《绝对值》教案(8篇)
1.《绝对值》教案 篇一
绝对值(教案)
一 教学目标
1.知识目标:要求从代数与几何两个角度,借助数轴初步理解绝对值的概念,会求一个数的绝对值。
2.能力目标: 通过应用绝对值解决实际问题,使学生体会绝对值的意义与作用。
3.情感目标:培养学生运用数学的意识及合作交流的学习习惯,感受数学在生活中的价值。
二、教学设想
1.重点:理解、掌握绝对值的概念、求法及运用。
难点:若a<0时,则|a|=-a
疑点:绝对值的非负性
2.课型:新授课
三、教学过程
1.创设情景,引入新课
①从家与学校的位置,询问家在学校的哪一边,家到校有无一定的距离。(师生互动)
②体育课上掷铅球,铅球着落点与投球地点有无一定距离。(师生互动)
③在一棵大树下,有两只狗(一黄一灰)在玩耍,过了一会儿,有人在大树东2米处及西3米处各放一根骨头,两狗发现后,灰狗跑东2米处,黄狗跑西3米处分别衔起了骨头,此时两狗与大树有无距离。
以上三例说明距离与方向无关,质疑产生新知
2.探索新知,从几何角度探索绝对值定义
以第三个事实为例,以大树为原点,以向东方向为正方向,用1个单位长度表示1米,建立数轴,在数轴标出两狗位置,让学生观察两狗与原点相距几个单位长度,从而引入绝对值的定义讨论,学生回答定义的形式可能有:
定义1:绝对值是两个地方之间的距离
定义2:绝对值是两点之间的距离
联系数轴得定义3:绝对值是这个数的点到原点的距离
2.从代数角度理解绝对值定义
学生认识绝对值符号“| |”通过学生提问、观察、理解、总结,讨论出代数定义
正数的绝对值是它本身
负数的绝对值是它的相反数
0的绝对值是0
设a为有理数,用字母a表示绝对值的代数定义
a
(a>0)
| a | = 0
(a=0)
-a
(a<0)
问| a |=-a(a<0)中,距离难道还有负的吗?(师生互动)
例1:把自己最喜爱的数写给同桌,让同桌写出该数的绝对值
例2计算| 3 | =
|―3|=
| 2 | =
|―2|=
结论①互为相反数的两个数的绝对值一定相等
②绝对值为同一正数的数有两个,它们互为相反数
3.研究绝对值的非负性
以游戏的方式,让老师用彩笔在黑板上画一个特大的“|
|”,让一个男生当“负数大将军”让一个女生当“正数大将军”,每一个学生准备一个小卡片,上面写有自己最喜爱的数,凡经过“|
|”大门后为“正”就是“正数大将军”的兵,凡经过“| |”大门后为“负数大将军”的兵
得:除0外,所有都是“正数大将军”兵
结论:任意一个数的绝对值只可能等于正数或0即非负数,| a |≥0
3.课堂练习
书15页
练习1、2
课堂小结
①
a
(a>0)
| a |=
0
(a=0)
-a
(a<0)
②绝对值表示数的点到原点距离
③| a |≥0
4.作业布置
(1)写出下列各数绝对值
①―
②3
③0
④―5
(2)判断
①绝对值等于本身的数为0、1
②一个数的绝对值一定是正数
③没有绝对值最小的数
⑤―2004
2.绝对值教案s 篇二
绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.
一、典型例题分析
例1 已知x<-3,化简:|3+|2-|1+x|||.
例2 若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.
例3 化简:|3x+1|+|2x-1|.
二、专项练习
练习1.已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.
练习2.设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.
练习3.若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.
三、巩固练习
1.x是什么实数时,下列等式成立:
(1)|(x-2)+(x-4)|=|x-2|+|x-4|;
3.相反数与绝对值教案 篇三
一、学习目标:
知识与能力
1、了解相反数的意义,会求有理数的相反数;
2、了解绝对值的概念,会求有理数的绝对值;
3、会利用绝对值比较两负数的大小。过程与方法
在绝对值概念的形成过程中,培养学生数形结合的思想 情感、态度与价值观
进一步培养学生分类讨论的思想和观察、归纳与概括的能力。
二、重点、难点:
理解相反数并掌握双重符号的化简原则,难点是能正确理解绝对值在数轴上表示的意义。
三、学习过程:
(一)自主学习
1、互为相反数:
(1)观察数轴上两对点-4.5和4.5,+3和-3,他们的位置关系怎样?有什么区别和联系?(2)(3)什么样的数被称为互为相反数? 指出下列各数的相反数;-3,-0.025,5,-4,0(4)在数轴上,表示互为相反数的点分别在()的两侧,并且到()的距离相等;
2、绝对值:(1)什么叫绝对值?
(2)
在数轴上,-4.5,-3,-0.5,0,0.5,3,4.5到原点的距离是多少?一个数与他的绝对值之间存在着怎样的联系?(3)求出下列各数的绝对值:
∣+5∣= ∣-4∣= ∣+0.04∣= ∣2.5∣= ∣0∣= ∣-1.104∣=
3、两负数比较大小:
(1)负数绝对值大了,离原点就越远,就越靠近数轴的()边,因此,两负数比较大小,绝对值大的数()。(2)根据例1解答:
比较:-4∕7和-6∕11
(二)合作交流:
1、独立完成,小组内交流;
2、进行组际交流;
(三)精讲点拨:
1、互为相反数是两个数的关系,注意互为相反数的绝对值相等; 2、0的相反数和绝对值都是它本身;
3、两负数比较大小,绝对值大的反而小;
(四)有效训练
1、若x+1与-3互为相反数,则x=();
2、说出下列各数的相反数和绝对值: 0.25,-18,-0.002,0,5 3.比较下列各组数的大小:
(1)0和-1(2)0.25和0(3)-0.125和-0.12
(五)拓展提升:
1、若-x=-(-3.5),则x=______;若a=-6.3,则-a=______;
2、若|a|=6,则a=______;(2)若|-b|=0.87,则b=______;
3、若x+|x|=0,则x是______数;
四、小结:
通过本节课的学习你都学到了哪些知识?
五、达标检测:
课本P35:练习1、2、3;
六、作业:
4.《1.2.3绝对值》的教案设计 篇四
张祥
一、教学目标
1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值。
2、通过应用绝对值解决实际问题,体会绝对值的意义和作用。
3、通过对a的讨论的教学,渗透符号意识。符号是数学表达的重要形式,这里的a可以表示任意有理数,用符号进行运算具有一般性。
4、通过对a的讨论的教学,让学生体会到分类时应做到不重复、不遗漏。
5、渗透数形结合的思想。
二、教学重点、难点
重点:求一个数的绝对值
难点:对a的讨论及对绝对值的几何意义的理解。
三、学生情况分析
通过前两天的教学,了解学生学习习惯不好:
1、不会读书、读题,审题不严谨,容易遗漏关键词,如“和了第三局”看成“和了三局”,对题目理解不到位。
2、做作业不会模仿例题,只求结果不重过程,解题不规范。
3、对新的知识理解不到位,又没有复习的习惯。第一天上课的知识第二天提问只有少数同学能马上答出来。所以每节课最后3分钟应对课堂所学进行总结。另一方面,学生刚刚进入初中学习,学习热情较高,专注力较好,所以趁此时培养学生学习习惯,抓好解题规范是最适宜也最重要的。
四、教学过程设计
1、复习巩固,为新课打下基础
什么是非负数?0是否是非负数?
数a的相反数是_______,若a>0,则-a____0;若a=0,则-a_____0;若a<0,则-a______0。
在数轴左侧,且到原点距离为3.2的点表示的数是________。
2、新课引入:
小狮子A和小羊B在数轴上踢球,如图,小鸡C当裁判,球在原点处。问:小狮子和小羊分别距离球多远?即A点与B点距离原点多远?裁判小鸡即点C距离原点多远?
生答:3个单位长.三个单位长,2个单位长
师:我们把这个距离称为该数的绝对值.榜书:绝对值的几何意义:一个数的绝对值等于数轴上它对应的点与原点的距离。
推论1:绝对值一定是非负数。(距离不可能是负数)
推论2:互为相反数的两数的绝对值相等。(相反数的几何意义)
符号语言:数a的绝对值记做:a
3、练习:(1)例1:求下列各数的绝对值:12,,-7.5,0
5解:12=12; 33=; 7.5=7.5; 0=0。55(2)做书上12页练习1,再给6到10个例子口答 总结规律:榜书:
绝对值的代数定义:正数的绝对值是它本身,负数的绝对值是他的相反数,0的绝对值是0.数a的绝对值是a与-a中非负的那个。
(要求:背会上面三句话。)
总结:任何一个数都是由符号和绝对值两部分组成的。一个有理数符号被去掉后剩下的就是绝对值。
(3)辨析题:
绝对值相等,符号不同的两个数互为相反数。
绝对值相等的两个数一定相等。
填空题:
如果一个数的绝对值是它本身,那么这个数是__________
绝对值最小的数是________,绝对值小于3的整数是__________________,绝对值大于1又小于4的整数是____________ 选择题:x=3.4,则x=_________.A 3.4 B-3.4 C±3.4 解答题:已知x3y20,求代数式3x-y的值.五、反思
1、求一个数的绝对值分正数、负数、0三类来讨论,跟数的符号有关,跟整数分数无关,应明确告诉学生,不在整数、分数、小数上纠缠,不岔开话题。
2、板书应该简炼整洁,分配好位置,不宜反复擦写。
3、准备应充分,课件、电脑应该先试运行,避免等到现场临时出状况。
5.《绝对值》教案 篇五
教学目标:
1、掌握绝对值的概念,会求一个有理数的绝对值.
2、会用绝对值比较两个或多个有理数的大小.
3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.
教学重点: 1.给出一个数会求它的绝对值。2.利用数轴和绝对值比较有理数的大小。教学难点:绝对值的几何意义;利用绝对值和数轴比较两个负数的大小。教学过程:
一、创设问题情境,引入新课
活动1:两辆汽车从同一处O出发,分别向东、向西方向行驶10千米,到达A、B两处(如图),它们行驶路程的远近(线段OA、OB的长度)相同吗?
它们行驶的路程都是10千米.教师指出:A、B两点到原点O的距离,就是我们这节课要学习的A、B两点所表示的有理数的绝对值。
二、讲授新课:
探究一:绝对值的定义
活动2:借助于数轴给出绝对值的定义:
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作a。
注:这里a可以是正数,也可以是负数和0.例如:在问题1的问题中,A、B两点分别表示10和一10,它们与原点的距离都是10个单位长度,所以10和一10的绝对值都是10,即1010,1010。显然,00。
因为点A、B表示的数互为相反数,且它们的绝对值相等,因此我们可得出:互为相反数的两个数的绝对值相等.活动3:在数轴上表示出下列各数,并求出它们的绝对值。-2,1.5,0,7,-3.5,5. 解:依题意得:数轴可表示为:
如图所示数轴上的A、B、O、C、D、E分别表示-2,1.5,0,7,-3.5,5. |-2|=2,|1.5|=1.5,|0|=0,|7|=7,|-3.5|=3.5,|5|=5.
根据此题的结果我们可归纳总结正数的绝对值、负数的绝对值、0的绝对值各有的特点,因此可得出 绝对值的性质:
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.代数表示(数学语言)是:字母a可个有理数。(1)当a是正数时,a= a ;(2)当a是负数时,a=-a ;(3)当a是0时,a= 0.活动4:例1:求 +
8、-
12、-
3、+
3、-1.6的绝对值.
解:|+8|=8 ;|-12|=12 ; |-3|= 3; |+3|= 3 ;∣-1.6∣=1.6.思考:求一个有理数的绝对值的方法: 1.利用数轴去求一个数的绝对值;
2.只需知道这个数是正数、负数还是0,利用绝对值的性质即可求出一个数的绝对值。活动5:跟踪练习:
写出下列各数的绝对值: 6,-8,-3.9,52,-,100,0 211解:6=6,-8=8,-3.9=3.9,=,-525222=,100=100,0=01111.判断下列说法是否正确: 符号相反的数互为相反数;
一个数的绝对值越大,表示它的点在数轴上越靠右;
(3)一个数的绝对值越大,表示它的点在数轴上离原点越远;
a(4)当a≠0时,总是大于0.答案:(1)错(2)错(3)对(4)对.判断下列各式是否正确:
5=-5(1)(2)-5=-5(3)
-5=-5.答案:(1)对(2)错(3)错
探究二:有理数的比较大小。活动6:观察下图给出的一周中每天的最高气温和最低气温,其中最低的是-4 ℃,最高的是 9 ℃,你能将这14个温度按从低到高的顺序排列吗?
学生将上图中的14个温度按从你到高排列为:
一4,一3,一2,一1,0,1,2,3,4,5,6,7,8,9.数学中规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。由这个规定可以比较上述各数(如一4和一3,一2和0,一1和1)的大小。一4<一3,一2<0,一1<1.由学生分组讨论:不通过数轴就可以比较两个有理数大小的方法呢? 结论:
(1)正数大于0,也大于负数,0大于负数。(2)两个负数比较大小,绝对值大的反而小。活动7:例2:较下列各对数的大小:(1)一(一1)和一(+2)(2)83和 217(3)一(一0.3)和13
解:(1)先化简,-(-1)=1,-(+2)=-2,因为正数大于负数,所以1>-2,即-(-1)>-(+2);
83883399838=,-==,,--,21所以21>7。(2)因为2121772121217-1111-=,3(3)因为-(-0.3)=0.3,330.3<,所以-(-0.3)<3.师生共同归纳总结:
异号两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑它们的绝对值;特别是两个负数比较大小。
活动:8:跟踪练习:
1.比较下列各对数的大小:
(1)3和-5;(2)-3和-5;(3)-2.5和--2.25;(4)-35和-34.解:(1)3>-5;(2)-3>-5;(3)-2.5<--2.25;(4)-335>-4.2.比较下列各组数的大小.(1)45与34(2)13,12,|13|,0.
解:(1)|-45|=45=1620,|-34|=3154=20,因为1620>154320,所以-5 <-4;
(2)因为-|-13|=-13>-12,所以 13 >0>-|-113|>-2.
课堂小结:这节课我们学习了哪些知识?
数轴上表示数a的点与原点的距离叫做数a的绝对值。(1)如果a>0,那么|a|=a(2)如果a<0,那么|a|=-a(3)如果a=0,那么|a|=0.互为相反数的两个数的绝对值相等.4.在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。5.(1)正数大于0,也大于负数,0大于负数。(2)两个负数比较大小,绝对值大的反而小。课后作业:
6.《绝对值》教案 篇六
第一备课人:姚雪艳
第一讲
不等式和绝对值不等式
课题: 第04课时绝对值三角不等式 教学目标:
知识与技能:了解绝对值三角不等式的含义,理解绝对值三角不等式公式及推导方法,会进行简单的应用。
过程与方法:充分运用观察、类比、猜想、分析证明的数学思维方法,体会转化和数形结合的数学
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
思想,并能运用绝对值三角不等式公式进行推理和证明。
教学重点:绝对值三角不等式的含义,绝对值三角不等式的理解和运用。教学难点:绝对值三角不等式的发现和推导、取等条件。教学过程:
一、复习引入:
关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。本节课探讨不等式证明这类问题。
1.请同学们回忆一下绝对值的意义。
x,如果x0x0,如果x0。
x,如果x0 几何意义:在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。
2.证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:
(1)aa,当且仅当a0时等号成立,aa.当且仅当a0时等号成立。
(2)aa2,(3)abab,(4)那么abab?abab?
二、讲解新课:
探究: a,b,ab, ab之间的什么关系?
结论:ab≤ab(当且仅当ab≥0时,等号成立.)
aba(b0)b已知a,b是实数,试证明:ab≤ab(当且仅当ab≥0时,等号成立.)方法一:证明:10.当ab≥0时, 20.当ab<0时,ab|ab|,ab|ab|,|ab|(ab)2 2|ab|(ab)22 a2abba22abb2 22|a|2|ab||b| |a|22|a||b||b|2 |a|22|a||b||b|2(|a||b|)2
(|a||b|)2 |a||b||a||b|
综合10, 20知定理成立.方法二:分析法,两边平方(略)
定理1 如果a,b是实数,则ab≤ab(当且仅当ab≥0时,等号成立.(1)若把a,b换为向量a,b情形又怎样呢?
aba
abab
根据定理1,有abbabb,就是,abba。所以,abab。
定理(绝对值三角形不等式)
如果a,b是实数,则ab≤ab≤ab 注:当a,b为复数或向量时结论也成立.推论1:a1a2an≤a1a2an
推论2:如果a、b、c是实数,那么ac≤abbc,当且仅当(ab)(bc)≥0时,等号成立.思考:如何利用数轴给出推论2的几何解释?(设A,B,C为数轴上的3个点,分别表示数a,b,c,则线段ABACCB.当且仅当C在A,B之间时,等号成立。这就是上面的例3。特别的,取c=0(即C为原点),就得到例2的后半部分。)
三、典型例题:
cc例
1、已知 xa,yb,求证(xy)(ab)c.22证明(xy)(ab)(xa)(yb)xayb(1)
xacc,yb,22cc∴xaybc(2)
22由(1),(2)得:(xy)(ab)c
aa,y.求证:2x3ya。46aaaa证明 x,y,∴2x,3y,4622aa由例1及上式,2x3y2x3ya。
22注意: 在推理比较简单时,我们常常将几个不等式连在一起写。但这种写法,只能用于不等号方向相同的不等式。
例3 两个施工队分别被安排在公路沿线的两个地点施工,这两个地点分别位于公路路碑的第10公里和第20公里处.现要在公路沿线建两个施工队的共同临时生活区,每个施工队每天在生活区和施工地点之间往返一次,要使两个施工队每天往返的路程之和最小,生活区应该建于何处? 解:如果生活区建于公路路碑的第 x km处,两施工队每天往返的路程之和为S(x)km 那么 S(x)=2(|x-10|+|x-20|)例
2、已知x·10
四、课堂练习:
·x·20
1.(课本P20习题1.2第1题)求证: ⑴abab≥2a;⑵abab≤2b 2.(课本P19习题1.2第3题)求证: ⑴xaxb≥ab;⑵xaxb≤ab 3.(1)、已知Aacc,Bb.求证:(AB)(ab)c。22(2)、已知xacc,yb.求证:2x3y2a3bc。46
五、课堂小结:
1.实数a的绝对值的意义: a(a0)⑴a0(a0);(定义)
a(a0)⑵a的几何意义: 2.定理(绝对值三角形不等式)
如果a,b是实数,则ab≤ab≤ab注意取等的条件。
六、课后作业:
课本P19第2,4,5题
七、板书设计:
新课知识
八、教学后记:
比较两个实数的大小,有作差法和作商法两种方法.一般多用作差法,注意当这两个数都是正数时,才可以用作商法.作差法是比较作差后的式子与“0”的大小关系;作商法是比较作商后的式子与“1”的大小关系.
7.《绝对值》教学反思 篇七
《绝对值》教学反思
动手实践、自主探究与合作交流是学生学习数学的重要方式。数学学习活动应当是一个生动活拨的、主动的和富有个性的过程。我们激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动的经验。学生是数学学习的主任,教师应该怎么成为数学学习的组织者、引导者与合作者呢?
先看教学片段:
师:同学们,上新课之前老师先了解一下,你们的家在学校的哪一边? 生:(七嘴八舌,有的说在南边,有的说在北边,有的说在东边„„.)师:不管我们的家住在学校的哪一边,家和学校有没有一定的距离? 生:有。
师:同学们再想一想,从车站开出两辆计程车,一辆往东、一辆往西,车上的乘客是不是都要按里程付费?
生:是。不管往哪个方向开,都要按行车里程收费。
师:体育课上我们投铅球,你可以在规定的范围内朝任意一个方向投,铅球的着落点和你的投球地点有没有一定的距离?
生:有。无论投到哪个方向,它们之间都有距离。
师:同学们,以上我们举的例子都是日常生活中经常出现的量:家到学校的路程、计程车的计费、投铅球的距离等等,它们和方向有关吗?
生:都没有关系。
生5:因为a是一个字母,可以表示正数,也可以是0。当a是正数时,|a|=a;当a=0时,|a|=0。
生6:a可以是一个负数吗? 生7:当然可以。
生6:当a是负数时,|a|应当等于什么呢?(引起大家争论)生8:还等于a。生9:等于a的相反数。师:为什么?
生9:因为负数的绝对值等于它的相反数。所以当a是负数时,|a|=—a。生10:(疑问地)老师,绝对值不是表示距离吗?距离难道还有负的? 师:距离当然没有负的,谁能帮这位同学解决这个问题? 生9:(立即做出反应)a表示负数,—a当然表示正数了。
生11:(不甘示弱)比如说a是—2,那么—a=-(-2)=2,所以-a表示正数。生10:那为什么“-a”带“-”号呢?
生11:带“-”号就一定是负数吗?比如说-(-2)就表示正数。很多同学鼓掌赞同,学生的脸上洋溢着兴奋的笑容)我们的反思:
一、充分发挥学生的主体性,让学生无拘无束、畅所欲言
良好的数学思维品质不仅包括认知领域内的思维,也包括思维过程中的意志力、直觉力、想象力等,而这些能力仅仅靠会解题是不可获得的。
8.七年级数学绝对值与相反数教案 篇八
1、化简:
2、若一个数的相反数是2,则这个数是_____,若一个数的相反数是-3,则这个数是___,若一个数的相反数是它本身,则这个数是______.
3、的绝对值的相反数是_______,0.7的相反数的绝对值是_______.
4、绝对值最小的数是____,绝对值不小于3的整数有 个,分别是.
【课堂重点】
1、完成教材23页填空.
2、观察教材上填空的结果思考:一个数的绝对值与这个数本身或它的相反数有什么关系?与同学交流.
正数的绝对值是_______; 负数的绝对值是_______; 零的绝对值是_______.
3、学习教材23页例5,完成教材24页“练一练”第一题.思考:
(1)求一个数的绝对值关键看什么?
(2)如何求一个数的绝对值呢?
4、想一想:两个数比较大小,绝对值大的那个一定大吗?
结论:
5、学习教材23页例6,完成教材24页“练一练’第二题.
6、练习:
(1)|-5|=_______; |2.4|=_______; |3|=_______;
|0|=_______; |-1|=_______; |2|=_______;
+|-1.5|=_______; -|-2|=_______;
+(-5)=_______;―(-4)=_______;-(+5)=_______.
(2)若|x|=x,则x_______0;
若|x|=-x,则x_______0.
(3)绝对值等于5的数是______.
(4)绝对值小于5的负整数是______.
(5)绝对值不大于5而又不小于2的整数是______.
(6)绝对值不大于5.3而又不小于2的整数是______.
(7)已知a>b>0,-a_____-b.
7、这节课主要学习了什么?你有什么收获?
【课后巩固】
1、用“<”“=”或“>”号填空
+|-5|___-|-4|;-(+5)___-[-|-5|]
2、|x|=3,则x=_____;|-x|=|-2|,则x=______.
3、相反数大于-2而又小于3的整数有__________;-(+7)的相反数是________.
4、比-3大且比4小的整数有_______个,分别是__________.
5、绝对值大于1且不大于4的负整数有__________个,分别为__________.
【《绝对值》教案】推荐阅读:
《1.2.3绝对值》的教案设计07-27
七年级绝对值教学设计06-18
初中数学说课绝对值08-06
《绝对值的定义》教学设计08-23
高中数学绝对值不等式怎么解10-27
七年级数学相反数与绝对值课堂练习题08-07
审题立意不能绝对06-11
绝对成交技巧解析07-25
绝对成交读书笔记08-24
1.2.2含多个绝对值不等式的解法导学案07-18