数学教案-切线的判定和性质

2024-10-10

数学教案-切线的判定和性质(共10篇)

1.数学教案-切线的判定和性质 篇一

北京版小学数学四年级教案:小数的性质

在上节课的学习中,学生已经知道了在0.3的末尾添上“0”或者将0.30末尾的“0”去掉,小数的大小不变,而且在学习中积累了丰富的活动经验,能够借助多种方法对两个小数是否相等进行验证。在学习过程中,学生也提出这样的质疑,是不是所有的小数都具备这样的规律呢?本课教学在此基础上通过大量的实例进一步验证小数末尾添上“0”或者去掉“0”,小数大小不变,同时感受到要得到一个结论需要通过大量实例,从不同角度进行充分的验证才能总结归纳得出规律,感受思考问题的严谨性与全面性。

学生在学习本知识时容易混淆的问题是小数中间添上“0”或者去掉“0”、或者整数末尾添上“0”或者去掉“0”,数的大小是否会改变。因此,本课中通过反例帮助学生验证小数中间添上“0”或者去掉“0”以及整数末尾添上“0”或者去掉“0”,数的大小会产生变化,在沟通整数与小数关系的基础上进一步理解小数的性质。在此基础上应用性质解决问题,感受小数性质的价值,同时借助直观图形,培养学生的抽象推理能力。

二、学习目标

1.进一步认识并理解小数末尾添上“0”或去掉“0”小数的大小不变,抽象总结小数的性质,应用性质将小数化简和改写。

2.在自主探索、合作交流中,发展数学思维和运用知识进行推理的能力。

3.体会数学与生活的联系,激发学习数学的兴趣。

三、教学过程

(一)验证交流

同学们,上节课我们对小数末尾添上“0”或者去掉“0”,小数的大小是否不变进行了初步的探究,有的同学还提出了特别有价值的问题,认为一组例子不足以说明问题,那是不是所有的小数都具有这样的规律呢?上节课我们留了一项作业,让大家自己任意选择三组例子,用不同方法进行验证,相信大家一定已经完成了,下面我们一起交流一下吧。

选取学生不同实例进行汇报:方法不同,数据选取不同

预设:

1.借助钱币验证,在小数后面加上元角分单位,转化为实际数量进行验证。

如:0.7、0.70,将这两个小数都加上单位元,0.7元是7角,0.70元就是70分,7角等于70分,所以0.7元和0.70元是相等的。

2.借助米尺验证。在小数后面加上长度单位,转化为实际数量进行验证。

如:0.6和0.600,将这两个小数都加上单位米。0.6米表示把1米平均分成10份,表示这样的6份,也就是6分米,0.600米表示把1米平均分成1000份,表示这样的600份,也就是600毫米,这两个小数表示的实际长度是一样的,从图片上看,这两个小数都表示在同一个位置,所以这两个小数是相等的。

3.借助图形验证。借助在图形上涂一涂、画一画,直观的看到结果。

如0.7和0.70,画两个一样大的正方形,将一个正方形平均分成10份,将7份涂上颜色,表示出0.7,再将另一个正方形平均分成100份,将70份涂上颜色,表示出0.70,这两个正方形表示的涂色部分面积是一样的,所以这两个小数是相等的。

4.借助数位顺序表验证,将数写在数位顺序表中,借助位值进行验证。

如3.5和3.50,将这两个小数放到数位顺序表中,发现这两个小数个位上都是3,十分位上都是5,后面数位上不管有多少个0,都表示没有,也不会改变3、5所在的位置,也就是在3.5的后面再添上多少个0,它的实际大小都不会改变,因此,与这两个小数相等的小数可以写出很多,比如3.500,3.5000等等。

5.借助计数单位进行验证,借助计数单位之间的关系推理验证。

如0.6和0.600,0.6表示6个0.1,0.600表示600个0.001,我们知道10个0.001是1个0.01,10个0.01是一个0.1,那么,100个0.001就是1个0.1,所以,600个0.001就是6个0.1,因此0.600和0.6是相等的。

【设计意图】:通过自主验证,深化对小数性质的理解,感受到一个结论的得出往往需要通过大量实例,从不同角度验证才能总结归纳得出结论,培养学生思维的严谨性。

(二)概括性质

1.通过验证,你发现了什么结论?

在一个小数的末尾添上“0”或者去掉“0”,小数的大小不变。

2.如果在一个小数的中间添上“0”或者去掉“0”,小数的大小会不会改变呢?

预设:举例验证。

小结:通过举反例我们发现,如果在一个小数中间添上0或者去掉0,会改变原有数字所在的位置,因此数的大小也会随之发生改变。

3.小数中有这样的性质,整数中有没有这样的性质呢?

预设:举例验证

小结:整数的末尾添上“0”或者去掉“0”,原来数字所在的位置会发生改变,因此,整数的大小会发生改变。

【设计意图:总结发现规律,并结合学生容易混淆的小数中间添上“0”或者去掉“0”以及整数末尾添上“0”,引发学生认知冲突,清晰认知,进一步理解小数的性质。】

(三)练习巩固

1.不改变数的大小,你能将下面的小数化简吗?

0.950=306.0900=10.050=40.00=

提示:小数中间的“0”不能去掉,整数末尾的0也不能去掉。

2.连一连,将相等的数用线连起来。

0.850

2.600

31.090

102.300

31.9

2.60

13.00

10.230

0.85

提示:要细心,关注每一个数字与符号。

3.不改变大小,把下面的数改写成三位小数。

1.2800=3.9=0.03=5=

提示:整数改写成小数要先在整数的右下角点上小数点。

4.将下面商品的价格写成以元为单位的两位小数。

一支钱笔8角

一斤西红柿三元五角

一个笔记本12元

【设计意图】:应用小数性质解决问题,让学生认识到数学知识与生活的联系,知道运用小数的性质可以将小数化简或改写,为后续进一步学习小数的比大小、加减法做好铺垫。

(四)归纳总结

通过学习,你知道学习小数的性质有什么用吗?

预设:化简小数、将小数改写成指定位数的小数。

(五)课后作业

书8页1-5题。

流程图:

北师大版九年级数学教案:切线的判定和性质

知识目标

1、使学生学会较熟炼地运用切线的判定方法和切线的性质证明问题.2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律.能力目标

通过对圆的切线位置关系的观察,培养学生能从几何图形的直观位置归纳出几何性质的能力

情感态度与价值观经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步演绎推理能力,能有条理地、清晰地阐述自己的观点

重点准确、熟炼地运用切线的判定及性质难点准确、熟炼地运用切线的判定及性质

教法问题探讨发现法

教学辅助手段电化教学教具及

学具

教学

教师活动学生活动设计意图

引入:

复习直线与圆的位置关系及切线的性质.新课:

1、探索圆的切线的性质

☆圆的切线垂直于过切点的直径

在⊙O中,AB切⊙O于点C,∴

OC⊥AB

切线的性质及推论可简述为

⑴经过圆心;⑵垂直于切线;⑶经过切点,已知这三个条件中的任何两个,则可推出第3个.知切线,连半径,得垂直;知直径,得直角。

2、切线的判定

提出问题:如图,AB是⊙O的直

径,直线l经过点A,l与AB的夹

角为∠α,当l绕点A旋转时,(1)随着∠α的变化,点O到l的距离d如何变化?直线l与⊙O的位置关系如何变化?

(2)当∠α等于多少度时,点O到

l的距离d等于半径r?此时,直线

l与⊙O有怎样的位置关系?为什么?

☆经过直径的一端,并且垂直于这条直径的直线是圆的切线

常见的证明切线的题目只有两种情形

⑴已知直线经过圆上的一点,其证法是连结这点和圆心,再证明这个辅助半径与这条直线垂直即可,可简记为:连半径,证垂直.⑵如果已知条件中不知直线与圆有公共点,其证法是过圆心作直线的垂线段,再证明垂线段长度等于半径的长即可,可简记为:作垂直,证半径.思考,积极联想

思考,感受

观察、分析

观察思考

分析、比较和鉴别,积极讨论

从学生原有的认知结构提出问题

通过旋转实验的办法,探索切线的判定条件

培养学生的想象能力,让学生体会这种从宏观现象推论分子特征的方法

鼓励学生善于观察

2.数学教案-切线的判定和性质 篇二

教学目标 知识与技能:

1.探究线段垂直平分线的性质. 2.线段垂直平分线的判定. 过程与方法:

通过自主探索线段垂直平分线的性质;学会用性质解决实际问题的过程,逐步培养学生探索问题、分析问题、解决问题的能力.

情感、态度:

1.学生在理解探索性质中,培养学生勇于探索的精神,树立积极思考,克服困难的信心.

2.在探究的过程中,更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力.

教学重点:

1.线段垂直平分线的性质和判定.

2.能灵活运用线段的垂直平分线的性质和判定解题. 教学难点

灵活运用线段的垂直平分线的性质和判定解题.

教学策略:鼓励学生自主学习、积极探究思考.还有注意引导学生加强对解题思路的分析、解题思想方法的概括和及时的归纳总结.

教具准备:多媒体课件

教学过程设计

一、情境导入(教师用多媒体演示)

如图,A,B表示两个仓库,要在A,B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建在什么位置?

其中“到两个仓库的距离相等”,要强调这几个字在题中有很重要的作用.

线段是一个轴对称图形,其中线段的垂直平分线就是它的对称轴.我们用折纸的方法,根据折叠过程中线段重合说明了线段垂直平分线的一个性质:线段垂直平分线上的点到线段两个端点的距离相等.所以在这个问题中,要求在“A,B一侧的河岸边建造一个码头,使它到两个仓库的距离相等”利用此性质就能完成.

进一步提问:“你能用公理或学过的定理证明这一结论吗?”

设计意图:通过问题,让学生在解决问题的同时,回顾线段垂直平分线的性质.

二、探究新知 1.探究1 师:多媒体展示下图,引导学生思考.

如下图.木条l与AB钉在一起,l垂直平分AB,P1,P2,P3,…是l上的点,分别量一量点P1,P2,P3,…到A与B的距离,你有什么发现?

学生活动:

1.学生用平面图将上述问题进行转化,先作出线段AB,过AB中点作AB的垂直平分线l,在l上取P1,P2,P3,…,连接AP1,BP1,AP2,BP2,AP3,BP3,…,2.作好图后,用直尺量出AP1,BP1,AP2,BP2,AP3,BP3,…,讨论发现什么样的规律.

探究结果:

线段垂直平分线上的点与这条线段两个端点的距离相等.即AP1=BP1,AP2=BP2,AP3=BP3,….

师:能用我们已有的知识来证明这个结论吗?

学生讨论给出证明.教师请两位学生黑板板演,集体纠正,并多媒体展示正确答案. 证法1:利用两个三角形全等. 如下图,在△APC和△BPC中,证明:∵l⊥AB,∴∠PCA=∠PCB. 又AC=CB,PC=PC,∴△APC≌△BPC(SAS). ∴PA=PB. 用符号语言表示为: ∵CA=CB,l⊥AB,∴PA=PB.

证法二:利用轴对称性质.

由于点C是线段AB的中点,将线段AB沿直线l对折,线段PA与PB是重合的,因此它们也是相等的.

定理:线段垂直平分线上的点到这条线段两个端点的距离相等. 带着探究1的结论我们来看下面的问题. 2.探究2 如下图.用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?

学生活动:

1.学生用平面图形将上述问题进行转化.作线段AB,取其中点P,过P作l,在l上取点P1,P2,连接AP1,AP2,BP1,BP2.会有以下两种可能.

2.讨论:要使l与AB垂直,AP1,AP2,BP1,BP2应满足什么条件? 探究过程:学生分组讨论,由代表举手发言,教师多媒体展示结论.

1.如上图甲,若AP1≠BP1,那么沿l将图形折叠后,A与B不可能重合,也就是∠APP1≠∠BPP1,即l与AB不垂直.

2.如上图乙,若AP1=BP1,那么沿l将图形折叠后,A与B恰好重合,就有∠APP1=∠BPP1,即l与AB垂直.当AP2=BP2时,亦然.

探究结论:

与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.也就是说在探究2图中,只要使箭端到弓两端的端点的距离相等,就能保证射出箭的方向与木棒垂直.

师:你能证明上面的结论吗? 学生讨论给出证明.学生黑板板演,教师多媒体展示证明过程,对比学生解答,纠正问题.

已知:如图,PA=PB.

求证:点P在线段AB的垂直平分线上.

证明:过点P作线段AB的垂线PC,垂足为C.则∠PCA=∠PCB=90°.

在Rt△PCA和Rt△PCB中,∵PA=PB,PC=PC,∴Rt△PCA≌Rt△PCB(HL). ∴AC=BC. 又PC⊥AB,∴点P在线段AB的垂直平分线上. 用数学符号表示为: ∵PA=PB,∴点P在AB的垂直平分线上.

判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.

师:你能再找一些到线段AB两端点的距离相等的点吗?能找到多少个到线段AB两端点距离相等的点?

这些点能组成什么几何图形? 生:在线段AB的垂直平分线l上的点与A,B的距离都相等;反过来,与A,B的距离相等的点都在直线l上,所以直线l可以看成与两点A,B的距离相等的所有点的集合.

设计意图:通过学生动手操作,思考问题,猜测结论,培养了学生的直观猜测能力,教师通过层层设问引入,激发学生的探究欲望;同时通过小组讨论交流,培养学生的合作学习能力,让不会的同学问出来,让会的同学讲出来,达到共同提高的教学目的,也营造了宽松和谐的课堂气氛.

三、典例精讲

例 .已知:如图,在 △ABC 中,AB = AC,O 是 △ABC 内一点,且 OB = OC. 求证:直线 AO 垂直平分线段BC.

AOBC

学生是第一次证明一条直线是已知线段的垂直平分线,因此老师要引导学生理清证明的思路和方法并给出完整的证明过程.

师生共同完成: 证明:∵ AB = AC,∴ 点 A 在线段 BC 的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).

同理,点 O 在线段 BC 的垂直平分线上.

∴ 直线 AO 是线段 BC 的垂直平分线(两点确定一条直线).

设计意图:应用线段垂直平分线的性质定理,在解答过程中,引导学生分析解决问题的方法.

四、课堂练习

1.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则△ADE的周长等于______.

ABDEC

2.如下图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB、AC、CE的长度有什么关系?AB+BD与DE有什么关系?

3.如下图,AB=AC,MB=MC.直线AM是线段BC的垂直平分线吗?

设计意图:及时巩固所学知识,了解学生的学习效果,增强学生灵活运用知识的能力. 答案: 1.8.

2.解:∵AD⊥BC,BD=DC,∴AD是BC的垂直平分线. ∴AB=AC.

∵点C在AE的垂直平分线上,∴AC=CE. ∴AB=AC=CE. ∵AB=CE,BD=DC,∴AB+BD=CD+CE.即AB+BD=DE. 3.解:∵AB=AC,∴点A在BC的垂直平分线上. ∵MB=MC,∴点M在BC的垂直平分线上. ∴直线AM是线段BC的垂直平分线.

五、课堂小结

1.本节课学习了哪些内容?

2.线段垂直平分线的性质和判定是如何得到的?两者之间有什么关系? 3.如何判断一条直线是否是线段的垂直平分线?

设计意图:通过提出问题,使学生思考总结所学内容,培养学生归纳总结能力;通过对性质定理和判断定理的复习,使学生找出区别与联系,避免概念的混淆.

六、布置作业

1.如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D,E,使得AD=DC=CE=EB,其作法如下:(甲)作∠ACP,∠BCP之角平分线,分别交AB于D,E,则D,E即为所求;(乙)作AC,BC之中垂线,分别交AB于D,E,则D,E即为所求.对于甲、乙两人的作法,下列判断何者正确().

A.两人都正确

B.两人都错误 C.甲正确,乙错误

D.甲错误,乙正确

2.如图,在△ABC中,EF是AC的垂直平分线,AF=12,BF=3,则BC=__________.

3.如图,BD垂直平分CE,ED=3 cm,△ABE的周长为11 cm,则△ACE的周长为__________.

答案: 1.D.

2.15.

3.17 cm.

七、课堂检测设计

1.三角形纸片上有一点P,量得PA=3 cm,PB=3 cm,则点P一定(). A.是边AB的中点

B.在边AB的中线上 C.在边AB的高上

D.在边AB的垂直平分线上

2.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为__________.

3.如图,△ABC中,BC=7,AB的垂直平分线分别交AB,BC于点D,E,AC的垂直平分线分别交AC,BC于点F,G.求△AEG的周长.

4.如图,已知AB比AC长2 cm,BC的垂直平分线交AB于D,交BC于E,△ACD 的周长是14 cm,求AB和AC的长.

答案:

1.D.解析:点P到线段AB两个端点的距离相等,点P在线段AB的垂直平分线上. 2.6.解析:由△ABC与四边形AEDC的周长之差为12,可知BE+BD-DE=12①,由△EDC的周长为24可知CE+CD+DE=24,由DE是BC边上的垂直平分线可知BE=CE,BD=CD,所以BE+BD+DE=24②,②-①,得2DE=12,所以DE=6.

3.解:DE,GF分别是AB,AC的垂直平分线,∴BE=AE,CG=AG. ∴△AEG的周长=AE+EG+AG=BE+EG+CG=BC=7. 答:△AEG的周长为7.

4.解析:利用垂直平分线的性质,把相等的线段“集中”到一个三角形中. 解:∵DE是BC的垂直平分线,∴DB=DC.

∵AC+AD+CD=14 cm,∴AC+AD+DB=14,即AC+AB=14 cm. 又∵AB-AC=2 cm,设AB=x cm,AC=y cm,根据题意得 xy14,x8,解得即AB长8 cm,AC长6 cm.

3.切线的判定教学的反思 篇三

一、提出问题,注重联系

在新课引入上,打破以往单纯复习旧知的惯例,而是抓住新旧知识之间的联系,提出“目标性”问题,创设了问题情境,既抓住了学生的注意力,为学习新知做好了铺垫,又使教学从“定义”过渡到“判定定理”,显得自然合理。

二、动手实践,主体参与

本节课多处设计了观察探究、分组讨论等学生活动内容,如动手操作“切线的判定定理的发现过程”,以及讲解例题时学生的参与,课堂练习的设计都体现了以教师为主导,学生为主体的教学原则。

三、合理设计课堂结构和问题

4.面面平行的判定和性质定理 篇四

平面与平面平行的判定及性质定理 学习目标:

1、判定定理 :(文字)

2、性质定理 :(文字)

学习重点:面面平行的判定定理、性质定理。学习难点:应用

学习过程:

一、面面平行的判定定理

1、回答教材56页“观察”中的问题(比划一下),读一遍面面平行的判定定理判断教材56页“探究”的对错(比划一下),再读一遍面面平行的判定定理

不看书你能用数学语言写出面面平行的判定定理吗?

_____________________________________________________________________

2、在教材上完成58页1、33、看明白教材57页例2后,证出它过程中的同理内容,希望你的证明过程更简化

4、做58页练习

2班级___________组______________________层学生___________

二、平面与平面平行的性质定理:_________________________________________(文字)

1、看教材60页“思考”:画出你所想到的所有情形。

2、看明白例5,性质定理与这道例题及思考都有什么关系?

三、反思: 面面平行判定定理的条件是——_________,结论是——______________面面平行性质定理的条件是——_________,结论是——______________

四、看明白例6。注意:证明出平行四边形的意义。

五、例题(教材62页7、8、B组2、3、4填空在书上)

A7

A8

B

2B

3思考:

1、B为ACD所在平面外一点,M、N、G分别为ABC、ABD、BCD的重心,(1)求证:平面MNG//平面ACD。(2)求SMNG:SABC2、用平行于四面体ABCD的一组对棱AB、CD的平面截此四面体,(1)求证:所得截面 MNPQ 是平行四边形

(2)如果ABCDa求证MNPQ的周长为定值

5.等腰三角形的性质和判定教学计划 篇五

察、分析、归纳概括,主动获得知识。

(2) 组织学生欣赏图片,激发学生的学习兴趣,让学生获得知识,提高能力。

(3) 在教学中,向学生渗透数学思想方法,培养学生说理的能力。

三、教材分析:

1、 等腰三角形是在三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。

2、 等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。

3、 对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。

4、 例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。

5、 如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。

6、 本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。

7、 本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。

8、 课本为学生提供自主探索的空间,然后在进行证明,将探索和证明有机的结合起来,引导学生不断感受证明的必要性。

四、教学方法

本节课采用合作探究的教学方法,在教师的引导下,通过合作探究的方式、发现、分析问题并解决问题,为学生提供从事数学活动的机会,帮助学生进行自主探究与合作交流。以活动形式展开教学,综合运用启发式、多媒体演示、互联网探索等教学手段,培养学生的.主体意识。

五、教学过程

教学目标:

1、知识与技能:经历探索——发现——猜想——证明等腰三角形的性质和判定的过程,初步文字命题的证明方法、基本步骤和书写格式。

2、过程与方法:会运用等腰三角形的性质和判定进行有关的计算与简单的证明。

3、情感态度与价值观:逐步学会分析几何证明题的方法及用规范的数学语言表述证明过程。

教学重点:等腰三角形的性质与判定定理的证明

教学难点:证明过程的书写格式,用规范的符号语言描述证明过程

教学媒体:多媒体

六、教学过程:

(一)回顾知识

1、什么叫证明?什么叫定理?

2、证明与图形有关的命题,一般步骤有哪些?

3、我们初中数学中,选用了哪些真命题作为基本事实?此外,还有什么被看作是基本事实?

设计说明:师提出问题,回顾旧知识,达到温故而知新的目的,学生以小组为单位讨论交流

(二)创设情境

观察图片

百度图片搜索_等腰三角形金字塔的搜索结果

1、什么叫做等腰三角形?(等腰三角形的定义)你能用刻度尺华画一个等腰三角形吗?

2、你能画出它的顶角平分线吗?等腰三角形有哪些性质?

3、上述性质你是怎么得到的?(不妨动手操作做一做)

4、这些性质都是真命题吗?能否用从基本事实出发,对它们进行证明?

(三)探索活动

1、合作与讨论:说明你所画的三角形是等腰三角形。证明:等腰三角形的两个底角相等。

2、思考与讨论:说明你所画的是顶角的平分线。

怎样证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

3、通过上面两个问题的证明,我们得到了等腰三角形的性质定理。

定理:等腰三角形的两个底角相等,(简称:“等边对等角”)

等边对等角_百度百科

设计说明:引导学生动手操作,让学生真正成为学习的主人,教师是数学学习的引导者,教师引导学生思考探究,逐步尝试运用说理的方式进行说明,教师引导学生,文字语言,

图形语言和几何语言间的互相转换。 已知:如图,在△ABC中,AB=AC 求证:∠B=∠C

定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,(简称:“三线合一”) A

BD C4、你能写出上面定理的符号语言吗?

6.数学教案-切线的判定和性质 篇六

沈越

前几天听了马艳华老师的展示课,马对本节课的每个教学环节关注细微,总体感觉,学生学起来轻松,教师听起来顺畅,就我个人而言,收获颇多,受益匪浅,一节课的展示、交流,体现教师对教材的解读深度,饱含了处理教学问题的经验丰富,彰显教师干练的教学风格,本人将这节课听后感觉简单地给大家梳理了一下,与大家共同交流、探讨:

本节课是在学生已经学习了平行线的性质和平行线的判定的基础上进行教学的。这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。在这节课的学习中,马老师先组织学生利用手中的量角器对“两直线平行,同位角相等”这一公理进行验证,再通过资源课件的演示对学生进行讲解,使学生加深对这一知识点的理解。在这一公理的基础上经过简单的推理,得到平行线的另两个性质。

我们这次公开课的主题是高效课的实践与研究。新课程的理念要求培养学生自主学习,学生是主体,教师起的是主导作用。为了让学生真正成为课堂的主人,这节课马老师选用下面教学方法:

1、情境教学法:情境引入,激发学生的学习兴趣,让学生认识到数学来源于生活。

2、新技术教学法:在教学过程中充分利用多媒体教学技术,给学生以直观的感受,加深学生的印象。

3、鼓励和表扬:在教学过程中,我鼓励学生进行大胆的猜测并指导学生进行验证,对学生的观点多加表扬,激发学生的学习热情。

在学法指导上,通过教师的引导,学生小组讨论,分层展示,总结出平行线的性质和判定的综合应用,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点。逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。

(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,应用角度关系怎样找线的位置关系。画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。

(2)讲解平行线的性质一。

加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。

(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。讲解推导过程。

这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。

(4)总结平行线的性质

性质1:两直线平行,同位角相等.性质2:两直线平行,内错角相等.性质3:两直线平行,同旁内角互补.(5)平行线的性质和平行线的判定区别:

要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”

3、知识运用

(1)解决引入时提出的问题

(2)利用所学的知识讲解例4和例5(3)把一条直线平行移动到另一个位置,这两条直线一定平行。通过例题的讲解,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。

7.数学教案-切线的判定和性质 篇七

1.教学目标

1、知识与技能

(1)理解并掌握直线与平面平行的判定定理;

(2)进一步培养学生观察、发现的能力和空间想象能力;

2、过程与方法

学生通过观察图形,借助已有知识,掌握直线与平面平行的判定定理。

3、情感、态度与价值观

(1)让学生在发现中学习,增强学习的积极性;(2)让学生了解空间与平面互相转换的数学思想。

2.教学重点/难点

重点、难点:直线与平面平行的判定定理及应用。

3.教学用具

投影仪等.4.标签

数学,立体几何

教学过程

(一)创设情景、揭示课题

引导学生观察身边的实物,如教材第55页观察题:封面所在直线与桌面所在平面具有什么样的位置关系?如何去确定这种关系呢?这就是我们本节课所要学习的内容。

(二)研探新知

学生思考后,师生共同探讨,得出以下结论

直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。符号表示:

2、例1 引导学生思考后,师生共同完成

该例是判定定理的应用,让学生掌握将空间问题转化为平面问题的化归思想。

(三)自主学习、发展思维 练习:教材第57页 1、2题

让学生独立完成,教师检查、指导、讲评。

(四)归纳整理

1、同学们在运用该判定定理时应注意什么?

2、在解决空间几何问题时,常将之转换为平面几何问题。

(五)作业

1、教材第64页习题2.2 A组第3题;

2、预习:如何判定两个平面平行?

课堂小结

1、同学们在运用该判定定理时应注意什么?

2、在解决空间几何问题时,常将之转换为平面几何问题。

课后习题 作业

1、教材第62页习题2.2 A组第3题;

2、预习:如何判定两个平面平行?

8.数学教案-切线的判定和性质 篇八

例题解析:

例1.如图,ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点.求证:SA∥平面MDB.例2.正方形ABCD交正方形ABEF于AB,M、N

求证:MN//平面BCE

例3.已知ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH、例4.如图,在空间四边形ABCD中,P、Q分别是△ABC和△BCD的重心.求证:PQ∥平面ACD.例5.如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?

巩固练习:

1.若l//,A,则下列说法正确的是()

A.过A在平面内可作无数条直线与l平行B.过A在平面内仅可作一条直线与l平行 C.过A在平面内可作两条直线与l平行D.与A的位置有关

2.若直线a∥直线b,且a∥平面,则b与a的位置关系是()

A、一定平行B、不平行C、平行或相交D、平行或在平面内 3.如图在四面体中,若直线EF

和GH

相交,则它们的交点一定().A.在直线DB上B.在直线AB上

C.在直线CB上D.都不对

4.一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线(A.异面B.相交C.平行D.不确定

5.已知平面、β和直线m,给出条件:①m∥;②m⊥;③m⊂;④⊥β;⑤∥β.为使m∥β,应选择下面四个选项中的()

A.①④B.①⑤C.②⑤D.③⑤ 6.若直线l与平面α的一条平行线平行,则l和的位置关系是()

A.lB.l//C.l或l//D.l和相交

7若直线a在平面内,直线a,b是异面直线,则直线b和平面的位置关系是()A.相交B.平行C.相交或平行D.相交且垂直

8.若直线l上有两点P、Q到平面的距离相等,则直线l与平面的位置关系是()A.平行B.相交C.平行或相交D.平行、相交或在平面内 9.下列命题正确的个数是()

(1)若直线l上有无数个点不在α内,则l∥

(2)若直线l与平面α平行,l与平面内的任意一直线平行

(3)两条平行线中的一条直线与平面平行,那么另一条也与这个平面平行(4)若一直线a和平面内一直线b平行,则a∥ A.0个B.1个C.2个D.3个

10.如图,在四棱锥PABCD中,ABCD是平行四边形,M,N

是AB,PC的中点.求证:MN//平面PAD.

11.如图,S是平行四边形ABCD平面外一点,M,N分别是SA,BD上的点,且求证:MN//平面SBC

12.如图A、B、C分别是△PBC、△PCA、△PAB的重心.求证:面ABC∥面ABC.AMSM=

BNND,13.如图,空间四边形ABCD的对棱AD、BC成60o的角,且ADBC2,平行于AD与BC的截面分别交AB、AC、CD、BD于E、F、G、H.(1)求证:四边形EGFH为平行四边形;

9.《矩形的性质与判定》教学反思 篇九

本节课主要讲解的是矩形的性质与判定,本节课一共分为5个环节。在环节一知识回顾,由平行四边形入手,通过直观观察平行四边形与矩形内角的异同以及观察平行四边形与矩形的形状特点,这是落实核心价值观直观想象的过程,学生建立逻辑关系——平行四边形形状与边角大小之间的关系(直观想象是显性的,逻辑推理是隐形的)。在环节二探索活动一,利用橡皮筋套木框改变橡皮筋的松紧长短程度从而改变平行四边形的形状,观察平行四边形演变为矩形的过程,这是通过直观形象产生疑惑,有想法,进而升华为逻辑推理——改变平行四边形的对角线长短关系引起角的变化,这个变化过程中当一个角是直角时将平行四边形演变为矩形,这是落实显性的直观形象与隐性的逻辑推理的过程。

在环节三探索活动二,利用小芳画矩形的过程引入矩形的第二种判别方法,同样小芳画的过程是学生进行直观形象的过程,小芳画出来的学生观察确实是一个矩形,进而反问学生为什么是?这就是逻辑推理过程了,也是数学抽象的过程了,通过数学逻辑证明,得出确实是,从而抽象出——三个角都是直角的四边形是矩形。这个环节落实的数学学科核心素养显性的是直观想象,隐性的是逻辑推理,深入挖掘出数学抽象也是在这节课落实的素养。在环节四议一议中,只利用一根绳子,是否能判断出平行四边形、矩形、菱形?这是一个开放性的问题,也就是脱离角是否可以判断四边形的形状?直观形象这是首先落实到的核心素养,进而学生考虑四边形只考虑边的特点,不考虑角,是否可以判断,逻辑推理过程在这个过程中落实的淋漓尽致,其实质数学抽象——将绳子与边结合起来,这也是这个环节不可小视的核心素养。

经过本节课的讲解,深感落实数学学科核心素养在数学课堂中的重要作用,直观想象是本节课最显性的核心素养,而逻辑推理是在直观想象后升华的部分,数学抽象很多人或许会忽视,但会发现,在数学学科中,数学抽象虽然看不到也讲解不到,但在知识的升华过程中数学抽象才会产生质的飞跃,脱离现实数据抽象出数学真知。

10.平行线的性质和判定练习题 篇十

2.已知:如图5, DE∥BC,CD是∠ACB的平分线,∠B=700,∠ACB=500.求∠BDC的度数.A

E D

B C图

53.如图,台球运动中,如果母球P击中边点A,经桌边反弹后击中相邻的另一桌边的点B,再次反弹.那么母球P经过的路线BC与PA一定平行.请说明理由.

4.如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)

5.已知:如图⑿,CE平分∠ACD,∠1=∠B,求证:AB∥CE

6.如图:∠1=53,∠2=127,∠3=53,试说明直线AB与CD,BC与DE的位置关系。

7.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,请说明理由。

8.已知:如图,,且.求证:EC∥DF.9.如图10,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由. AE F2

3B D C

图10

10.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.

E

MB A 1PN C D 2Q F图11

11.已知:如图:∠AHF+∠FMD=180°,GH平分∠AHM,MN平分∠DMH。

求证:GH∥MN。

12.如图,已知:∠AOE+∠BEF=180°,∠AOE+∠CDE=180°,求证:CD∥BE。

上一篇:分苹果教案下一篇:公共管理学研究生笔记