变为80%额定转速时,80%转速变为80%流量、64%压力,最后输出51%轴功率。故:
4 系统技术方案
闭环控制运行:根据现场提供的反馈信息( 如压力,流量等)做闭环控制,变频器自动根据反馈值自动调节运行频率,满足现场运行工况。
现场直接接收管道压力变送器传感到变频器PLC 4—20mA信号,变频器内置PID调节器,自动实现闭环控制。随着水泵出水压力的变化,随之变频器的输入反馈信号相应变化,在变频器的PID控制作用下,变频器输出与之相反的控制,最终使得出水压力恒定,实现恒压供水。
5 结语
变频恒压供水系统的设计,提高了供水质量,减少了对设备的冲击,具有节省能源,操作方便,自动化程度高等优点。节能延长电机、水泵使用寿命4年以上。为章村矿洗煤厂优化洗选工艺、提高工作效率、减岗并岗具有重要意义。
参考文献:
[1]赵华军.基于PLC和变频器控制的恒压供水系统设计[J].自动化与信息工程,2006(3).
[2]胡雪梅.变频恒压供水系统的设计与应用[J].电机与控制应用,2011,38(8).
[3]张慧宾.变频调速应用实践[M].北京:机械工业出版社,2000:128-129.
作者简介:
4.变频器恒压供水方案 篇四
供水系统在人们生活和工业应用当中是必不可少的。随着人们生活水平的提高和现代工业的发展,人们对供水系统的质量和可靠性的要求越来越高。变频恒压供水系统能够很好的满足现代供水系统的要求。
在变频恒压供水系统出现以前,有以下供水方式:(1)单台恒定转速泵的供水系统
这种供水方式是水泵从蓄水池中抽水加压直接送往用户,严重影响了城市公用水管管网压力的稳定,水泵整日不停运转。这种系统简单、造价最低,但耗电严重,水压不稳,供水质量极差。
(2)恒定转速泵加水塔(或高位水箱)的供水系统
这种供水方式是由水泵先向水塔供水,再由水塔向用户供水。水塔注满水后水泵停止工作,水塔水位低于某一高度时水泵启动,水泵处于断续工作状态中。这种方式比前一种省电,供水压力比较稳定,但基建设备投资大,占地面积大,水压不可调,供水质量差。(3)恒定转速泵加气压罐的供水系统
这种供水方式是利用封闭的气压罐代替水塔蓄水,通过检测罐内压力来控制水泵的开与停。当罐中压力降到压力下限时,水泵启动;当罐中压力升到压力上限时,水泵停止。这种方式,设备的成本比水塔要低很多。但是电机起动频繁,易造成电机的损坏,能耗大。
变频恒压供水系统不仅克服了过去供水系统的缺点,而且有其自身的优点。此系统采用了先进的s7-200plc和变频器mm440,s7-200具有低廉的价格和强大的指令,可以满足多种多样的小规模的控制要求,变频器mm440具有很高的运行可靠性、功能的多样性和全面而完善的控制功能。这种供水方式不仅提高了供水系统的稳定性和可靠性,而且实现水泵的无级调速,使供水压力能够跟踪系统所需水压,提高了供水质量。同时变频器对水泵采取软启动,启动时冲击电流很小,启动能耗小。供水系统的基本特性
供水系统的基本特性是水泵在某一转速下扬程h与流量q之间的关系曲线f(q),前提是供水系统管路中的阀门开度不变。扬程特性所反映的是扬程h与用水流量q之间的关系。由图1的扬程特性表明,流量q越大,扬程h越小。在阀门开度和水泵转速都不变的情况下,流量q的大小主要取决于用户的用水情况。
管阻特性是以水泵的转速不变为前提,阀门在某一开度下,扬程h与流量q之间的关系h=f(q)。管阻特性反映了水泵转动的能量用来克服水泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图1可知,在同一阀门开度下,扬程h越大,流量q也越大,流量q的大小反映了系统的供水能力。
扬程特性曲线和管阻特性曲线的交点,称为供水系统的平衡工作点,如图1中a点。在这一点,用户的用水流量和供水系统的供水流量达到平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。当用水流量和供水流量达到平衡时,扬程ha稳定,供水系统的压力也保持恒定。
图1 供水系统的基本特性 变频恒压供水系统的构成及工作原理 3.1 系统的构成
变频恒压供水系统采用西门子的s7-200 plc作为控制器,变频器mm440是频率调节器,交流接触器和电动机作为执行机构,压力传感器作为控制的反馈元件。s7-200 plc选用内部控制模块cpu224,模拟量2路输入通用模块、模拟量2路输出通用模块和pid模块。cpu224有14路输入/10路输出,对于小型的控制系统而言够用。pid模块使用方便,在软件中只需要配置pid的每个参数。
三相交流电与mm440的电源输入口连接,经过变频器变频后的交流电接异步电动机,异步电动机带动水泵转动。s7-200数字输出口输出控制信号到交流接触器,交流接触器两端连接的是工频或变频的三相交流电,主要起接通或断开三相交流电与异步电动机。s7-200的模拟输出口输出控制电压信号给mm440的模拟电压输入口ain1+和ain1-,该控制电压主要调节交流电的频率。压力传感器从供水网络中反馈压力信号,压力信号经过滤波放大后输入给s7-200的模拟输入口。系统的结构如图2所示。
图2 变频恒压供水系统的总体框图
3.2 系统的工作原理
变频恒压供水系统是由三相异步电动机带动水泵旋转来供水,通过变频器调节输入交流电的频率而调节异步电动机的转速,从而改变水泵的出水流量来调节供水系统的压力。因此,供水系统变频的实质是三相异步电动机的变频调速,通过改变定子供电频率来改变同步转速而实现调速的。异步电机的转速为:
其中:n0为异步电机同步转速; n为异步电机转子转速;
f为异步电机的定子输入交流电的频率; s为异步电机的转差率; p为异步电机的极对数。
由上式可知,当异步电机的极对数p不变时,电机转子转速n与定子输入交流电频率f成正比。
当系统启动,运行在自动模式时,此时手动模式无效。系统按照给定的水压进行设定,plc根据给定的水压自动调节交流电的频率,精确跟踪给定的供水压力。在用水量高峰时期,系统的用水量猛增,扬程降低,供水量不足,供水水压下降,1#电机输入交流电的频率会升高,以提高供水水压。当交流电的频率达到最大频率,供水水压仍然小于设定的水压时,1#电机会自动切换到工频状态下,同时2#电机启动并工作在变频状态。在夜间,系统的用水量递减,扬程升高,供水量过大,2#电机会退出变频状态,1#电机由工频切换到变频状态,并不断调节交流电频率,系统最终要维持供水的设定压力。当系统运行在手动模式时,自动模式无效。在自动模式出现问题或系统在维护期间时,系统才会采用手动模式。用户根据需要,可以从plc的输入开关输入信号,选择1#电机或2#电机运行在工频状态。
变频恒压供水系统的功能要求:系统的供水压力能够准确跟踪给定供水压力(稳态误差在5%内);可以自动进行自动模式/手动模式切换。
系统的控制原理框图如图3所示。压力传感器从供水管网反馈电压信号,电压信号经过滤波放大后送到s7-200的模拟输入口,与给定的供水压力信号比较形成压力偏差信号,经过plc(s7-200)pid模块pi调节后发出控制电压信号,送到变频器mm440的模拟输入调节端口。送到变频器mm440的模拟电压信号与连接到变频器mm440的三相交流电的频率一一对应,调节控制电压信号就可以调节三相交流电的频率。系统是以供水管网的供水压力为控制对象而构成的闭环控制系统,其设计是按照两个电机就可以完全满足供水要求。
图3 变频恒压供水系统的控制原理框图 硬件电路设计 4.1 主电路
变频恒压供水系统就是利用异步电机拖动水泵的。系统的主电路由电源开关q、熔断器fu、交流接触器km、热继电器kr等组成,采用了一台变频器切换控制两台电机,1#电机和2#电机可以在工频和变频状态下进行切换,交流接触器的通断由s7-200的输出口控制。主电路如图4所示。
图4 系统主电路图
4.2 控制电路
控制电路主要由plc(s7-200)、变频器mm440等组成,plc外围电路接线图如图5所示。总电源开关为q,sb0为plc的程序启动按钮,与plc的i0.0输入口相连接,当按下sb0时,i0.0为“1”,plc程序启动。k1为系统的自动模式开关,当k1接通时,i0.1为“1”,交流接触器km1闭合,系统自动运行。当变频器的频率达到上限频率时,i0.5为“1”,1#泵和电机切换到工频状态下,2#泵和电机变频启动。当变频器的频率达到下限频率时,i0.6为“1”,2#电机停止运行,1#电机由工频切换到变频状态下。i0.5和i0.6的状态由变频器输入。k2为系统的手动模式开关,当k2接通时,i0.2为“1”,交流接触器km1断开,系统不能自动运行,用户可以根据需要接通k3或k4来选取1#电机或2#电机工频运行。km1为控制1#电机和2#电机在自动模式下运行的交流接触器,km2为控制1#电机在变频下运行的交流接触器,km3为控制1#电机在工频下运行的交流接触器,km4为控制2#电机在变频下运行的交流接触器,km5为控制2#电机在工频下运行的交流接触器。
图5 plc外围接线图 程序设计
5.1 plc程序设计
plc程序设计的主要流程如图6所示。合上开关q,按下起动按钮sb0,plc程序复位。当合上开关k1,i0.1为“1”,系统在自动模式下运行,交流接触器km1接通,系统将根据程序跟踪设定供水压力。
图6 主程序流程图
当用户用水量递增,变频器达到频率50hz,供水压力还没有达到设定的供水压力时,mm440输出高电平到i0.5。此时,q0.1为“0”,q0.2为“1”,交流接触器km2断开,km3接通,1#电机由变频切换到工频。定时器计时3s,变频器停止,变频器的频率由最高频率50hz逐渐下降,3s后q0.3为“1”,2#电机接到变频器开始变频运行。设置延迟时间主要原因是让变频器的频率下降,软启动静止的2#电机,减小电机启动电流,避免电机烧毁。
当用户用水量减小,变频器达到下限频率30hz,供水压力还是高于设定的供水压力时,mm440输出高电平到i0.6。此时,q0.4为“0”,km2断开,2#电机退出变频并逐渐停止。同时q0.1为“1”,q0.2为“0”,交流接触器km2接通,km3断开,1#电机由工频切换到变频。下限频率设定在30hz主要原因:在供水系统中,转速过低时会出现水泵的全扬程小于基本扬程(实际扬程)形成水泵“空转”的现象。在多数情况下,下限频率应定为30hz~35hz。当合上开关k2,系统在手动模式下运行,交流接触器km1断开。用户可以根据需要,合上开关k3,交流接触器km3接通,选择1#电机在工频下运行。合上开关k4,交流接触器km5接通,选择2#电机在工频下运行。
5.2 变频器mm440的参数配置
变频器mm440主要使用的是模拟输入口ain1+和ain1-,模拟电压信号输入后通过a/d转换器得到数字信号。由plc模拟输出口输出模拟控制电压信号,输入到变频器的模拟口,变频器的频率和控制电压一一对应。系统使用变频器的模拟端口,最高频率应该设置为50hz,最低频率为30hz。mm440的参数配置如附表所示。
附表 mm440的参数配置 结束语
5.变频器恒压供水方案 篇五
我国是全球人均水资源最贫乏的国家之一,人均水资源总量为2300立方米,仅为世界人均水平的1/4。由于水资源时空分布不均,受人口密度、经济结构、作物组成、节水水平等诸多因素的影响,中国农村地区水资源短缺的现象十分严重。相关资料表明,全国农业年正常用水缺300亿立方米,农村有8000万人口、6000万头牲畜饮水困难。由于城乡发展二元结构的存在,农村用水的保障优先性低于城市和工业,农村自来水普及率尚不到40%,仅有14%的村庄有供水设施,用水器具质量和效率低,处理设施简陋,供水保证率很低。一些地方虽然水资源较丰富,但由于供水设施简陋或根本没有供水设施,直接从河道、坑塘、山泉、浅井取水,水源安全性得不到保证。另外一些地区季节性缺水严重,干旱季节缺水时需远距离拉水或买水。近年来,气候变化大,干旱严重,地表水水量减少,地下水位下降,泉水枯竭,生产和生活用水量大幅度增加,工农业争水、城乡争水尤其严重,农村地区生活饮用水不足问题更加突出。
在农村,水利设施落后成为制约农民安全用水以及农村发展的至关因素。一方面要增强农民安全用水意识,另一方面要建立先进的水利工程,两手准备才能起到立竿见影的效果。
随着近年来国家对社会主义新农村的高度关注,农村水利工程也提上了改革日程。作为民族供水设备品牌,为了更好的发展民族企业,加快社会主义新农村建设,保障农村用水安全。中崛供水因地制宜创造了微电脑变频恒压供水设备。与传统的农村水泵抽水至楼顶水塔(箱)相比,微电脑变频恒压设备更加节能、便捷、干净、智能。
传统的水泵将水抽至农田当中,或者远距离没有水源,在农作物中安装一两台水塔,将水抽至水塔中。这样的灌溉方式最大的缺点就是需要专人守护在旁,时刻关注灌溉情况。
微电脑变频恒压供水设备可以实现无人控制智能化管理,水压差多少补多少,可以分段供水,定时供水,手动选择工作方式。并且设备可以实现自我保护的功能,如某台泵出现故障,主动向上位机发出报警信息,同时启动备用泵,以维持供水平衡。万一自控系统出现故障,用户可以直接操作手动系统,以保护供水。
发展农村供水、保障饮水安全和灌溉安全是农村居民生存的基本需要,是贯彻落实“以人为本”、“构建和谐社会”的必然要求,也是全面建设农村小康社会和社会主义新农村的重要任务之一,对改善居民生活环境、提高卫生健康水平、解放农村劳动生产力、促进农村社会经济发展具有重要的意义和作用。
6.变频器恒压供水方案 篇六
[摘 要 ] 介绍了一种替代水塔供水的基于PLC的恒压供水系统的构成和工作原理。系统采用变频调速方式自动调节水泵电机转速或加、减泵。改变以往“先启后停”方式,自动完成泵组软启动及无冲击切换,使水压平稳过渡。变频器故障时系统仍可运行,保证不间断供水。系统断电恢复后可自启动。采用硬件/软件备用及钟控功能,使各泵进行轮休,延长了设备的机械使用寿命。
0 引言
随着变频调速技术的发展和人们对生活饮用水品质要求的不断提高,变频恒压供水系统已逐渐取代原有的水塔供水系统,广泛应用于多层住宅小区生活消防供水系统。然而,由于新系统多会继续使用原有系统的部分旧设备(如水泵),在对原有供水系统进行变频改造的实践中,往往会出现一些在理论上意想不到的问题。本文介绍的变频控制恒压供水系统,是在对一个典型的水塔供水系统的技术改造实践中,根据尽量保留原有设备的原则设计的,该系统很好的解决了旧设备需要频繁检修的问题,既体现了变频控制恒压供水的技术优势,同时有效的节省了资金。系统介绍
变频恒压供水系统原理如图1所示,它主要是由PLC、变频器、PID调节器、TC时间控制器、压力传感器、液位传感器、动力控制线路以及4台水泵等组成。用户通过控制柜面板上的指示灯和按钮、转换开关来了解和控制系统的运行。
通过安装在出水管网上的压力传感器,把出口压力信号变成4-20mA的标准信号送入PID调节器,经运算与给定压力参数进行比较,得出一调节参数,送给变频器,由变频器控制水泵的转速,调节系统供水量,使供水系统管网中的压力保持在给定压力上;当用水量超过一台泵的供水量时,通过PLC控制器加泵。根据用水量的大小由PLC控制工作泵数量的增减及变频器对水泵的调速,实现恒压供水。当供水负载变化时,输入电机的电压和频率也随之变化,这样就构成了以设定压力为基准的闭环控制系统。
同时系统配备的时间控制器和PID控制器,使其具有定时换泵运行功能(即钟控功能,由时间控制器实现)和双工作压力设定功能(PID控制器和时间控制器实现)。此外,系统还设有多种保护功能,尤其是硬件/软件备用水泵功能,充分保证了水泵的及时维修和系统的正常供水。
正常情况(无泵检修)时,各泵的运行顺序为1#,2#,3#,4#。工作原理 2.1 运行方式
该系统有手动和自动两种运行方式: ⑴.手动运行
按下按钮启动或停止水泵,可根据需要分别控制1#-4#泵的启停。该方式主要供检修及变频器故障时用。
⑵.自动运行
合上自动开关后,1#泵电机通电,变频器输出频率从0Hz上升,同时PID调节器接收到自压力传感器的标准信号,经运算与给定压力参数进行比较,将调节参数送给变频器,如压力不够,则频率上升到50Hz,1#泵由变频切换为工频,启2#变频,变频器逐渐上升频率至给定值,加泵依次类推;如用水量减小,从先启的泵开始减,同时根据PID调节器给的调节参数使系统平稳运行。
若有电源瞬时停电的情况,则系统停机;待电源恢复正常后,系统自动恢复运行,然后按自动运行方式启动1#泵变频,直至在给定水压值上稳定运行。
变频自动功能是该系统最基本的功能,系统自动完成对多台泵软起动、停止、循环变频的全部操作过程。
2.2 故障处理 2.2.1 故障报警
当出现缺相、变频器故障、液位下限、超压、差压等情况时,系统皆能发出声响报警信号;特别是当出现缺相、变频器故障、液位下限、超压时,系统还会自动停机,并发出声响报警信号,通知维修人员前来维修。此外,变频器故障时,系统自动停机,此时可切换至手动方式保证系统不间断供水。2.2.2 水泵检修
为维护和检修水泵,要求在系统正常供水状态下,在一段时间间隔内使某一台水泵停运,系统设有水泵强制备用功能(硬件备用),可随意备用某一台水泵,同时不影响系统正常运行;为了使水泵进行轮休,系统还设有软件备用功能(钟控功能,由时间控制器实现),工作泵与备用N泵具有周期定时切换功能,周期间隔由时间控制器设定:1小时每次~96小时每次连续可调。PLC控制系统
该系统采用的是欧姆龙可编程序控制器SYSMAC CPM2A系列,I/O点数为60点,PLC编程采用OMRON CX-Programmer,它是Omron PLC的32位视窗软件支持工具,提供完整的编程环境,可进行离线编程和在线连接和调试,并能实现梯形图与语句表的相互转换。为了提高整个系统的性价比,该系统采用开关量的输入/输出来控制电机的启停、定时切换、软起动、循环变频及故障的报警等,而电机转速、水压量等模拟量则由PID调节器和变频器来控制。
泵组的切换示意图如图2。开始时,若硬件、软件皆无备用(两者同时有效时硬件优先),1#泵变频启动,转速从0开始随频率上升,如变频器频率到达50Hz而此时水压还在下限值,延时一段时间(避免由于干扰而引起误动作)后,1#泵切换至工频运行,同时变频器频率由50Hz滑停至0Hz,2#泵变频启动,如
水压仍不满足,则依次启动3#、4#泵,泵的切换过程同上;若开始时1#泵备用,则直接启2#变频,转速从0开始随频率上升,如变频器频率到达50Hz而此时水压还在下限值,延时一段时间后,2#泵切换至工频运行,同时变频器频率由50Hz滑停至0Hz,3#泵变频启动,如水压仍不满足,则启动4#泵,泵的切换过程同上;若1#、2#泵都备用,则直接启3#变频,具体泵的切换过程与上述类同。
同样,若3台泵(假设为1#、2#和3#)运行时,3#泵变频运行降到0Hz,此时水压仍处于上限值,则延时一段时间后使1#泵停止,变频器频率从0Hz迅速上升,若此后水压仍处于上限值,则延时一段时间后使2#泵停止。这样的切换过程,有效地减少泵的频繁启停,同时在实际管网对水压波动做出反应之前,由变频器迅速调节,使水压平稳过渡,从而有效的避免了高楼用户短时间停水的情况发生。
以往的变频恒压供水系统在水压高时,通常是采用停变频泵,再将变频器以工频运行方式切换到正在以工频运行的泵上进行调节。这种切换的方式理论上要比直接切工频的方式先进,但其容易引起泵组的频繁启
停,从而减少设备的使用寿命。而在该系统中,直接停工频泵,同时由变频器迅速调节,只要参数设置合适,即可实现泵组的无冲击切换,使水压过渡平稳,有效的防止了水压的大范围波动及水压太低时的短时缺水现象,提高了供水品质。注意事项
要使系统稳定的运行,有几个参数需特别注意: ⑴.变频转工频开关切换时间TMC
设置TMC是为了确保在加泵时,泵由变频转为工频的过程中,同一台泵的变频运行和工频运行各自对应的交流接触器不会同时吸合而损坏变频器,同时为了避免工频启动时启动电流过大而对电网产生的冲击,所以在允许范围内TMC必须尽可能的小。⑵.上下限频率持续时间TH和TL
变频器运行的频率随管网用水量增大而升高,本系统以变频器运行的频率是否达到上限(下限)、并保持一定的时间为依据来判断是否加泵(减泵),这个判断的时间就是TH(TL)。如果设定值过大,系统就不能迅速的对管网用水量的变化做出反应;如果设定值过小,管网用水量的变化时就很可能引起频繁的加减泵动作;两种情况下都会影响恒压供水的质量。结束语
在供水系统中采用变频调速运行方式,系统可根据实际设定水压自动调节水泵电机的转速或加减泵,使供水系统管网中的压力保持在给定值,以求最大限度的节能、节水、节地、节资,并使系统处于可靠运行的状态,实现恒压供水;减泵时采用“先启先停”的切换方式,相对于“先启后停”方式,更能确保各泵使用平均以延长设备的使用寿命;同时针对所用四台泵均已使用多年、需要定期进行检修的实际情况,增加了硬件/软件备用功能,有效延长了设备的使用寿命;压力闭环控制,系统用水量任何变化均能使供水管网的服务压力保持给定,大大提高了供水品质;变频器故障后仍能保障不间断供水,同时实现故障消除后自启动,具有一定的先进性。目前该系统已投入使用,效果明显。
7.变频器恒压供水方案 篇七
双鸭山弘烨公司承担着部分市区工业和居民用水的供水工作。以前我们采用的是高位静压水池 (益寿山水池) 供水方式。随着城市的发展和高层住宅的出现, 原有的高位水池供水方式已不能满足城市的供水需要。主要矛盾有以下几点。
(1) 水压不足, 高层楼房上不去水。
(2) 用水量增大, 供水系统水压不稳。
为解决上述问题, 弘烨公司在为龙祥小区高层供水时, 采用PLC控制变频调速恒压供水技术, 很好地解决了问题, 保证了供水质量, 满足了用户需要。
2 实现恒压供水的理论依据
(1) 反馈信号及安装点的选取:我们采用在供水系统的出水总管道的稳流段安装一个压差变送器, 作为调速控制的反馈控制信号, 实现水压的恒压控制。
在住宅小区供水系统中, 由于管网是封闭的, 供水的流量取决于用户的用水量, 供水的质量取决于最不利点 (最高点的最末端) 的管网压力是否恒定。泵站供水压力以满足管网中压力最不利点的压力损失ΔP与管路流量Q之间存在着如下关系:
式中:K为为阻力系数。
设Pmin为满足管网最不利点所需的最低的压力, 则泵站出口总管压力P应下式关系供水, 则可满足用户用水的压力值, 又能得到最佳的节能效果。
可见供水系统的设定压力值应根据流量的变化而不断的修正。这种恒压供水的技术称为变流量恒压供水。即供水系统的最不利点的供水压力为恒值, 而泵站出口总管压力连续可调。则可满足用户用水的压力值, 又能得到最佳的节能效果。
(2) 使用变频器调节压力、流量的依据:由流体力学可知, W (功率) =Q (流量) ×H (压力) /102η (效率) , 而流量Q与转速n的一次方成正比, 压力H与转速n的平方成正比, 功率P与转速n的立方成正比, 如果水泵的效率一定, 当要求调节流量时, 通过调整转速n, 进而达到调节流量Q、压力P和轴功率W的目的。这就是通过调节转速, 进而达到调节压力、流量的变频调速原理, 同时也是变频节能的原理。
3 设备的选择及控制方案
我们选择可编程序控制器PLC为程序元件, 用变频器为调节元件, 用压差变送器为反馈元件, 用电机为执行元件组成恒压供水系统, 实现恒压供水。其变频调速补偿过程见图1, 其变频调速原理方框图见图2。
3.1 变频器
选择FR—A540型。具有以下基本功能。
(1) 变频/工频自动转换功能。提供三种工作方式。
(2) 具有PID调节功能。由压力传感器反馈的水压信号, 直接送入PLC的A/D接口。设定压力值和PID参数值, 通过PLC计算, 自动确定PID的调整量。
(3) 休眠功能。系统运行时经常会遇到用水量较小甚至不用水 (如夜间) 的情况。为了节能, FR—A540的休眠功能, 可以使水泵暂停工作。
(4) 通讯功能。FR—A540具有与计算机通讯的功能。利用计算机, 可以同时监测水泵及管网的电流、电压、频率、转速、压力、流量等各种参数的变化。
3.2 可编程序控制器P L C的选择
我们选择FX2N—64MR型。FX2N—64MR是超小机型。I/O点数最大可扩展到256点。它有内置8K步的RAM, 使用存贮卡后, 最大容量可扩大到16K步。一条指令处理时间仅为0.8μs。它不仅能完成逻辑控制、顺序控制、位置控制、模拟量控制、高速计数等功能。更重要的是能进行PID调节。这一点正是恒压供水需要的理想功能。可见FX2N—64MR具有超小型、容量大、点数多、运算速度快、指令集功能完善等特点, 是实现恒压供水的理想器件。
8.变频器恒压供水方案 篇八
关键词:PLC 变频调速 恒压供水系统 PID
中图分类号:TV1 文献标识码:A 文章编号:1672-3791(2010)03(c)-0106-01
1 变频调速恒压供水系统的设计原理
此恒压供水系统采用了三台水泵并联运行的方式,利用压力传感器将主水管网水压变换为电信号,经模拟量输入模块,输入可编程控制器(PLC),PLC根据给定的压力设定值与实际检测值进行PID运算,输出控制信号,经模拟量输出模块至变频器,调节水泵电机的供电电压和频率。当用水量较小时,一台泵在变频器的控制下稳定运行,当用水量大到水泵全速运行也不能保证管网的压力稳定时,PLC给定的压力下限信号与变频器的高速信号同时被PLC检测到,PLC自动将原工作在变频状态下的泵投入到工频运行,以保持压力的连续性,同时将下一台备用泵用变频器起动后投入运行,以加大管网的供水量保证压力稳定。若两台泵运转仍不能满足压力的要求,则依次将变频工作状态下的泵投入到工频运行,再将一台备用泵投入变频运行。当用水量减少时,首先表现为变频器已工作在最低速信号有效,這时压力上限信号如仍出现,PLC首先将最先工频运行的泵停掉,以减少供水量。当上述两个信号仍存在时,PLC再停掉第二台工频运行的电机,直到最后一台泵用变频器恒压供水。
2 变频调速恒压供水系统硬件设计
本系统选用了西门子公司的S7-214PLC,辅以输入/输出扩展模块组成,主要检测元件有光电开关、压力检测开关,共计12个输入信号。执行部件有电机、变频调速器、声光报警器等,共3个输出点。PLC主要完成现场的数据采集、转换、存储、报警、控制变频器完成压力调节等功能。三台水泵由变频器直接驱动,进行恒压控制,变频器的起动、停止分为手动和PLC自动控制。控制面板上设有一个手动/自动转换开关,PLC对该开关的状态实时检测,当选择手动功能时,PLC只进行检测报警,由人工通过面板上的按钮和开关进行水泵的起、停和切换。当选择自动功能时,所有控制、报警均由PLC完成。控制系统原理图如图1所示。
3 变频调速恒压供水系统软件设计
为方便编程和调试,系统控制器采用模块化编程,主要由手动运行模块、自动运行模块和故障诊断与报警模块三个部分构成。
(1)手动运行模块。
当系统处于手动运行时,PLC只接收各电路保护信号和各传感器信号,并由此判断各工作水泵的运行状态,在出现故障的情况下,输出报警信号。水泵的起、停和切换由人工通过面板上的按钮和开关来实现。
(2)自动运行模块。
自动运行模块包括系统的初始化、开机命令的检测、数据采集子程序、控制量运算子程序、置初值子程序、电机控制子程序等。
电机控制子程序完成对三台水泵的运行和停止控制。由于变频器的输出频率与水泵的运转速度直接相关,用水量大时,变频器输出频率升高,水泵的运转速度大;用水量小时,频率降低,水泵的运转速度小。因此程序根据变频器的输出频率的大小就可以判断和控制水泵的工作状态。
(3)故障诊断和报警输出模块。
变频器具有短路、过载等保护功能,当变频器所驱动的水泵电机发生短路、过载等故障时,变频器将自动切断一次供电回路,进入保护状态并输出报警信号。系统把各故障点相应的接触器、断路器等元件的辅助触点接到PLC,PLC扫描输入这些触点的状态,并通过PLC程序将这些状态存放在数据存储区,再结合控制程序和设备预置状态进行逻辑分析,判断设备或元件是否出了故障,如果发生故障,则切断该泵的接触器,然后对变频器复位,再将备用水泵的接触器接通,启动变频器运行备用泵,同时输出该泵故障报警信号。如电机故障指示灯亮等。各I/O点对应的故障信息如表1所示。
4 结束语
采用PLC作为控制器,硬件结构简单,成本低,系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求。另外,S7-214PLC基本单元提供一个RS-485接口,可以与楼宇监控中心进行通讯,实现无人远程控制。
参考文献
[1]钟肇新,范建东,等.可编程控制器原理及应用,2003.2
[2]宋伯生.PLC系统配置及软件编程[M].中国电力出版社,2008.1.
9.PLC在恒压供水系统中应用 篇九
引言
在供水系统中,恒压供水是指在供水网系中用水量发生变化时,出口压力保持不变的供水方式。本文采用计算机(PC)、可编程控制器(PLC)、变频器组成变频恒压供水监控系统,通过变频调速实现恒压供水、满足节能降耗的要求,而且有利于实现生产的自动化及远程监测。用水量变化具有随机性,用水高峰时水压不足,低谷时又造成能量浪费。变频恒压供水系统根据公共管网的压力变化,通过PLC和变频器自动调节水泵的增减、水泵电机的运行方式及电机的转速,实现恒压供水,既防止了能量空耗,又避免出现电机启动时冲击电流对设备的影响。
二工作原理
变频恒压供水系统采用一台变频器拖动两台大功率电动机,可在变频和工频两种方式下运行;一台低功率的电机,作为辅助泵电机。
启动方式:为避免启动时的冲击电流,电机采用变频启动方式,从变频器的输出端得到逐渐上升的频率和电压。启动前变频器要复位。
变频调速:根据供水管网流量、压力变化自动控制变频器输出频率,从而调节电动机和水泵的转速,实现恒压供水。如设备的输出电压和频率上升到工频仍不能满足供水要求时,PLC发出指令1号泵自动切换到工频电源运行,待1号泵完全退出变频运行,对变频器复位后,2号泵投入变频运行。
多泵切换:根据恒压的需要,采取无主次切换,即“先开先停”的原则接入和退出。在PLC的程序中,通过设置变频泵的工作号和工频泵的台数,由给定频率是否达到上限频率或下限频率来判断增泵或减泵。在用水量较小的情况下,采用辅助泵工作。
为了避免一台泵长期工作,任一泵不能连续变频运行超过3小时。当工频泵台数为零,有一台运行于变频状态时,启动计时器,当达到3小时时,变频泵的泵号改变,即切换到另一台泵上。当有泵运行于工频状态,或辅助泵启动时,计时器停止计时并清零。
故障处理:能对水位下限,变频器、PLC故障等报警。PLC故障,系统从自动转入手动方式。
三PLC控制电路
系统采用S7-200PLC作下位机。S7-200PLC硬件系统包含一定数量的输入/输出(I/O)点,同时还可以扩展I/O模块和各种功能模块,在保证系统稳定性的基础上,再减低系统成本,我们选用了UniMAT扩展模块接在CPU后面。输入点为6个,其中水位上、下限信号分别为I0.0、I0.1。输出点为10个,O0.0-O1.0对应PLC的输出端子。对变频器的复位是由输出点O1.0通过一个中间继电器KA的触点来实现的。根据控制系统I/O点及地址分配可知,系统共有5个开关量输入点,9个开关量输出点;1个模拟量输入点和1个模拟量输出点。可以选用CPU224PLC(14DI/10DO),再扩展一个UniMAT模拟量模块EM235(4AI/1AO)。
四电控程序设计
4.1泵站软件的设计分析
(1)由“恒压”要求出发的工作组数量的管理
为了恒定水压,那么在水压降低时,需要升高变频器的输出频率,并且在一台水泵工作是不能满足恒压要求时,这时需要启动第二台。这样有一个判断标准来决定是否需要启动新泵即为变频器的输出频率是否达到所设定的频率上限值。这一功能可以通过比较指令来实现。为了判断变频器的工作频率达到上限的确定性,应滤去偶然因素所引起的频率波动所达到的频率上限值的情况,在程序中应考虑采取时间滤波情况。
(2)台组泵站泵组的管理规范
由于变频器泵站希望每一次启动电动机均为软启动,有规定各台水泵必须交替使用,那么多台组泵站泵组的投入运行需要有一个管理规范。在本次设计中控制要求中规定任意的一台水泵连续运行不得超过3h,因此每次需要启动新泵或切换变频泵的时候,以新运行泵为变频是合理的。具体的操作时,将现运行的变频器从变频器上切除,并且接上工频电源加以运行,同时将变频器复位并且用于新运行泵的启动。除此之外,泵组管理还有一个问题就是泵的工作循环控制,在本设计中所使用的是用泵号加1的方法来实现变频器的循环控制即3加上1等于0的逻辑,用工频泵的总数结合泵号来实现工频泵的轮换工作。
4.2程序的结构及程序功能的实现
根据前面可知,PLC在恒压供水系统中的功能比较多,由于模拟量单元及PID调节都需要编制初始化及中断程序,本程序可以分为三个部分:主程序、子程序和中断程序。
(1)系统的初始化的一些工作放在初始化子程序中完成,这样可以节省扫描时间。利用定时器中断功能来实现PID控制的定时采样及输出控制。初始化子程序流程框图如图1。在初始化的子程序中仅仅在上电和故障结束时用,其主要的用途为节省大量的扫描时间加快整个程序的运行效率,提高了PID中断的精确度。上电处理的作用是CPU进行清除内部继电器,复位所有的定时器,检查I/O单元的连接。
图1初始化程序
(2)主程序流程图如图2。其功能最多,如泵的切换信号的生成、泵组接触器逻辑控制信号的综合及报警处理等等都在主程序中。生活及消防双恒压的两个恒压值是采用数字式方式直接在程序中设定的。生活供水时系统设定为满量程的70%,消防供水时系统设定为满量程的90%。本系统中的增益和时间常数为:增益Kc=0.25,采样时间Ts=0.2s,积分时间Ti=30min。
图2主控制程序
(3)中断程序如图3,其作用主要用于PID的相应计算,在PLC的常闭继电器SM0.0的作用下工作,它包括:设定回路输入及输出选项、设定回路参数、设定循环报警选项、为计算指定内存区域、指定初始化子程序及中断程序。
图3中断程序
五结束语
恒压供水技术因采用变频器改变电动机电源频率,而达到调节水泵转速改变水泵出口压力,比靠调节阀门的控制水泵出口压力的方式,具有降低管道阻力大大减少截流损失的效能。由于变量泵工作在变频工况,在其出口流量小于额定流量时,泵转速降低,减少了轴承的磨损和发热,延长泵和电动机的机械使用寿命。实现恒压自动控制,不需要操作人员频繁操作,降低了人员的劳动强度,节省了人力。
水泵电动机采用软启动方式,按设定的加速时间加速,避免电动机启动时的电流冲击,对电网电压造成波动的影响,同时也避免了电动机突然加速造成泵系统的喘振。
由于变量泵工作在变频工作状态,在其运行过程中其转速是由外供水量决定的,故系统在运行过程中可节约可观的电能,其经济效益是十分明显的。正因为此,系统具有收回投资快,而长期受益,其产生的社会效益也是非常巨大。
10.变频器恒压供水方案 篇十
该系统采用PLC作为控制中心,完成PID闭环运算、多泵上下行切换、显示、故障诊断等功能,由变频器调速方式自动调节水泵电机转速,达到恒压供水的目的。
一、前言
随着控制技术的发展与完善,变频器及PLC在各个行业的应用愈来愈广,PLC与变频器的可靠性与灵活性得到了用户的认可。同时传统的水塔供水方式暴露了很多缺点:水的二次污染,用水高低峰的不平衡,管道阀门易损坏,维修保养费用过高等等。在此条件下各种恒压供水方式应运而生,其中由变频器、PLC控制的方式尤为普遍,这种方式的特点:系统稳定,功能强大,变频器用于供水更加节能,所以广泛应用在多层住宅小区生活消防供水系统中,现在好多场合也有应用,比如中央空调系统、供水加压站、集中供热等,这种方式经受了时间的考验,已有很多的应用实例。本文介绍的系统在宝鸡某电厂家属区已从98年运行至今,系统稳定,性能可靠,得到了用户的肯定和好评。
二、系统组成:
1、原理框图:参见图一所示。
图
一、恒压供水原理框图
2、系统概述:
该系统由四台大泵(22KW)与一台小泵(5.5KW)组成;PLC部分由西门子可编程控制器S7-200系列的CPU226,文本显示器TD200组成;变频器采用三菱FR-A540系列,功率22KW。
用户所需的生活用水压力、消防用水压力、运行方式等参数在TD200文本显示器上设定,压力传感器把用户管网压力转换为0-10V标准信号送进PLC模拟量模块EM235,PLC通过采样程序及PID闭环程序与用户设定压力构成闭环,运算后转换为PLC模拟量输出信号送给变频器,调节水泵电机转速,达到恒压供水的目的。
该系统有各个泵的运行时间累计功能,通过PLC的数据区保持可以断电记忆。每次起动时先起动1#小泵,当用水量超过一台泵的供水能力时,PLC通过程序实现泵的延时上行切换,切换原则为当前未运行的大泵累计运行时间最少的先投入;当压力超过时,PLC通过程序实现泵的延时下行切换,切换原则为当前正在运行的大泵运行时间最多的先撤出。直到满足设定压力为止。追求的最终目标为压力恒定。
当供水负载变化时,变频器的输出电压与频率变化自动调节泵的电机转速,实现恒压供水。
系统还可通过PLC的实时时钟自动定时供水,用户在TD200上设定每天最多6段(段数也可设定)定时供水,比如早上6:00到8:30,中午11:20到1:30等。
系统可动态显示各种参数,如设定压力,运行压力,水位高度,运行方式,实时时间,日历,各个泵的运行时间累计(精确到秒),运行状态,故障信息等等。为了不使系统中TD200画面显得死板,在PLC程序中控制TD200中的画面定时切换,动态显示;
系统还有故障自诊断功能,各泵发生过载、缺相、短路、传感器断线、传感器短路、水位下限、水压超高、水压超低、变频器故障等,都会有声光报警,TD200上同时显示故障类型,通知设备维修人员处理,并可记忆故障发生时间及班次,以便追查原因及相关责任。
3、工作原理:
3.1 自动手动方式
(1)手动运行时,可按下按钮起动停止水泵在工频状态下运行,完全脱离开PLC及变频器的控制,该功能主要用在检修及自动系统出现故障时的应急供水方式中。
(2)自动运行时,全部泵的运行依程序自动工作。
上行过程:当在自动运行方式时,按下TD200上的起动软健,系统先起动1#小泵,PLC程序控制模拟量模块EM235给定变频器一固定频率输出,此时若用 PID运算输出直接控制变频器则(设定压力大,运行压力为零,所以运算输出最大)变频器依设定的上升时间运行,升速太快,系统冲击很大。等泵运行一会儿,管网压力积累后,再用PID运算输出控制变频器。具体时间和频率与管网系统有关,在现场调试时这两个参数在TD200上设定调整。管网越大,时间越长。
当 1#小泵到达50HZ后,系统压力仍偏低,则延时一段时间后,系统靠PLC程序把1#泵切换到工频运行,同时由PLC输出一个开关量给变频器的MRS端子,变频器瞬间禁止输出,此时PLC把运行时间最少的泵变频接触器接通后,撤掉禁止输出,相应的泵变频起动运行;延时切断1#小泵,系统中相应的一台大泵变频运行,压力自动调节,若系统压力平衡,则频率稳定在一个相对的范围,若频率到达50HZ后压力仍然偏低,则再投入一台大泵,比较剩下的泵的累计运行时间,时间少的先行投入,以此类推。注意,上行中,只要有一台大泵运行,则1#小泵要断开,大泵与小泵同时运行时,小泵的效率很低。
下行过程:当系统压力偏高,变频器运行在18HZ左右(18HZ以下泵的效率很低,经验值)时,PLC程序判断运行在工频状态的泵累计运行时间(若只有一台泵不作判断),运行时间最多的泵延时先行撤出,在撤出的瞬间,PLC控制变频器运行频率在50HZ,要不系统冲击过大,容易有水垂现象,延时一会儿后,再把 PID运算输出投入即可;以此类推。注意:下行过程中,到最后一台大泵运行时,频率在18HZ左右,系统压力仍然偏高时,则把1#小泵切换到变频运行。这种情况在夜间可能发生,当供水管网很大时,也许没有这个可能性。
三、注意事项:
1、该系统中有泵的工频变频上行切换,为了系统的快速响应,切换时间最好越短越好,切换时时间差很小,所以各个泵的变频接触器与工频接触器最好用可逆接触器,电气线路与PLC程序中也要有互锁功能。以免发生意外短路事故。对系统或变频器造成危害。
2、变频器上行下行切换时间设定,如果设定值过大,则系统不能迅速对管网的用水量做出反应;如果设定值过小,则可能引起系统频繁的投入泵,撤出泵的动作;为此,PLC程序中增加判断设定压力与运行压力在临界切换状态时,只要不超过允许的误差范围内,不做泵的切换。
11.变频器恒压供水方案 篇十一
在自来水行业,随着技术的革新和进步,传统上利用大小泵切换来适应管网供水压力的泵群控制方式已不能满足社会的需求。利用变频调速技术实现恒压供水,既保证管网压力的稳定,又能减少电耗,降低操作人员的劳动强度,延长电机水泵的使用寿命。该技术已广泛地应用于工业生产及城镇供水。
广西南宁自来水公司虎丘加压站是陈村水厂一期配套工程,总设计规模8万m3/d,加压泵站共有3台220 kW水泵及1 台90 kW水泵,其中一台220 kW的3#水泵采用了变频恒压控制系统。
2 系统介绍
2.1 直接转矩控制技术
ACS600的核心技术是直接转矩控制(DTC)技术,是交流传动领域电机控制方式的一次革命。它从零速开始不使用电机轴上的脉冲码盘反馈就可以实现电机速度和转矩的精确控制,开环动态速度控制精度可以达到闭环磁通量控制精度。ACS600静态速度控制精度为标称速度的0.1%~0.5%,满足了绝大多数的工业应用。在DTC中,定子磁通和转矩被作为主要的控制变量,高速数字信号处理器与先进的电机软件模型相结合使电机的状态每秒钟被更新40 000次。由于电机状态实际值和给定值的比较值被不断更新,逆变器的每一次开关状态都是独立确定的,这意味着传动可以产生最佳的开关组合并对负载扰动和瞬时掉电等动态变化作出快速反应。
2.2 系统构成
2.2.1 控制原理
控制原理如图1所示,变频器、压力变送器及给定构成了一个稳定的闭环系统。通过给定电位器由用户确定供水管压力,系统根据给定压力与反馈压力的偏差进行PID运算和DTC控制运算,变频器输出不同电压及频率的电源驱动水泵电机,通过改变水泵的流量来达到保证供水管压力恒定的目的。
2.2.2 系统接线原理
图2为整个变频控制柜接线原理图。控制柜安装在加压泵房的电气室内,压力变选器安装在出口管的盲板侧。
3 变频供水系统运行状态
整个系统投入运行以后,达到了系统自动控制、节能运行的目的,但也出现了几个方面的问题。
3.1 安全生产
系统能稳定地控制供水总管的压力。虎丘加压站的现供水能力满足当前实际用水量要求,变频器通过调节水泵电机转速,实现用户侧需要多少水,水泵就提供多少水,达到供给的动态平衡,既保证了管网的安全,又减少了操作人员的劳动强度和换泵的繁琐程序。
系统具有完善的保护功能,如接地、过载、过压、缺相等保护功能,能保证系统安全可靠运行。
3.2 节能运行
根据水泵的流量特性,水泵电机的转速(N)、水泵电机功率(P),水泵的流量(Q)、水泵的扬程(H)有如下关系:Q1/Q2=N1/N2,h1/H2=(N1/N2)2,P1/P2=(N1/N2)3,由此可知:电机功率与水泵转速成正比,如水泵转速下降10%,则电机的功率可下降27%。
由于虎丘加压站用户侧的水量是不断变化的,当需水量处于波谷期时,变频器通过降低水泵电机转速带来的节能效益是很可观的。
ABB变频器具有的软启动及平滑停车功能,限制并降低了电机的启动和停车电流,使电机平滑启动和停车,减少了大电流对电机绕组的冲击,减少了电机突然启动和停止对水泵的冲击,对电机和水泵起了保护作用,延长了电机和水泵的使用寿命,同时减少对管道、阀门的冲击和磨损,延长了管道和阀门的使用寿命,减少了设备的维护量。
4 系统出现的问题及解决方案
变频供水系统经过几个月的运行,出现了电机电流相间不平衡及直流母线电压脉动(SUPPL’PHASE)现象。特别是后者,曾多次造成保护性停车。这对于最注重社会效益的自来水厂行业来说,是不允许出现的。现予以分析并提出解决的办法。
4.1 电流相间不平衡分析
电机电流相间不平衡主要出现在系统启动的过程中,经观察,相间电流相差在几十到一百安培之间,而这时的变频器工作正常。后检查变频器的温度达到96℃,接近其报警温度。如果变频器长期在这样的高温环境下工作,将严重影响逆变器的工作性能而产生电压波形的畸变,最终使电机相间电流出现不平衡现象。而变频器温升的主要原因是冷却通风效果不好:一是环境温度过高;二是电气柜的设计不合理,使冷却出风口的热风又返回冷却进风口,造成冷却风道的温度越来越高。
解决的办法:提供空调环境,对电气柜的布局进行改造,使变频器冷却进风口和冷风出风口隔离,加强其冷却效果,只要变频器的温度降下来,电机电流相间不平衡的现象就会消除。
4.2 直流母线电压脉动分析
通常,中间电路直流母线电压脉动的出现原因可能是主电源缺相,一个熔断器烧断或是整流桥内部发生故障。当直流电压脉动为直流电13%时,变频器自动保护性停车。经多次检查,虎丘加压站的变频器没有上述的故障现象,由于变压器高压侧因高次谐波的干扰而多次发生烧保险现象,我们使用示波器对变频器的进线电源进行长时间的检测,发现三相电源进线的高次谐波严重,电压波形有畸变现象。这就是产生直流母线电压波动的原因。由于直流母线上并联有一个大电容,当电源有高次谐波存在,整流块的输出侧(直流母线)电压必然会产生波动,一旦高次谐波严重,电压波动为直流电压的13%时,变频器自动保护性停车,而这完全是外部原因引起的故障。
解决办法:在变频器的电源进线侧加装一台进线电抗器来净化变频器的进线电源。另外,由于欧洲的供电质量较高,在ABB变频器直流母线电压脉动的保护值的设计较保守。实际上可以将13%的电压脉冲值调整到20%,放宽直流电压脉动的保护范围,因为此时变频器的工作仍然是很完全可靠的。这是一种简单经济的解决办法,但不能彻底解决问题,一旦高次谐波严重,进线电源波形失真,将使直流母线电压脉动达到直流电压的20%,变频器仍会保护性停机。
4.3 设计上的不合理分析
在设计上,变频系统只是单独给3#水泵供电,对1#、2#、4#水泵的控制是完全独立的,没有工艺上的连锁控制实现互为备用。这样,整个加压站水泵房的设备没有有机地结合在一起发挥最大的功效。
由于自来水行业生产的特殊性,社会效益是时刻摆在第一位的,也就是说无论发生什么情况,都应该保证供水管网的压力稳定。要做到这点,加压站的4组水泵的自动连锁启动功能是必需的,如果其中一组水泵发生故障,备用水泵可以自动投入运行,以维持供水总管压力的稳定。
解决方案:利用ABB变频器强大的I/O功能和一台小型的可编程序控制器(PLC)的控制,整个加压站设备就可自动实现以下功能。
4.3.1 4个泵组自动连锁启动,互为备用功能
当变频器发生故障时,可以将变频电源切断,工频运行4#水泵(小泵)维持水压,而如果水压达不到要求,关闭小泵,工频投入大泵运行,相应阀门的开启和关断也自动实现。保证供水压力稳定,实现安全生产。
4.3.2 变频器的辅机控制功能
可以利用一台变频器控制加压站的3台220 kW的水泵。例如:3#水泵的供水能力达不到需求时,3#水泵投入工频运行,变频器控制1#水泵的转速并提供3#水泵不足的水量;1#、3#水泵的供水能力达不到要求时,1#、3#水泵投入工频运行,变频器控制2#水泵的转速并提供1#、3#水泵不足的水量。这样,既保证了管网的压力稳定,实现安全生产,又能最大限度地节能降耗。
4.3.3 水泵轮换工作控制功能
当一台水泵长期工作,必然会引起过度磨损和发热而造成损坏。对此,应利用变频器和PLC的功能实现水泵轮换工作,使水泵的工作时间合理安排,充分利用所投入的资源,力争创造最大的效益。
5 结论
12.变频器恒压供水方案 篇十二
1、管中泵供水设备的生产厂家其产品及主要部件提供商的生产过程应已通过ISO 9001:2000质量管理体系认证和ISO 14001:1996环境管理体系认证;
2、设备应获得省级以上卫生行政部门颁发的生活饮用水输配水设备卫生许可批件,应具有CMA(计量认证标志)和CAL(产品质量检验机构考核合格符号)认证的产品质量检验机构出具的检测报告书。
3、倒流防止器应采用按《倒流防止器》CJ/T160-2002行业标准生产的产品,应具有CMA和CAL认证的产品质量检验机构出具的检测报告书。
4、隔膜气压罐≥20L,设备进出口≥DN50,快速接口,含设备外接管道1米(含所需的弯头)。
5、水泵采用的叶轮、内部导流及外壳等均采用SUS304不锈钢材料,每台水泵应具有独立的变频器。水泵效率≥60%,电机机组效率≥82%。
6、管中泵供水设备的进出口应分别设有压力计及压力传感器,箱式泵出口应设压力计及压力传感器,且压力传感器误差不能超过±0.075量程.7、增压泵供水设备PLC应带6个可编程,隔离输入的数字口。2个可标定的模拟输入(需要时可作为数字输入),2个可编程模拟输出,3个可编程数字输出。供水设备应有实现数据远程传输的设备并预留数据端口。
8、所有设备的设计、制造装配都要按照最先进的工艺技术进行。设备的每个部件可在现场安装。两个相同设备上的对应部件要能够互换。
9、管中泵供水设备外箱体(室外型)整体尺寸为≤0.7×0.3m,高度≤1.7m,提供的一体式成套设备应安装紧凑,外箱体尺寸应标准规范统一设计。
10、管中泵供水设备不论安装于室内还是室外,均应采用整体式,不得采用分体式。整体式管中泵供水设备的外箱防护等级不低于IP32(室内型)或IP34(室外型)。增压机组浸没于水中应能正常运转,防止泵房意外水淹机组失效。
增压泵供水设备电气控制应能够手动、自动和远程控制水泵机组运行功能并应有远程监测、监控功能的位置与接口。设备必须符合运行泵与备用泵能定
时轮换运行的工作形式,且能各自完成单独运行功能的设计要求。
11、采用变频调速控制时,水泵额定转速时的工作点应位于水泵高效区的末端;宜采用多台水泵组合供水;电机额定功率在5.5kW以下的水泵,宜采用成套水泵机组。水泵机组应采取减振措施。每台水泵的出水管上,应装设压力表、止回阀和阀门,并应设置水锤消除装置。每台水泵宜设置单独的吸水管。
12、变频控制系统应设计采用软启动、软停车、新型高效滤波等技术;应具备不用水停车,缺水失压保护。泵之间自动切换、水泵工频运转与变频运转应具备手动切换功能;同时具备逆转、高低电压、欠相、漏电、过载过流、瞬间跳电保护、故障原因及运转功能均能自动保存与显示等功能。
13、控制柜柜体所有元器件有永久原理号标识,所有空气开关、断路器、按钮、旋钮、指示灯采用国外品牌,有永久功能标识。设备的金属构件上应有接地点,与接地点相连接的保护导线的截面,应符合GB/T3797的规定。与接地点相连接的导线必须是黄、绿双色线。不能明显表示接地的应在其附近标注明显的接地符号。
14、整套水泵、潜水电机、成品水箱、管道设备必须采用SUS304不锈钢等食品级材质,并保证设备是全封闭式的环保供水设备。
15、采用美国弗兰克林水式潜水电机,电机和水泵均应采用水润滑轴承,可通过电泵所抽送的水润滑。以免定期加油,防止所抽送的水和环境被污染。
16、设备正常运行时噪声:单机功率不大于5.5kW,噪声不大于48dB(A);单机功率大于5.5kW,噪声不大于55dB(A)。
17、对于自带不锈钢成品水箱的一体化变频增压供水装置:(1)进水控制阀(浮球阀)必须具有液压控制及水位差控制功能。(2)水箱体内部加固处及组板焊接处应符合相关规范要求,顶部必须满焊以防灰尘及雨水渗入;水箱进出水管及溢流管结构及铺设要符合相关技术规范及图纸要求,水箱盖必须加锁,水箱体SuS304板厚>1.5mm..电气控制箱安装在水
箱出水端,与水箱形成一体,防护等级不低于IP34,变频器采用西门子V10,PLC采用西门子S7-200,显示器为西门子TP400.(4)溢流管、通气孔需设不锈钢过滤网,人孔盖须加装长度3寸以上铜密码锁,密码为666;
13.变频器恒压供水方案 篇十三
关键词:PLC,PID,变频器
0 引言
随着我国社会经济的发展,住房制度改革的不断深入,PLC、变频器的飞速发展,高度智能化,系列标准化是未来供水设备适应供水调度和整体规划要求的必然趋势。本系统采用变频调速装置与可编程控制器(PLC)构成控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,在管网流量变化时达到稳定供水压力和节约电能的目的。系统的控制目标是泵站总管的出水压力,系统设定的给水压力值与反馈的总管压力实际值进行比较,其差值输入具有压力显示的PID调节器运算处理后,输出信号给变频器来控制水泵的运行速度。
系统选用的主要硬件设备:西门子S7—200PLC、三菱变频器FR—S500、压力变送器、多台水泵机泵和继电器组构成全自动变频恒压供水系统。
控制要求:(1)利用高低水位控制器EQ来控制市网自来水阀YV1,水位低于低水位就加水,高于高水位停止。(2)三台生活/消防双恒压供水系统,由YV2控制,平时关闭消防用水。生活用水按照3台轮流工作的逻辑运行,先开先停,每台运行超过3h则切换下一台,避免一台工作长时间。消防供水市高恒压值运行。通过变频器使三台水泵在变频方式下运行。(3)3台泵在启动时都要由软启动功能,手动操作控制功能,以便在应急或检修时临时使用。要有完善的报警功能。(4)由压力变送器输给模拟量单元,在水压降落时要升高变频器输出频率,在频率达
1 硬件设计系统
1.1 主电路接线
电控系统主电路图三台电机分别为M1、M2、M3。接触器KM1、KM3、KM5分别控制M1、M2、M3的工频运行;接触器KM2、KM4、KM6分别控制M1、M2、M3的变频运行;FR1、FR2、FR3分别为三台水泵电机过载保护用的热继电器;QS1、QS2、QS3、QS4分别为变频器和三台泵电机主电路的隔离开关;FU1为主电路的熔断器。
1.2 控制电路接线图
图1为电控系统控制电路图。图中SA为手动/自动转换开关,SA打在2的位置为手动控制状态,打在1的状态为自动控制状态。手动运行时,可用按钮SB1~SB8控制三台水泵的启/停和电磁阀YV2的通/断;自动运行时,系统在PLC程序控制下运行。图中的HL10为自动运行状态电源指示等。
1.3 PLC外部接线图
图2为PLC及扩展模块外围接线图。火灾时,火灾信号SA1被触动,I0.0为1.水位上、下限信号分别为I0.1、I0.2,它们在水淹没时为0,露出时为1。
控制系统的I/O点及地址分配表1:
2 软件系统设计的思路
2.1 由恒压要求出发的工作泵组数量管理
为了稳定水压,在水压降落时要升高变频器的输出频率,且在一台泵工作不能满足恒压要求时,需启动第二台或第三台泵。判断需启动新泵的标准是变频器的输出频率是否达到设定的上限值,这一功能可通过比较指令实现。为了判断变频器工作频率达上限值的确实性,应滤去偶然的频率波动引起的频率达到上限情况,在程序中考虑采取时间滤波。
2.2 多泵组泵站泵组管理规范
控制规定任一台泵连续变频运行不得超3h,因此每次需启动新泵或切换变频泵时,以新运行泵为变频泵是合理的。具体操作时将现行的变频泵从变频器上切除,并接上工频电源运行,将变频器复位并用于新运行泵的启动。除此之外,泵的工作循环控制,使用泵号加1的方法实现变频泵的循环控制(3再加1等于0),用于频泵的总数结合泵号实现工频泵的轮换工作。
2.3 程序的结构及程序功能的实现
PLC在恒压供水系统中的功能较多,由于模拟量单元及PID调节都需要编制初始化及中断程序,本程序可分为三部分:主程序、子程序和中断程序。系统初始化的一些工作放在初始化子程序中完成,这样可节省扫描时间。利用定时器中断功能实现PID控制的定时采样及输出控制。主程序的功能最多,如泵切换信号的生成、泵组接触器逻辑控制信号的综合及报警处理等都在主程序。生活及消防双恒压的两个恒压值是采用数字方式直接在程序中设定的。生活供水时系统设定值为满量程的70%,消防供水时系统设定值为满量程的90%。在本系统PID中,只是用了比例和积分控制,其回路增益和时间常数可通过工程计算初步确定,但还需要调整以达到最优控制效果。初步确定的增益和时间常数为:增益Ke=0.25;采样时间Ts=0.2s;积分时间Ti=30min。程序中使用的PLC元件及功能见表2。
参考文献
[1]松下Minas A4系列AC伺服驱动器技术资料选编.2007.P9、P12、P14-63.
[2]陈亚林.PLC、变频器和触摸屏实践教程.南京:南京大学出版社,2008.
14.基于PLC的恒压供水系统 篇十四
Its functions are: it can make the pressure sensor to collect the pressure signal in the pipe line net, and this pressure signal can be converted analog signals to and be transmitted to the intelligence conversion —an instrument(the SR93 series PID modulator), the intelligence conversion instrument(the SR93 series PID modulator)display the actual pressure value of the tube net, and the intelligence conversion instrument(the SR93 series PID modulator)enact the pressure value ,the customer want to gain, when the pressure value is gained , the customer demand of and the pressure value is gained, the pipe line net display in practice, the intelligence conversion instrument(the SR93 series PID modulator)output an analog signals, and it will change frequency of Fuji transducer to influence the exportation frequency of the water pump(the FRENIC 5000 G11 Ss/P11s S), it will influence rotate speed of water pump electrical engineering, changing flux of water , so it will attain the purpose of the steady presses water supply.引言
随着我国城乡建设的迅速发展,水、电供应不足的矛盾越来越成为人们关注的问题。例如,人们日常生活中的用水量越来越大,一天中的用水量的波动也越来越大。以往的供水系统中,水泵的选取往往是按最大供水量来确定,而实际的用水量在不断变化。高峰用水时间较短,这样水泵在很长一段时间内有较大余量,不仅水泵效率低,供水压力不稳,而且造成大量电力、水资源的浪费;并且以往依靠手动操作控制泵的启动、停止,也已不能满足要求。这里,介绍一种变频控制的恒压供水系统,它既能解决人工操作的繁杂劳动和精神压力,又能节约能源[5]。
一、系统介绍
该控制系统主要装置包括:可编程控制器(PLC)、变频器、压力传感器、PID控制器以及相关软件控制单元。该装置形成一套完整的、全自动的、智能的恒压供水控制系统,如图1所示。该系统能够以三种方式工作,分别为全自动、半自动和手动操作方式,其中后两种是在全自动方式出现故障时的弥补。
图1 恒压供水系统简图
2全自动恒压供水控制原理
当主水管网压力传感器的压力信号4~20mA送给数字PID控制器,控制器根据压力设定值与实际检测值进行PID运算,并给出信号直接控制变频器的转速以使管网的压力稳定。当用水量不是很大时,一台泵在变频器的控制下稳定运行;当用水量大到变频器全速运行也不能保证管网的压力稳定时,控制器的压力下限信号与变频器的高速信号同时被PLC检测到,PLC自动将原工作在变频状态下的泵,投入到工频运行,以保持压力的连续性,同时将一台备用的泵用变频器起动后投入运行,以加大管网的供水量,保证压力稳定。若两台泵运转仍,则依次将变频工作状态下的泵投入到工频运行,而将另一台备用泵投入变频运行。当用水量减少时,首先表现为变频器已工作在最低速信号有效,这时压力上限信号如仍出现,PLC首先将工频运行的泵停掉,以减少供水量。当上述两个信号仍存在时,PLC再停掉一台工频运行的电机,直到最后一台泵用主频器恒压供水[4]。另外,控制系统设两台泵为一组,每台泵的电机累计运行时间可显示,24小时轮换一次,既保证供水系统有备用泵,又保证系统的泵有相同的运行时间,确保了泵的可靠寿命。
二、系统原理图
1.PLC系统原理图,如图2所示:
图2 PLC系统原理图
2.外部设备接线图,如图3所示:
三、恒压供水控制系统的编程
本程序用富士专用的FLEX PLC编程器编译[1],利用梯形图清晰直观地展示各设备的运转状况等等。具体编程思想如下:
首先选择利用FLEX PLC的输入继电器、输出继电器以及内部继电器,确定本设计方案所包括的仪器仪表。即一台富士NB系列PLC、两台7.5KW水泵、一台富士G11/P11变频器、一台压力传感器、一台SR90系列PID调节器、若干个空气开关、断路器、中间继电器等。根据PLC接线原理图(如图2所示),进行详细接线,并参考FUJI NB系列可编程控制器得参考手册,对PLC输入输出端子进行定义。
部分梯形图
PLC的恒压供水控制系统部分梯形图如下[2]:
四、系统操作说明 4.1自动控制
1.设定用户需要的目标压力值
系统送电之后,控制柜面板上的电源指示灯点亮,其下方的温控表将会有显示:PV---.---、SV---.---。其中PV---.---表示水管网中的实测压力值,SV---.---表示用户需要的目标压力值.用户可按动▲、▼键使 SV---.---中的数字发生改变,直到显示用户需要的水管网的压力值时按下ENT键,结束目标压力值设定。2.选择需要开启的泵组
自动/停/手动开关向左45度扳动一次时,泵组处于启动状态,系统将选择1号泵组启动;控制柜面板上的自动/停/手动开关扳到垂直位置时,四台泵组均处于停止状态。当将自动/停/手动开关再次向左45度扳动一次时,系统将选择2号泵启动;
3.变频自动工作开始
当系统检测到某台泵组的启动信号以后,便会使变频器开始升频工作,此时水管网中的压力开始上升,即PV---.---中的显示值开始上升,并不断趋向于用户设定的SV---.---中的目标压力值。当水管网中的压力和用户的设定的目标压力值相吻合(即PV---.---中的显示值和SV---.---中的显示值相吻合)时,变频器的输出频率便会稳定[3]。
4.2自动控制中的部分功能
1.自动切换至工频 2.故障泵组自动退出运行 3.定期倒换工作泵组
五、恒压供水控制系统的优点
1.采用变频恒压供水,消除了主管网压力波动,保证了供水质量,而且节能效果明显,并延长了主管网及其阀门的使用寿命。
2.用稳压减压阀经济地解决了不同用水压力的问题。
3.拓宽运用变频恒压控制原理,较好地解决了加压泵房与抽水泵房的远程通讯总是并达到异地连锁控制的目的。
4.在抽水泵房设置连续液位显示,并将信号传与PLC,防止泵缺水烧坏电机,设定的取水位置,确保水的质量。
5.电机既有电机保护器,又有软起动器,克服了起动时的大电流冲击,相对延长了电机制使用寿命。
6.由于采用PLC控制的压力自动控制,可以实现无人远程操作,系统的PLC预留有RS485接口,可与公司总调度室计算机网络进行连接。
7.通过采用变频器控制,可在不同季节、节假日、日夜及上下班等全面调控水量。
参考文献
[1] FUJI NB系列 编程手册
【变频器恒压供水方案】推荐阅读:
实用型变频恒压供水系统方案的设计09-05
变频调速恒压供水概述07-14
中央空调系统变频节能改造方案08-26
变频器的故障分析论文09-06
三菱变频器面板说明书09-28
三菱PLC与变频器连接问题07-14
LS变频器八大安全注意事项07-14
变频器制动时过电压的处理方法08-02
变频器常见故障处理和维修方法经典教案08-28
水泵变频调速节能技术07-02