高二数学教学设计与反思必修5余弦定理

2024-10-23

高二数学教学设计与反思必修5余弦定理(精选6篇)

1.高二数学教学设计与反思必修5余弦定理 篇一

北师大版高中数学必修

52.1.2《余弦定理》教学设计

一、教学目标

认知目标:引导学生发现余弦定理,掌握余弦定理的证明,会运用余弦定解三角形中的两类

基本问题。

能力目标:创设情境,构筑问题串,在引导学生发现并探究余弦定理过程中,培养学生观察、类比、联想、迁移、归纳等能力;在证明定理过程中,体会向量的思想方法;在解决实际问题过程中,逐步培养学生的创新意识和实践能力。

情感目标:通过自主探究、合作交流,使学生体会到“发现”和“创造”的乐趣,培养学生

学习数学兴趣和热爱科学、勇于创新的精神。

二、教学重难点

重点:探究和证明余弦定理;初步掌握余弦定理的应用。

难点:探究余弦定理,利用向量法证明余弦定理。

三、学情分析和教法设计:

本节课的重点和难点是余弦定理的发现和证明,教学中,我采取“情境—问题”教学法,从情境中提出数学问题,以“问题”为主线组织教学,从特殊到一般,引导学生在解决问题串的过程中,既归纳出余弦定理,又完成了用几何法对余弦定理的证明,以分散难点;用向量证明余弦定理时,我首先引导学生利用向量证明勾股定,让学生体会向量解题基本思路、感受到向量方法的便捷,然后鼓励学生证明余弦定理,最后通过二组例题加深学生对余弦定理的理解,体会余弦定理的实际应用。

四、教学过程

环节一 【创设情境】

1、复习引入

让学生回答正弦定理的内容和能用这个定理解决哪些类型的问题。

2、情景引入

浙江杭州淳安千岛湖(图片来自于http://image.baidu.com),A、B、C三岛位置如图所示,根据图中所给的数据,你能求出A、B两岛之间的距离吗?

启发学生积极思考,尝试转化为直角三角形,利用已学知识解决问题解决问题。在三角形ABC中,作AD⊥BC,交BC延长线于D,由∠ACB=120o,则∠ACD=60o,在RtΔADC中,∠CAD=30o,AC=6则CD=3,AD=3.在RtΔADB中,由勾股定理得:

AB2=AD2+BD2,AB2=67.96AB≈8.24km

答:岛屿A与岛屿B的距离为8.24 km

探究2:若把上面这个问题变为:

在△ABC中,BC=a,AC=b,AB=c,已知a,b,∠C(∠C为钝角)求 c.在探究1的解法基础上,把具体数字用字母替换,结合三角函数知识,不难得出 c2= a2+b2-2abcosC.

探究3:若把上面这个问题变为:

在△ABC中,BC=a,AC=b,AB=c,已知a,b,∠C(∠C为锐角)求 c.如右图,当∠C为锐角时,作AD⊥BC于D,BD把△ABC分成两个直角三角形: A 在Rt△ABD中,AB2=AD2+BD2;

在Rt△ADC中,AD=AC·sinC=bsinC,DC=AC·cosC=bcosC.

容易求得:c2=a2+b2-2abcosC.

探究4: :若把上面这个问题变为: C

B

在△ABC中,BC=a,AC=b,AB=c,已知a,b,∠C(∠C为直角)求 c.结合前面的探究,你有新的发现吗?

222此时,△ABC为直角三角形,由勾股定理得c=a+b;也可以写成c2=a2+b2-2abcos900

环节三【总结规律,发现新知】

探究1:总结规律。

结合前面的探究,我们容易发现,在△ABC中,无论∠C是锐角、直角还是钝角,都有

c2=a2+b2-2abcosC

同理可以得到a2=b2+c2-2bccosA.

b2=c2+a2-2accosB.

这就是余弦定理:三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余

弦的积的两倍。

探究2:余弦定理的证明:

余弦定理是三角学中一个重要的定理,上一环节中的探究2—探究4是该定理的一种传统的方法——几何证法,历史上有很多人对余弦定理的证明方法进行研究,建议同学们登陆,在百度文库中查阅有关三角学的历史,了解余弦定理证明的一些经典方法,如爱因斯坦的证法、坐标法、用物理的方法以及张景中的《绕来绕去的向量法》和《仁者无敌面积法》等等。其中向量法是最简洁、最明了的方法之一。

问题①:用向量的方法能证明勾股定理吗?

222在△ABC中已知∠A=900,BC=a,AB=c,CA=b, 求证:a=b+c B 证明:如右图,在△ABC中,设ACb,ABc,CBa.由向量的减法运算法则可得,ABACCB,即cba

A

222 等式两边平方得,cb2cba,2202222由向量的运算性质得cb2cbCos90a即cba

所以a2=b2+c

2问题②:如何用向量的方法证明余弦定理?

0把问题①的证明中Cos90换为CosA即可。

教师点评:利用向量来证明勾股定理,让学生体会向量解题基本思路、感受到向量方法的便捷,激发学生兴趣,在此基础上,可以很简单的证明余弦定理,让学生切身体会到向量作为一种工具在证明一些数学问题中的作用。

探究3:余弦定理的分析

问题①:在△ABC中,当∠C=90°时,有c2=a2+b2.若a,b边的长度不变,变换∠C的大小时,c2与a2+b2有什么大小关系呢?请同学们思考。

首先,可借助于多媒体动画演示,让学生直观感受,a,b边的长度不变时,∠C越小,AB的长度越短,∠C越大,AB的长度越长

222其后,引导学生,由余弦定理分析: c=a+b-2abcosC。

当∠C=90°时,cosC=0,则有c2=a2+b2,这是勾股定理,它是余弦定理的特例。当∠C为锐角时,cosC>0,则有c2

2当∠C为钝角时,cosC<0,则有c2>a2+b2

问题②余弦定理作用?

从以上的公式中解出cosA,cosB,cosC,则可以得到余弦定理的另外一种形式: b2c2a2

cosA2bca2c2b2cosB2aca2b2c2cosC2ab

即已知三角形的两边和它们的夹角,可求另一边;

知三求一已知三角形的三条边,求角。

已知三角形的两边和其中一边的对角,可求另一边;(方程的思想)环节四【及时练习,巩固提高】

下面,请同学们根据余弦定理的这两种应用,来解决以下例题。O例1①在△ABC中,已知a=5,b=4,∠C=120,求c.②在△ABC中,已知a=3,b=2,c=,求此三角形三个内角的大小及其

面积。Q 环节五【应用拓展,提高能力】

例2:如图所示,有两条直线AB和CD相交成800角,交点是O,甲、乙两人同是从点O分别沿OA,OC方向出发,速度分别是4km/h、4.5km/h,B O P 3小时后两个相距多远(结果精确到0.1km)? 分析:经过3时,甲到达点P,OP=43=12(12km)乙到达点Q,OQ=4.53=13.5(km).问题转化为在△OPQ,已知OP=12km.,OQ=13.5km,∠POQ=800,求PQ的长。

例3 下图是公元前约400 ┅的图形(可登陆http://math.100xuexi.com 查阅详细资料),试计算图中线

段BD的长度及∠DAB的大小.1B A 环节六 【课堂反思总结】 通过以上的研究过程,同学们主要学到了那些知识和方法?你对此

有何体会?(先由学生回答总结,教师适时的补充完善)

1、余弦定理的发现从直角三角形入手,分别讨论了锐角三角形和钝角的三角形情况,体现了由特殊到一般的认识过程,运用了分类讨

论的数学思想; D C2、用向量证明了余弦定理,体现了数学知识的应用以及数形结合数

学思想的应用;

3、余弦定理表述了三角形的边与对角的关系,勾股定理是它的一种特例。用这个定理可以解决已知三角形的两边及夹角求第三边和已知三角形的三边求内角的两类问题。环节七 【布置课后作业】

1、若三角形ABC的三条边长分别为a2,b3,c4,则2bccosA2cacosB2abcosC。

2、在△ABC中,若a=7,b=8,cosC13,则最大内角的余弦值为 143、已知△ABC中,acosB=bcos A,请判断三角形的形状(用两种不同的方法)。

4、p52教材习题2-1第6,7题。

五、教学反思

1、余弦定理是解三角形的重要依据。本节内容安排两节课适宜。第一节,余弦定理的引出、证明和简单应用;第二节复习定理内容,加强定理的应用。

2、当已知两边及一边对角需要求第三边时,可利用方程的思想,引出含第三边为未知量的方程,间接利用余弦定理解决问题,此时应注意解的不唯一性。但是这个问题在本节课讲给学生,学生不易理解,可以放在第二课时处理。

3、本节课的重点首先是定理的发现和证明,教学中,我采取“情境—问题”教学模式,沿着“设置情境—提出问题—解决问题—总结规律---应用规律”这条主线,从情境中提出数学问题,以“问题”为主线组织教学,形成以提出问题与解决问题携手并进的“情境—问题”学习链,目的使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识,发展能力,体验数学的过程.5、合理的应用多媒体教学,起到画龙点睛。

6、在实际的教学中,发现学生对于所学的知识(例如向量)不能很好的应用,学生的数学思想(如分类讨论、数形结合)也不能灵活的应用,这在以后的教学中还应该加强。

2.高二数学教学设计与反思必修5余弦定理 篇二

三维目标

知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。

过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。

教学重点

余弦定理的发现和证明过程及其基本应用;

教学难点

勾股定理在余弦定理的发现和证明过程中的作用。

教学建议

课本在引入余弦定理内容时,首先提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,使学生能够形成良好的知识结构.设置这样的问题,是为了更好地加强数学思想方法的教学.比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,通过向量知识给予证明,引起学生对向量知识的学习兴趣,同时感受向量法证明余弦定理的简便之处.教科书就是用了向量的方法,发挥了向量方法在解决问题中的威力.

在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.由上可知,余弦定理是勾股定理的推广”.还要启发引导学生注意余弦定理的各种变形式,并总结余弦定理的适用题型的特点,在解题时正确选用余弦定理达到求解、求证目的 启发学生在证明余弦定理时能与向量数量积的知识产生联系,在应用向量知识的同时,注意使学生体会三角函数、正弦定理、向量数量积等多处知识之间的联系.导入一

提问1:上节课,我们学习了正弦定理,解决了有关三角形的两类问题:已知两角和任意一边;②已知两边和其中一边的对角.三角形中还有怎样的问题没有解决?

已知两边和夹角;已知三边.首先分析最特殊的三角形——直角.如图1.已知两边a,b及夹角C90,能否求第三边?

勾股定理c2a2b

2提问2:在斜三角形中边和角有怎样的关系?

在△ABC中,当C90时,有c2a2b2.

实验:若a,b边的长短不变,C的大小变化,c2与a2b2有怎样的大小关系呢?

如图2,若C90时,由于b边与a边的长度不变,所以c边的长度变短,即c2a2b2.如图3,若C90时,由于b边与a边的长度不变,所以c边的长度变长,即c2a2b2.当C90时,c2a2b2,那么c2与a2b2到底相差多少呢?与怎样的角有关呢?显然应与∠C的大小有关.图1 图2 图

3导入新课二

师 上一节,我们一起研究了正弦定理及其应用,在体会向量应用的同时,解决了在三角形已知两角、一边和已知两边与其中一边对角这两类解三角形问题.当时对于已知两边夹角求第三边问题未能解决,下面我们来看如图(1),在直角三角形中,根据两直角边及直角可表示斜边,即勾股定理,那么对于任意三角形,能否根据已知两边及夹角来表示第三边呢?下面我们根据初中所学的平面几何的有关知识来研究这一问题

在△ABC中,设BC=A,AC=B,AB=C,试根据B、C、A来表示

A

师 由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构成直角三角形,在直角三角形内通过边角关系作进一步的转化工作,故作CD垂直于AB于D,那么在Rt△BDC中,边A可利用勾股定理用CD、DB表示,而CD可在Rt△ADC中利用边角关系表示,DB可利用AB-AD转化为AD,进而在Rt△ADC内求解

解:过C作CD⊥AB,垂足为D,则在Rt△CDB中,根据勾股定理可得

A2=CD2+BD

∵在Rt△ADC中,CD2=B2-AD

又∵BD2=(C-AD)2=C2-2C·AD+AD

∴A2=B2-AD2+C2-2C·AD+AD2=B2+C2-2C·AD.又∵在Rt△ADC中,AD=B·COs

A

∴a2=b2+c2-2abcosA

.类似地可以证明b2=c2+a2-2cacosB

c2=a2+b2-2abcos

C

3.《余弦定理》教学反思 篇三

教学中,引导学生从已学知识进行多角度分析问题,从而培养了学生思考问题的灵活性,在得到定理猜想后,找出证明定理的办法,揭示了蕴含在处理问题中的数学思想方法,不仅知其然,而且知其所以然.在引导学生推导出公式《余弦定理》,培养学生善于观察,归纳,发现特点,总结规律的好习惯.通过和勾股定理的比较,得出勾股定理是余弦定理的特殊情况,使学生加深了对余弦定理的理解,思维问题更加深入,提高了思维能力.

常言说:要学以致用。余弦定理的应用是本节教学的重要一环.所以,例题的选择和讲解是学习本节课的重要一环.例1、例2是余弦定理的简单应用,目的在于巩固余弦定理知识,加深对定理的理解;练习是余弦定理的变形应用,通过本题的训练,使学生更灵活地应用余弦定理,使定理的应用提高到了新的高度;通过解题比较,加深了对正、余弦定理的理解,体现了两者的联系,训练了学生从多角度、多方面思考问题的习惯.

本节课的教学设计是在吸取传统教学模式下的优点,结合新课改的要求进行改进设计的,以引导为主,重在发展学生的数学思维能力,培养其提出问题、解决问题的能力.

1、余弦定理是解三角形的重要依据。本节内容安排两节课适宜。第一节,余弦定理的引出、证明和简单应用;第二节复习定理内容,加强定理的应用.

2、当已知两边及一边对角需要求第三边时,可利用方程的思想,引出含第三边为未知量的方程,间接利用余弦定理解决问题,此时应注意解的不唯一性。但是这个问题在本节课讲给学生,学生不易理解,可以放在第二课时处理.

4.高二数学教学设计与反思必修5余弦定理 篇四

您身边的志愿填报指导专家

第 2 课时: §1.1 正弦定理(2)

【三维目标】:

一、知识与技能

1.学会利用正弦定理解决有关平几问题以及判断三角形的形状,掌握化归与转化的数学思想; 2.能熟练运用正弦定理解斜三角形;

二、过程与方法

通过解斜三角形进一步巩固正弦定理,让学生总结本节课的内容。

三、情感、态度与价值观

1.培养学生在方程思想指导下处理解斜三角形问题的运算能力; 2.培养学生合情推理探索数学规律的数学思想能力。【教学重点与难点】:

重点:利用正弦定理解斜三角形

难点:灵活利用正弦定理以及三角恒等变换公式。【学法与教学用具】:

1.学法:

2.教学用具:多媒体、实物投影仪、直尺、计算器 【授课类型】:新授课 【课时安排】:1课时 【教学思路】:

一、创设情景,揭示课题

1.正弦定理:

2.已知两边和其中一边的对角,如何判断三角形的形状?

二、研探新知,质疑答辩,排难解惑,发展思维

abc,试判断三角形的形状.cosAcosBcosCABBDADABCBAC例2(教材P例5)在中,是的平分线,用正弦定理证明:. 10ACDC例1(教材P9例4)在ABC中,已知证明:设BAD,BDA,则CAD,CDA180.在ABD和ACD中分别运用正弦定理,得即ABsinACsin(180)ABAC,又sin(180)sin,所以,BDsinDCsinBDDCABBD. ACDC例3 在ABC中,已知角A,B,C所对的边分别为a,b,c,若ac2b,(1)求证:2cosACACcos;(2)若B,试确定ABC形状 2231例4 在ABC中,a,b,c分别为ABC三边长,若cosA,(1)求sin32ACcos2A的值;(2)2若a3,求bc的最大值

第 1 页

版权所有@中国高考志愿填报门户

您身边的志愿填报指导专家

例5(教材P9例3)某登山队在山脚A处测得山顶B的仰角为35,沿倾斜角为20的斜坡前进1000米后到达D处,又测得山顶的仰角为65,求山的高度(精确到1米). 分析:要求BC,只要求AB,为此考虑解ABD.

解:过点D作DE//AC交BC于E,因为DAC20,所以ADE160,于是ADB36016065135.又BAD352015,所以ABD30.在ABD中,由正弦定理,得

ABADsinADB1000sin13510002(m).

sinABDsin30在RtABC中,BCABsin3510002sin35811(m). 答:山的高度约为811m.

四、巩固深化,反馈矫正

1.在ABC中,tanAsinBtanBsinA,那么ABC一定是________ 221lgsinAlg2,则ABC形状为_______ cabc_______ 3.在ABC中,若A600,a3,则

sinAsinBsinC2.在ABC中,A为锐角,lgblg

五、归纳整理,整体认识

让学生总结本节课的内容(1)知识总结:(2)方法总结:

六、承上启下,留下悬念

第 2 页

5.数学余弦定理 篇五

1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即abc。sinAsinBsinC

2.正弦定理的变形

RnisAb,2nRisBc2nisR,C变形(1):a2;

abc变形(2):; nisA,Bnis,C2R2R2R

bnisAnicsAcsinBasinBasinCbsinC变形(3):a,b,c; nisBnisCsinCsinAsinAsinB

bc∶niAsnisnB∶isC∶变形(4):a∶;

变形(5):nisabcabc2R。AnisBnisCnisAnisBnisC

3.正弦定理的应用

(1)已知两角和任一边,求其他两边和另一角;

(2)已知两边及其中一边的对角,求另一边及其他两角。

二、余弦定理

1.余弦定理:三角形任意一边的平方等于其他两边平方的和减去这两边与它们的夹角的余弦的积的两倍。即

a2b2c22bccosA①

b2c2a22cacosB②

c2a2b22abcosC③

2.余弦定理的变形

(1)定理的特例:是指当某一内角取特殊值时的特殊形式。主要有:

①c2a2b2C90(勾股定理及其逆定理);

②c2a2b2abC60;

③c2a2b2abC120;

④c2a2b2C30;

⑤c2a2b2C150;

⑥c2a2b2C45;

⑦c2a2b2C135。

b2c2a2a2c2b

2(2)定理的推论:cosA,cosB,2bc2ac

a2b2c2

cosC。2ab

3.余弦定理的应用:(1)已知三边,求三角;(2)已知两边及其夹角,求第三边和其他两角。

知识点一:正弦定理

例1:在△ABC中,(1)已知A45,a2,bB;

(2)已知A30,ab2,求B;

1(3)已知A30,a,bB。2

思路分析:这三个小题看似相同,其实大相径庭,虽然都是已知两边及其中一边的对角,求另一边的对角,但结果却是一个一解,一个两解,第(3)小题无解,下面我们来逐个分析。

bsinA1ab。解答过程:(1)根据正弦定理,得sinB

a2sinAsinB

∵ab,AB,而A45,B30。

bsinAab(2)根据正弦定理,得sinB。

asinAsinB∵ab,AB,而A30,B为锐角或钝角,B45或B135。

bsinAab(3)根据正弦定理,得sinB 

asinAsinB

解题后的思考:已知两边及其中一边的对角解三角形用正弦定理,其结果可能有一解、两解或无解。

例2:在△ABC中,已知b14,A30,B120,求a,c及△ABC的面积S。思路分析:已知两角实际上第三个角也是已知的,故用正弦定理可以很方便的求出其他边的值。

解答过程:依正弦定理:abbsinA=,∴a,代入已知条件,得sinAsinBsinB

a14sin303 sin120

3∵C180(AB)180(30120)30,又bc=,sinBsinC

cbsinC14sin30C=A,△ABC为等腰三角形,所以acsinBsin1203

11∴SABCabsinC。14sin302233

解题后的思考:三角形的面积公式

111(1)S△ABCahabhbchc(ha,hb,hc分别表示a,b,c上的高)。22

2111(2)S△ABCabsinCbcsinAacsinB。222

(3)S△ABC2R2sinAsinBsinC。(R为外接圆半径)

(4)S11ahaabsinCrp22p(pa)(pb)(pc)。其中r为三角形的内切圆半径,p为三角形周长的一半。

cosA=a·cosB成立,试判断这个三角形的形状。例3:在△ABC中,若b·

思路分析:条件中既有边又有角,统一条件是首要任务。

cosA=2RsinA·cosB,sinB·cosA=解答过程:由正弦定理,得:2RsinB·

sinA·cosB,∴sinAsinB,即tanAtanB,根据三角形内角和定理,可知A、BcosAcosB

必都为锐角。所以A=B,即△ABC是等腰三角形。

解题后的思考:由已知条件确定三角形的形状,主要通过两个途径:①化角为边,通过代数式变形求出边与边之间的关系。②化边为角,利用三角恒等变形找出角与角之间的关系。一般情况下,利用三角恒等变形计算量会小一些。

a2b2sin(AB)例4:在△ABC中,角A,B,C的对边分别为a,b,c,证明:。2csinC

思路分析:条件中既有边又有角,条件需统一,另外△ABC中,内角和为180。

abc2R得: sinAsinBsinC

a2RsinA,b2RsinB,c2RsinC。

1cos2A1cos2B2222absinAsinBcos2Bcos2A c2sin2Csin2C2sin2C

cosBA(BA)cosBA(BA)解答过程:由正弦定理=2sin2C

2sin(BA)sin(BA)sinCsin(BA)sin(AB)==。222sinCsinCsinC

a2b2sin(AB)所以。c2sinC

解题后的思考:由于不等式两边一边是代数式,一边是三角式,故通过正弦定理来把边全化为角,把证明转化为三角恒等变形的问题。

知识点二:余弦定理

例5:已知△

ABC中,abB45,试求角A、C和边c。

思路分析:已知两边及其中一边的对角解三角形可用正弦定理或余弦定理,现用余弦定理来解。

解答过程:设边cx,由余弦定理b2a2c22accosB,得22)(x3)22。3

cos45

整理得x21

0,x。b2c2a21(1)当x时,cosA,A60,C75。2bc2

b2c2a21(2)当x时,cosA,A120,C15。

综合上两种情况:A60,C75,cA120

,C15,c。解题后的思考:用余弦定理解决此类问题,是设量解方程的思想,也是经常用的方法。

例6:已知△

ABC中,a∶b∶c21),求△ABC中各角的度数。

思路分析:虽然此题三边都不确定,但它们的比例一定,所以可设a2k,b,c1)k,用余弦定理解决。

解答过程:令a

2k,b,c1)k,b2c2a2利用余弦定理cosA,A45。2bc用同样的方法可得,B60。

因此,C180456075。

解题后的思考:已知三角形三边的比,或已知三边的长度,都可用余弦定理解决,只是已知三边的比时,可引用参数k,但在解题时可将分子分母中的参数k约掉。,AC,b,a是b方

程x220的两个根,且例7:在△ABC中,BCa

2cosA(B),试求边1AB的长。

思路分析:本题已知的是两边和它们所对的两角的关系,在这种情况下往往可能不需要求出它们各自的值,通常可以考虑整体代入的方法。

ab解答过程:

由题意,得 ab2.

AB2AC2BC22ACBCcosC

1b2a22ab(ab)2ab2210。

2

AB

ab解题后的思考:因为解方程组分别求出a和b的值比较麻烦,所以将ab2

直接代入,巧妙而简洁,通常称为整体代入法,要注意这种解题技巧的运用。

解三角形的几种基本类型

(1)已知一边和两角(设为A,B,b),求另一角及两边,求解步骤:①C180(AB); bsinAbsinC②由正弦定理得:a;③由正弦定理得:c。sinBsinB

(2)已知两边及其夹角(设为a,b,C),解三角形的步骤:①由余弦定理得:ca,b中较小边所对的锐角;③利用内角和定理求第三个角。

(3)已知两边及一边的对角(设为a,b,A),解三角形的步骤:①先判定解的情况;bsinA②由正弦定理sinB,求B;③由内角和定理C180(AB),求C; a

④由正弦定理或余弦定理求边c。

注:已知a,b和A,用正弦定理求B时解的各种情况:

6.正余弦定理课后反思 篇六

关于正余弦定理是高考必考内容,分值在5—15分之间,并且该内容并不是很难,高考考察难度也不高,是学生高考得分点。所以本节内容的教学力求学生掌握并能应用。本节内容主要题型包括(1)利用正余弦定理解斜三角形;(2)利用正余弦定理判断三角形形状;(3)与三角形面积有关问题;(4)正余弦定理的综合应用。本节课主要解决(1)、(2)两个问题。

本节课的感觉还可以,首先,学生的基础知识掌握还好,上课提问了两个学困生,对于基础知识的回答完全正确,说明上节课的复习有成效:其次,学生对于课上问题的解答基本能解答清楚,并且部分学生有不同思路和解答;再次,学生课堂气氛较活跃,回答问题较积极,体现了较好的学习积极性。不足之处,教师备课不是很充分,对于学生的反应估计不足,以至于例2的讲解不是很充分,时间太仓促。所以想到,1、今后每节课较好的解决一个问题就行,要多给学生留消化时间,不要满堂灌;

2、要把握好细节,对学生的思路,解题过程要详细、认真辨析,增强总结;

上一篇:农业业务自传范文下一篇:员工岗位竞聘书怎么写