如何进行初中几何证明题的教学

2024-10-31

如何进行初中几何证明题的教学(精选6篇)

1.如何进行初中几何证明题的教学 篇一

初中几何证明题的入门的论文

摘 要:几何证明是培养学生思维的一门学科,在刚开始学习时很多学生会觉得很难,不知道如何入手思考问题。本文通过不同的角度,对学生开始学习几何之初遇到的一点做法和想法展开论述,以提高学生对几何的认识,利用推理思想提高对问题的分析和解决能力。

关键词:几何证明;几何认识;推理思想;分析和解决能力

初一了,学生开始从实验几何向论证几何过渡。在之前,虽然学过一部分,但没有格式上的特殊要求,只要能看懂图形,根据图形回答问题,也就是说初一是学生学习几何的关键期。要学好几何证明题,关键是顺利闯过几何证明题入门这一关。如果能把握好了这一步,就可以顺利地进行几何这门学科的学习。那么,怎样才能使学生过好这一关呢?

一、强心理攻势――闯畏难情绪关

初一、初二学生的年龄,一般都在十三、十四岁左右,从心理学角度来看,正是自觉思维向逻辑思维的过度阶段。因此,几何证明的入门,也就是学生逻辑思维的起步。这种思维方式学生才接触,肯定会遇到一些困难。从自己多年的教学实践来看,有的学生在这时“跌倒了”,就丧失了信心,以至于几何越学越糟,最终成了几何“门外汉”。但有的学生,在这时遇到了一些困难,失败了,却信心十足,不断地去总结,认真思考,最后越学越有兴趣。当我接班伊始,我就注意到那个坐在教室中间的小周:虽然她平时上课能安静听讲,但是集中注意力时间很短,记忆能力也特别差,当老师提问她时,总是羞涩地低下头,默不作声。她经常偷工减料地写作业,对自己的要求也不高,所以她数学总分只有30多分。我想自己一定要努力改变这一情况,共同寻找一条适合她的教学之路。

通过与她谈心,让她意识到几何证明题是学习几何的入门,是学生逻辑思维的起步。“你和同学们同时开始学习几何,相信自己的能力,只要上课认真听讲,在学习过程中不断地总结经验,有不懂的,有疑问的及时问老师,相信自己的能力,同时也是证明自己不比别人差的一个最好的机会。”“不管在什么情况下,老师做到有问必答,也保证不会有任何批评的话。老师相信在你自己的不断总结和尝试下,在几何证明这一块上不会输于任何一个学生。”我让其明白初一、初二正是学习几何证明的一个契机,只要能学好,代数部分也会有所提高,更何况她的前一阶段的数学成绩在个人的努力下还是有所提高,说明思维能力还是比较强的。通过谈心她表示愿意克服困难,和大家一起学习几何证明。当她有进步后,及时地给予表扬。“你做得真好,继续努力!!”“虽然有点小问题,但有进步,加油!”在交上的作业中,总是给予点评,写些鼓励的语言。在不断的鼓励和帮助下,学习逐渐有了信心,学习成绩在逐步提高。

二、小梯度递进――闯层层技能关

学好几何证明,起步要稳,因此要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。

1、牢记几何语言

几何证明题,要使用几何语言,这对于刚学几何的学生来说,仅当又学一门“外语”,并努力尽快地掌握这门“外语”的语言使用和表达能力。

首先,从几何第一课起,就应该特别注意几何语言的规范性,要让学生理解并掌握一些规范性的`几何语句。如:“延长线段ab到点c,使ac=2ab”,“过点c作cd⊥ab,垂足为点d”,“过点a作l∥cd”等,每一句通过上课的教学,课后的辅导,手把手的作图,表达几何语言;表达几何语言后作图,反复多次,让学生理解每一句话,看得懂题意。

其次,要注意对几何语言的理解,几何语言表达要确切。例如:钝角的意义是“大于直角而小于平角的叫钝角”,“大于直角或小于平角的角叫钝角”,把“而”字说成了“或”字,这就是学习对几何语言理解不佳,造成的表达不确切。“一字之差”意思各异,在辅导时,注重语言的准确性,对其犯的错误反复更正,做到学习之初要严谨。

2、规范推理格式

数学中推理证明的书写格式有许多种,但最基本的是演绎法,也就是从已知条件出发,根据已经学过的数学概念、公理、定理等知识,顺着推理,由“已知”得“推知”,由“推知”得“未知”,逐步地推出求证的结论来。这种证题格式一般叫“演绎法”,课本上的定理证明,例题的证明,多数是采用这种格式。它的书写形式表达常用语言是“因为…,所以…”特别是一开始学习几何证明,首先要掌握好这种推理格式,做到规范化。如:在平行线性质的教学中,开始以填空的形式填写,

图1:因为∠1=∠2(已知)

所以 a∥b

其后把图形复杂化

图2:因为∠dab=∠b(已知)

所以de∥bc

改变填空的形式

因为____________(已知)

所以de∥bc()

通过反复、不同形式的填写,让学生掌握基本性质的表达格式,体会图形与题目存在的依存关系。同时通过从定义、性质、判定出发,由简到难,逐步深入,让学生提高对几何证明的信心。

3、积累证明思路

“几何证明难”最难莫过于没有思路。怎样积累证明思路呢?这主要靠听讲,看书时积极思考,不仅弄明白题目是“如何证明?”,还要进一步追究一下,“证明题方法是如何想出来的?”。只有经常这样独立思考,才会使自己的思路开阔灵活。随着证明题难度的增加,还要教会学生用“两头凑”的方法,即在同一个证明题的分析过程中,分析法与综合法并用,来缩短已知与未知之间的距离,在教学安排时,要给其足够的时间思考,而且重复证明思路,提高对解题思路的理解和应用能力。例如:在教授平行线和角平分线的关系时,设置了不同的例题:

如图3:已知be平分∠abc,∠dbe=∠deb.

求证:de∥bc

通过讲解,要求学生仿写一遍,总结思路,形成”角平分线和等量代换可以证明平行线“的思想,之后,又共同完成与上面例题相仿的变式练习:

如图4:已知△abc中,ad平分∠bac,ae=de.

求证: de∥bc.

经过学生之间的互学互教进一步掌握方法和解题格式,再通过变式训练达到本课的教学要求。

通过反复操练解题思路,在注重解题格式的要求下,每个学生在每一堂课上积累一个解题思想,学到一点新知识,都有所收获增强对学习几何的信心。

4、培养书写证明过程中的逻辑思维能力

有的学生写出的证明过程,条理清楚,逻辑性强,但有的学生写出的证明过程逻辑混乱,没有条理性,表达不清楚,这种情况,就是在平时的教学中,没有注意培养学生的逻辑思维能力。

首先,一开始学习几何,一定要在书写证明过程中逐步培养学生的逻辑思维能力。强调由哪个条件才能得出什么结论,不要根据初三数学对几何证明的要求,忽略中间的条件的描述。例如在三角形全等的几何证明中,如图,ac∥de,ac=de,bd=fc.

说明△abc≌△efd.

解:因为ac∥de(已知)

所以∠acb=∠edf(两直线平行,内错角相等)(第一段)

因为bd=fc(已知)

所以bd+dc=fc+dc(等式性质)

即bc=fd(第二段)

在△abc和△efd中

ac=de(已知)

∠acb=∠edf(已证)

bc=fd(已证)

所以△abc≌△efd(s.a.s)(第三段)

在描述中不要漏了条件的大括号,判定依据等,检验在写的过程中是否符合所写的几何命题的格式等注意思维的严密性。

其次,在书写证明过程时,要逐步培养学生书写证明过程中的整体逻辑性,即通过分析,这个证明过程可分几大段来写,每一段之间的逻辑关系是什么?哪些段应先写,哪些段应后写。例如在上面的几何证明过程中,分成三大段,强调应先写第一段和第二段,第一段和第二段可以互换,第三段与第一段和第二段之间不能互换,提醒注意段与段之间的逻辑性,在搞清楚了这些之后,然后再分段书写证明过程,前面已证明的结论,在后面的证明过程中直接应用应把条件在写一次,体现其逻辑性。这样写出来的证明过程才条理清楚,逻辑性强。

三、善于总结经验――把好思维总结关

随着几何课程的进展,几何证明题的内容和难度都会不断地增加。因此,学习了一段之后,要回顾一下,看看已学了哪些知识点?自己在审题,推理、思路分析,证明过程等的书写方面掌握了没有,熟练的程度如何?如果在某些方面掌握得还不很好,就要在该方面多作一些练习,多想多问,使自己达到即熟练,又会“巧用”的程度。

例如在经过一个星期的几何证明学习后,每个星期出好一份与前一阶段讲课内容一致的练习题,通过学生的答题了解学生的掌握情况,在试卷分析的时候着重对思维能力较强的,学生错的较多的问题进行讲解,同时通过小组之间的合作,互相说出解题思路和错误的原因,不断的地找出自己在解题过程中的问题,总结前一阶段学习中的几何证明推理和思维上存在的问题,使下一阶段的学习更优化。

总之,如果以上过程都一步一个脚印地走好了,那么你就会很轻松地进入几何证明学习的大门,在几何证明的王国里遨游。我始终坚持帮助学生闯过畏难心理,坚信每一个孩子都是拥有巨大的潜能,永不放弃一个学生。我反复把握关键点,反复指导学生,让他们体会学习数学的乐趣,获得成功的喜悦。我相信只要时刻关注学生的最近发展情况,他们自然而然会进入“采菊东篱下,悠然见南山”的物我合一的解题佳境。

参考文献:

[1]李树荫.1995.成功心理.北京:知识出版社,72-75(书).

[2]胡伦贵,萧文,黄志勇,刘志峰.1992.人的终极能量开发――创造性思维及训练.北京:中国工人出版社,52~58(书).

[3].10.上海市中小学数学课程标准.上海教育出版社,55-58(书).

2.如何进行初中几何证明题的教学 篇二

关键词 初中数学 综合法与分析法 几何证明

中图分类号:G633.63 文献标识码:A 文章编号:1002-7661(2014)10-0022-02

上个世纪,西方著名科技史家李约瑟提出了的著名“李约瑟难题”——“为什么现代科技不是诞生在曾经在各个方面引领世界的中国”,而伟大的科学家爱因斯坦仿佛是为了回答这一著名“难题”而提出“爱因斯坦论断”——“希腊哲学家发明形式逻辑体系(在欧几里得几何学中),以及(在文艺复兴时期)发现通过系统实验可能找出因果关系。在我看来,中国的贤哲没有走上这两步……”

时至今日,也许是被“爱因斯坦论断”所深深地刺痛,也许是中国教育界对几何演绎推理对于学生逻辑思维能力的教育价值有了深刻的认识,在欧美主要发达国家已经放弃初中几何演绎推理教学,而只需要学生能用矢量法解决一些基本的几何论证时,我国在新课标中依然将几何推理证明作为初中数学教与学的一个重要内容。

新课标虽然对几何证明的内容进行了调整、难度要求降低、证明技巧淡化,但对几何证明教学的最基本能力要求其实并没有降低,课标中已明确指出:在“图形与几何”的教学中,应帮助学生建立空间观念,注重培养学生的几何直观与推理能力。虽然新的课程理念要求,推理过程不能过繁,一切从简,但证明的过程要求做到事实准确、道理严密、证明过程完整。

几何证明作为初中数学教与学的一个重点和难点,其难点在于如何运用众多的定义、定理等寻找证明思路,从而提高学生分析问题、严密逻辑思维推理、语言组织表达等能力。而教师在平时教学中常常遇到学生不知从何下手,分析思维模糊不清,书写证明张冠李戴,欠缺严密逻辑推理等,更有甚者是毫无头绪。

初中学生的几何证明学习在内容上要经历从“直观”到“论证”的转轨。在思维方式上需要解决从“形象思维”到“逻辑思维”的过渡,而学生开始学习几何证明,没有适应论证数理的答题模式、语言表达方面的特别要求,从而难以适应从直观到论证之间思维要求上的跳跃。因此,为学生构建从内容到形式,从题设到结论的“桥梁”就显得非常必要了。

为此,我构建了一种统一综合法与分析法,让学生易于沟通题设和结论,便于分析问题、书写解题过程、拓展解题思路又易于被学生接受和掌握的教学方法,并坚持在实际教学中运用,取得了良好的效果。请看示例:

例1 如图,OA=OB,C、D分别是OA,OB上的两点,且OC=OD,连结AD、BC交于E,求证:OE平分∠AOB.

分析:

OE平分∠AOB

∠1=∠2

↑ ↑

△OCE≌△ODE △OAE≌△OBE

↑OC=OD,OE=OE ↑OA=OB,OE=OE

CE=DE AE=BE

↑ ↑

△ACE≌△BDE

↑AC=BD,∠3=∠4,

∠A=∠B

△OAD≌△△OBC

↑OA=OB,∠AOB=∠BOA,OD=OC

(条件具备,即得证)

该题是学生初学几何证明问题中较难的一道利用全等三角形解决的问题,分析过程中的“↑”表示“要证明…,只需证明…”,“↑”符号右侧的文字表示已经具备的条件,而分析过程中的“︷”表示实现该目标有多条路径可以实现。显然,这种利用图示在黑板上板书出来的过程,不仅能显示解题过程的来龙去脉,锻炼了学生分析问题、解决问题的能力,还能让学生顺着箭头的方向,准确地书写出正确的解题过程,培养学生严谨的治学态度,且较好地契合了用分析法思考、用综合法书写的几何教学原则。分析过程中显示出的一题多解更是培养学生思维多样性的利器。

例2 如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC∥AD。求证:DC是⊙O的切线。

分析:

DC是⊙O的切线

↑连接OD

∠ODC=90€?

↑∠OBC=90€?←BC是⊙O的切线

∠ODC=∠OBC

△ODC≌△OBC

↑OD=OB,OC=OC

∠COD=∠COB

↑∠COD=∠ODA,∠COB=∠OAD←OC∥AD

∠ODA=∠OAD

OD=OA(条件具备,即得证)

题中的“↑”显示的是解题的思维主线,而“←”则是由题设能够推出的初步结论,最后都象涓涓细流汇入到解题的主体思路中来。从此题可以看出,要准确、清晰解答几何证明问题,除了掌握良好的思维方法,基本的辅助线的掌握显然也是必不可少的。

当然,除了思维方法的训练,在几何教与学中注重几何语言的提炼、格式的规范、图形的标识、定理的积累、题型的拓展和图形的变换等等也都是必不可少的。endprint

摘 要 初中几何演绎推理对于学生思维能力的锻炼得到我国广大教育工作者的认可,但只有为学生构建从内容到形式,从题设到结论的“桥梁”,使学生掌握了正确的思维和书写方式,理解几何证明的逻辑规律,几何证明的魅力才会是令人难以忘怀的,几何证明锻炼人的逻辑推理能力和教会人思维规则意识的教育价值才是有意义的。

关键词 初中数学 综合法与分析法 几何证明

中图分类号:G633.63 文献标识码:A 文章编号:1002-7661(2014)10-0022-02

上个世纪,西方著名科技史家李约瑟提出了的著名“李约瑟难题”——“为什么现代科技不是诞生在曾经在各个方面引领世界的中国”,而伟大的科学家爱因斯坦仿佛是为了回答这一著名“难题”而提出“爱因斯坦论断”——“希腊哲学家发明形式逻辑体系(在欧几里得几何学中),以及(在文艺复兴时期)发现通过系统实验可能找出因果关系。在我看来,中国的贤哲没有走上这两步……”

时至今日,也许是被“爱因斯坦论断”所深深地刺痛,也许是中国教育界对几何演绎推理对于学生逻辑思维能力的教育价值有了深刻的认识,在欧美主要发达国家已经放弃初中几何演绎推理教学,而只需要学生能用矢量法解决一些基本的几何论证时,我国在新课标中依然将几何推理证明作为初中数学教与学的一个重要内容。

新课标虽然对几何证明的内容进行了调整、难度要求降低、证明技巧淡化,但对几何证明教学的最基本能力要求其实并没有降低,课标中已明确指出:在“图形与几何”的教学中,应帮助学生建立空间观念,注重培养学生的几何直观与推理能力。虽然新的课程理念要求,推理过程不能过繁,一切从简,但证明的过程要求做到事实准确、道理严密、证明过程完整。

几何证明作为初中数学教与学的一个重点和难点,其难点在于如何运用众多的定义、定理等寻找证明思路,从而提高学生分析问题、严密逻辑思维推理、语言组织表达等能力。而教师在平时教学中常常遇到学生不知从何下手,分析思维模糊不清,书写证明张冠李戴,欠缺严密逻辑推理等,更有甚者是毫无头绪。

初中学生的几何证明学习在内容上要经历从“直观”到“论证”的转轨。在思维方式上需要解决从“形象思维”到“逻辑思维”的过渡,而学生开始学习几何证明,没有适应论证数理的答题模式、语言表达方面的特别要求,从而难以适应从直观到论证之间思维要求上的跳跃。因此,为学生构建从内容到形式,从题设到结论的“桥梁”就显得非常必要了。

为此,我构建了一种统一综合法与分析法,让学生易于沟通题设和结论,便于分析问题、书写解题过程、拓展解题思路又易于被学生接受和掌握的教学方法,并坚持在实际教学中运用,取得了良好的效果。请看示例:

例1 如图,OA=OB,C、D分别是OA,OB上的两点,且OC=OD,连结AD、BC交于E,求证:OE平分∠AOB.

分析:

OE平分∠AOB

∠1=∠2

↑ ↑

△OCE≌△ODE △OAE≌△OBE

↑OC=OD,OE=OE ↑OA=OB,OE=OE

CE=DE AE=BE

↑ ↑

△ACE≌△BDE

↑AC=BD,∠3=∠4,

∠A=∠B

△OAD≌△△OBC

↑OA=OB,∠AOB=∠BOA,OD=OC

(条件具备,即得证)

该题是学生初学几何证明问题中较难的一道利用全等三角形解决的问题,分析过程中的“↑”表示“要证明…,只需证明…”,“↑”符号右侧的文字表示已经具备的条件,而分析过程中的“︷”表示实现该目标有多条路径可以实现。显然,这种利用图示在黑板上板书出来的过程,不仅能显示解题过程的来龙去脉,锻炼了学生分析问题、解决问题的能力,还能让学生顺着箭头的方向,准确地书写出正确的解题过程,培养学生严谨的治学态度,且较好地契合了用分析法思考、用综合法书写的几何教学原则。分析过程中显示出的一题多解更是培养学生思维多样性的利器。

例2 如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC∥AD。求证:DC是⊙O的切线。

分析:

DC是⊙O的切线

↑连接OD

∠ODC=90€?

↑∠OBC=90€?←BC是⊙O的切线

∠ODC=∠OBC

△ODC≌△OBC

↑OD=OB,OC=OC

∠COD=∠COB

↑∠COD=∠ODA,∠COB=∠OAD←OC∥AD

∠ODA=∠OAD

OD=OA(条件具备,即得证)

题中的“↑”显示的是解题的思维主线,而“←”则是由题设能够推出的初步结论,最后都象涓涓细流汇入到解题的主体思路中来。从此题可以看出,要准确、清晰解答几何证明问题,除了掌握良好的思维方法,基本的辅助线的掌握显然也是必不可少的。

当然,除了思维方法的训练,在几何教与学中注重几何语言的提炼、格式的规范、图形的标识、定理的积累、题型的拓展和图形的变换等等也都是必不可少的。endprint

摘 要 初中几何演绎推理对于学生思维能力的锻炼得到我国广大教育工作者的认可,但只有为学生构建从内容到形式,从题设到结论的“桥梁”,使学生掌握了正确的思维和书写方式,理解几何证明的逻辑规律,几何证明的魅力才会是令人难以忘怀的,几何证明锻炼人的逻辑推理能力和教会人思维规则意识的教育价值才是有意义的。

关键词 初中数学 综合法与分析法 几何证明

中图分类号:G633.63 文献标识码:A 文章编号:1002-7661(2014)10-0022-02

上个世纪,西方著名科技史家李约瑟提出了的著名“李约瑟难题”——“为什么现代科技不是诞生在曾经在各个方面引领世界的中国”,而伟大的科学家爱因斯坦仿佛是为了回答这一著名“难题”而提出“爱因斯坦论断”——“希腊哲学家发明形式逻辑体系(在欧几里得几何学中),以及(在文艺复兴时期)发现通过系统实验可能找出因果关系。在我看来,中国的贤哲没有走上这两步……”

时至今日,也许是被“爱因斯坦论断”所深深地刺痛,也许是中国教育界对几何演绎推理对于学生逻辑思维能力的教育价值有了深刻的认识,在欧美主要发达国家已经放弃初中几何演绎推理教学,而只需要学生能用矢量法解决一些基本的几何论证时,我国在新课标中依然将几何推理证明作为初中数学教与学的一个重要内容。

新课标虽然对几何证明的内容进行了调整、难度要求降低、证明技巧淡化,但对几何证明教学的最基本能力要求其实并没有降低,课标中已明确指出:在“图形与几何”的教学中,应帮助学生建立空间观念,注重培养学生的几何直观与推理能力。虽然新的课程理念要求,推理过程不能过繁,一切从简,但证明的过程要求做到事实准确、道理严密、证明过程完整。

几何证明作为初中数学教与学的一个重点和难点,其难点在于如何运用众多的定义、定理等寻找证明思路,从而提高学生分析问题、严密逻辑思维推理、语言组织表达等能力。而教师在平时教学中常常遇到学生不知从何下手,分析思维模糊不清,书写证明张冠李戴,欠缺严密逻辑推理等,更有甚者是毫无头绪。

初中学生的几何证明学习在内容上要经历从“直观”到“论证”的转轨。在思维方式上需要解决从“形象思维”到“逻辑思维”的过渡,而学生开始学习几何证明,没有适应论证数理的答题模式、语言表达方面的特别要求,从而难以适应从直观到论证之间思维要求上的跳跃。因此,为学生构建从内容到形式,从题设到结论的“桥梁”就显得非常必要了。

为此,我构建了一种统一综合法与分析法,让学生易于沟通题设和结论,便于分析问题、书写解题过程、拓展解题思路又易于被学生接受和掌握的教学方法,并坚持在实际教学中运用,取得了良好的效果。请看示例:

例1 如图,OA=OB,C、D分别是OA,OB上的两点,且OC=OD,连结AD、BC交于E,求证:OE平分∠AOB.

分析:

OE平分∠AOB

∠1=∠2

↑ ↑

△OCE≌△ODE △OAE≌△OBE

↑OC=OD,OE=OE ↑OA=OB,OE=OE

CE=DE AE=BE

↑ ↑

△ACE≌△BDE

↑AC=BD,∠3=∠4,

∠A=∠B

△OAD≌△△OBC

↑OA=OB,∠AOB=∠BOA,OD=OC

(条件具备,即得证)

该题是学生初学几何证明问题中较难的一道利用全等三角形解决的问题,分析过程中的“↑”表示“要证明…,只需证明…”,“↑”符号右侧的文字表示已经具备的条件,而分析过程中的“︷”表示实现该目标有多条路径可以实现。显然,这种利用图示在黑板上板书出来的过程,不仅能显示解题过程的来龙去脉,锻炼了学生分析问题、解决问题的能力,还能让学生顺着箭头的方向,准确地书写出正确的解题过程,培养学生严谨的治学态度,且较好地契合了用分析法思考、用综合法书写的几何教学原则。分析过程中显示出的一题多解更是培养学生思维多样性的利器。

例2 如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC∥AD。求证:DC是⊙O的切线。

分析:

DC是⊙O的切线

↑连接OD

∠ODC=90€?

↑∠OBC=90€?←BC是⊙O的切线

∠ODC=∠OBC

△ODC≌△OBC

↑OD=OB,OC=OC

∠COD=∠COB

↑∠COD=∠ODA,∠COB=∠OAD←OC∥AD

∠ODA=∠OAD

OD=OA(条件具备,即得证)

题中的“↑”显示的是解题的思维主线,而“←”则是由题设能够推出的初步结论,最后都象涓涓细流汇入到解题的主体思路中来。从此题可以看出,要准确、清晰解答几何证明问题,除了掌握良好的思维方法,基本的辅助线的掌握显然也是必不可少的。

3.例谈初中几何证明题教学 篇三

论文摘要:新课标下,打破传统教法,探析几何证明题教学的突破口,是每一个师生共同关心的话题。本文从九年级人教版一道期考题的学生答卷出发引起了笔者的思考,归纳总结出数学课堂教学的四个步骤,并由此引申出校本科研的命题。

关键词:数学教学;几何证明;学生

众所周知,几何证明是初等数学学习的难点之一,其难就难在如何寻找证明思路,追根究底还是因为几何证明题的本质不易把握。为此,在初等几何的学习中融入数学思想方法,具有重要意义,而且切实可行。

通过平时的学习、探索和积累,笔者发现其中的“结构思想”,即“数学是一个有机的整体,观察数学问题要着眼于结构的整体性。从宏观上对数学问题进行整体研究,抓住问题的框架结构和本质关系,把一些貌似独立而实质又紧密联系的特征视为系统中的整体”对探寻几何的证明思路,把握问题的本质,培养观察能力有一定的指导意义。

新一轮课程改革立足于“改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程。”在这样的指导思想下,初中几何发生了较大的变化。

初中几何一直就是中学数学的重要内容,秉承“深化教育改革,全面推进素质教育”的指导思想,在这次新课程改革中,初中几何部分有了较大的调整。对比新课程改革后初中几何的变化,深入理解教改的初衷,全面贯彻教改的思想,不但有利于更好地完成教改的任务,而且有利于利用新教材创造性地提高学生的数学素养。

考题:如图,在Rt●ABC中∠C=90°以AC为直接径,作⊙O,交AB于D,过O作OE∥AB,交BC于E,连接ED。

⑴求证:ED是⊙O的切线。

⑵E为BC的中点,如果⊙O的半径为1.5, ED=2,求AB的长。

这是某市九年级人教版秋季学期一道期考试题,从题型看这是一道再普通不过的圆有关证明和计算的几何考题,而我校作为一所比较有名的初中,全校九年级约500个考生的答卷中,第问“求AB的.长”尚有80%左右的考生能正确的解答出来,而第(1)“求证:ED是⊙O的切线”只有约10%的考生能正确地写出证明解答过程。究其原因何在?笔者认为,其主要原因是教师在平时的课堂教学中,对几何证明的指导不到位、引导方法不够灵活,措施不到位造成的直接后果。

怎样指导学生对几何证明题进行有效正确的证明分析解答,并简单地写出证明过程,笔者通过对本考题学生答卷出现的各种错误情况,结合本校使用新课改教材突出的特点,归纳总结出以下4个步骤,进行指导,收到良好的效果。

1.读

读就是阅读题目和题图的过程中,做到逐个条件,逐个问题地对号入座地进行审题、读图。

2.记

记就是在“读”的过程中,对题目中给出的条件和问题作简要的浓缩并作划记,并用①、②……和“?”作标记。如本考题问可作标记为:已知①∠C=90°;②AC为直径;③OE∥AB求证ED是⊙O的切线?

3.选

“选”就是选定解题思路,确定解题方法,即根据读题和标记的结果,结合自己所掌握的数学知识。选定解题思路,最终确定解题方法,并写出简要解答过程。如本题中,要证明DE为⊙O的切线,得作辅助线:连结OD,则点D就是⊙O的外端,只须再证明OD⊥DE(即∠ODE=90°)就可

以了,从而选定证明∠ODE=90°;而要达到这个∠ODE=90°这个结果,只有通过证明●EOC≌●EOD从而也就确定了解题方法。

4.返

就是选定了解题思路、确定了解题方法,并写出解答的过程中,特别是遇到解答的过程受阻时,不断地返回到题目中已作的标记和题图的标记和已知条件中去,检查是否漏用或误用已知条件,及时调整解题方案。

可以看出,“读、记、选、返”四个步骤通俗易懂、浅显具体,只要始终坚持渗透课程数学课堂教学之中,并要求学生始终运用到平时的练习之中,善于积累,逐渐养成“见其型,通其路,套其法”的良好习惯,就能很好纠正学生不良的解题思维习惯和学习习惯!

初中数学,广西崇左市从秋季学期启用人教版新课改教材至今,恰好经历了两个周期。五年来,课改的新理念、新思维、新评价如风暴袭来,我们有过欣喜和期盼,教学实践中,没有石头照样过河。

评价考试后,我们充满困惑与无奈,却不知路在何方。长期以来,我们数学课堂教学关注的是大量繁杂的公式,陷入了题的海洋。中学数学课堂教学最应该关注什么?既不是单纯的方法总结,也不是数学知识技能的简单积聚。数学教育的发展方向应与教育发展的大方向相一致,数学教育更应该关注思考:上完一节数学课,在学生颔首的同时还是有那么多的学生仍在质疑,到底学到了什么?他们对自己在数学学科上付出那么多的时间和精力感到惋惜,对自己在数学上的天赋和能力产生怀疑与反思。

而教师本身是否也反省过自己,一节课下来我们到底教给了学生什么?方法、过程,还是答案?所谓“点石成金”我们到底教给学生“点石”的手指还是“点成”的金子?我们不能武断地归结于学生的不努力,我们的数学教育有没有问题。就目前的状况,中学数学教育仍旧可以用“纸上谈兵”这句成语简单概括之。

课堂是教师演练阵容的战场,解题成为操起的刀戈,忽略了解题思路、解题方法,一味追求解题结果,将会逐渐迷失自我,丧失自我思考的能力!我们是否思考过:路就在自己的脚下,路就在自己的每一节课中,让校本科研走进我们每一个数学教师的每一节课中吧!

当今世界,反思意识已成为学术界的重要特征。要使基础教育课程改革向纵深推进,就必须提高教师的素质,尤其是提高教师的反思特质。

开展校本教育科研活动,有利于学校引导教师理性反思教学,唤醒教师的自觉能动性和创造性,促使教师不断追求教育实践的合理性,让教师学会“教”,学生学会“学”。

4.如何进行初中几何证明题的教学 篇四

几何证明题入门难,证明题难做,已经成为许多同学的共识…今天小瑞老师和同学们分享的是几何证明题思路及常用的原理,希望对大家有帮助!

证明题的思路

很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。

对于证明题,有三种思考方式:

1.正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

2.逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。

同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。

例如: 可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去…

这样我们就找到了解题的思路,然后把过程正着写出来就可以了。

3.正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。

初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。

给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

证明题要用到哪些原理

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键…

下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题… 证明两线段相等

1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

证明两个角相等

1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等。

证明两条直线互相垂直

1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

10.在圆中平分弦(或弧)的直径垂直于弦。

11.利用半圆上的圆周角是直角。

证明两直线平行

1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

证明线段的和差倍分

1.作两条线段的和,证明与第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。

3.延长短线段为其二倍,再证明它与较长的线段相等。

4.取长线段的中点,再证其一半等于短线段。

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

证明角的和差倍分 1.与证明线段的和、差、倍、分思路相同。

2.利用角平分线的定义。

3.三角形的一个外角等于和它不相邻的两个内角的和。

证明线段不等

1.同一三角形中,大角对大边。

2.垂线段最短。

3.三角形两边之和大于第三边,两边之差小于第三边。

4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。

5.同圆或等圆中,弧大弦大,弦心距小。

6.全量大于它的任何一部分。

证明两角的不等 1.同一三角形中,大边对大角。

2.三角形的外角大于和它不相邻的任一内角。

3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。

4.同圆或等圆中,弧大则圆周角、圆心角大。

5.全量大于它的任何一部分。

证明比例式或等积式

1.利用相似三角形对应线段成比例。

2.利用内外角平分线定理。

3.平行线截线段成比例。

4.直角三角形中的比例中项定理即射影定理。

5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。6.利用比利式或等积式化得。

证明四点共圆

1.对角互补的四边形的顶点共圆。

2.外角等于内对角的四边形内接于圆。

3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。

4.同斜边的直角三角形的顶点共圆。

5.如何进行初中几何证明题的教学 篇五

经典题(一)

1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.

求证:CD=GF.(初二)

A

F

G

C

E

B

O

D2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.

A

P

C

D

B

求证:△PBC是正三角形.(初二)

D2

C2

B2

A2

D1

C1

B1

C

B

D

A

A13、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.

求证:四边形A2B2C2D2是正方形.(初二)

A

N

F

E

C

D

M

B4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.

求证:∠DEN=∠F.

经典题(二)

1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.

·

A

D

H

E

M

C

B

O

(1)求证:AH=2OM;

(2)若∠BAC=600,求证:AH=AO.(初二)

·

G

A

O

D

B

E

C

Q

P

N

M2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.

求证:AP=AQ.(初二)

3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:

·

O

Q

P

B

D

E

C

N

M

·

A

设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.

求证:AP=AQ.(初二)

4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.

P

C

G

F

B

Q

A

D

E

求证:点P到边AB的距离等于AB的一半.(初二)

经典题(三)

1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.

A

F

D

E

C

B

求证:CE=CF.(初二)

2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.

E

D

A

C

B

F

求证:AE=AF.(初二)

3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.

D

F

E

P

C

B

A

求证:PA=PF.(初二)

O

D

B

F

A

E

C

P4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.(初三)

经典题(四)

A

P

C

B1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.

求:∠APB的度数.(初二)

2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.

求证:∠PAB=∠PCB.(初二)

P

A

D

C

B3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)

C

B

D

A4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且

AE=CF.求证:∠DPA=∠DPC.(初二)

F

P

D

E

C

B

A

A

P

C

B

经典难题(五)

1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L<2.

A

C

B

P

D2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.

A

C

B

P

D3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.

E

D

C

B

A4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.

经典题(一)

1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得==,又CO=EO,所以CD=GF得证。

2.如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得

△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150

所以∠DCP=300,从而得出△PBC是正三角形

3.如下图连接BC1和AB1分别找其中点F,E.连接C2F与A2E并延长相交于Q点,连接EB2并延长交C2Q于H点,连接FB2并延长交A2Q于G点,由A2E=A1B1=B1C1=

FB2,EB2=AB=BC=FC1,又∠GFQ+∠Q=900和

∠GEB2+∠Q=900,所以∠GEB2=∠GFQ又∠B2FC2=∠A2EB2,可得△B2FC2≌△A2EB2,所以A2B2=B2C2,又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2,从而可得∠A2B2

C2=900,同理可得其他边垂直且相等,从而得出四边形A2B2C2D2是正方形。

4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。

经典题(二)

1.(1)延长AD到F连BF,做OG⊥AF,又∠F=∠ACB=∠BHD,可得BH=BF,从而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM

(2)连接OB,OC,既得∠BOC=1200,从而可得∠BOM=600,所以可得OB=2OM=AH=AO,得证。

3.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ。

由于,由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE。

又因为PFOA与QGOA四点共圆,可得∠AFC=∠AOP和∠AGE=∠AOQ,∠AOP=∠AOQ,从而可得AP=AQ。

4.过E,C,F点分别作AB所在直线的高EG,CI,FH。可得PQ=。

由△EGA≌△AIC,可得EG=AI,由△BFH≌△CBI,可得FH=BI。

从而可得PQ=

=,从而得证。

经典题(三)

1.顺时针旋转△ADE,到△ABG,连接CG.由于∠ABG=∠ADE=900+450=1350

从而可得B,G,D在一条直线上,可得△AGB≌△CGB。

推出AE=AG=AC=GC,可得△AGC为等边三角形。

∠AGB=300,既得∠EAC=300,从而可得∠A

EC=750。

又∠EFC=∠DFA=450+300=750.可证:CE=CF。

2.连接BD作CH⊥DE,可得四边形CGDH是正方形。

由AC=CE=2GC=2CH,可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,又∠FAE=900+450+150=1500,从而可知道∠F=150,从而得出AE=AF。

3.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形。

令AB=Y,BP=X,CE=Z,可得PC=Y-X。

tan∠BAP=tan∠EPF==,可得YZ=XY-X2+XZ,即Z(Y-X)=X(Y-X),既得X=Z,得出△ABP≌△PEF,得到PA=PF,得证。

经典难题(四)

1.顺时针旋转△ABP

600,连接PQ,则△PBQ是正三角形。

可得△PQC是直角三角形。

所以∠APB=1500。

2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC.可以得出∠ABP=∠ADP=∠AEP,可得:

AEBP共圆(一边所对两角相等)。

可得∠BAP=∠BEP=∠BCP,得证。

3.在BD取一点E,使∠BCE=∠ACD,既得△BEC∽△ADC,可得:

=,即AD•BC=BE•AC,①

又∠ACB=∠DCE,可得△ABC∽△DEC,既得

=,即AB•CD=DE•AC,②

由①+②可得:

AB•CD+AD•BC=AC(BE+DE)=

AC·BD,得证。

4.过D作AQ⊥AE,AG⊥CF,由==,可得:

=,由AE=FC。

可得DQ=DG,可得∠DPA=∠DPC(角平分线逆定理)。

经典题(五)

1.(1)顺时针旋转△BPC

600,可得△PBE为等边三角形。

既得PA+PB+PC=AP++PE+EF要使最小只要AP,PE,EF在一条直线上,即如下图:可得最小L=;

(2)过P点作BC的平行线交AB,AC与点D,F。

由于∠APD>∠ATP=∠ADP,推出AD>AP

又BP+DP>BP

和PF+FC>PC

又DF=AF

由①②③④可得:最大L<

2;

由(1)和(2)既得:≤L<2。

2.顺时针旋转△BPC

600,可得△PBE为等边三角形。

既得PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一条直线上,即如下图:可得最小PA+PB+PC=AF。

既得AF=

=

=

=

=

=。

3.顺时针旋转△ABP

900,可得如下图:

既得正方形边长L

=

=。

4.在AB上找一点F,使∠BCF=600,连接EF,DG,既得△BGC为等边三角形,可得∠DCF=100,∠FCE=200,推出△ABE≌△ACF,得到BE=CF,FG=GE。

推出

△FGE为等边三角形,可得∠AFE=800,既得:∠DFG=400

又BD=BC=BG,既得∠BGD=800,既得∠DGF=400

6.如何理解高中几何证明 篇六

与以往高中数学课程中的立体几何内容相比,《标准》中立体几何内容的变化主要表现在几何定位的变化,几何内容处理方式的变化以及几何内容的分层设计等方面。《标准》中的立体几何定位于培养和发展学生把握图形的能力、空间想象与几何直觉的能力、逻辑推理能力等。在处理方式上,与以往点、线、面、体,从局部到整体展开几何内容的方式不同,《标准》按照整体到局部的方式展开几何内容,并突出直观感知、操作确认、思辨论证、度量计算等探索研究几何的过程。立体几何内容分层设计,在必修课程中,主要是通过直观感知、操作确认,获得几何图形的性质,并通过简单的推理发现、论证一些几何性质。对于进一步的论证与度量则放在选修系列2中用向量处理。在处理立体几何的证明问题时,老师应从以下几个方面把握。

(1)立体几何中的证明始终是高中数学中的难点。

标准对立体几何内容是分层设计的。因此,立体几何中的证明也要分层,不能一步到位。

在立体几何初步中,首先,以长方体作为载体,给出了点、直线、平面的位置关系,以及一些基本的概念。通过直观感知、操作确认,归纳出了四个判定定理和四个性质定理,还有一个从平面拓展到空间的角相等或互补的判定定理。本部分明确给出的定理共有九个。四个判定定理:

① 若平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

② 如果一个平面内有两条相交直线都平行于一个平面,那么这两个平面平行。

③ 如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。

④ 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

从平面拓展到空间的角相等或互补的判定定理:

空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补。

四个性质定理:

① 一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行。

② 两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行。

③ 垂直于同一平面的两条直线平行。

④ 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

标准只要求对于四个性质定理用综合几何的方法加以证明。对于其余的定理,在选修2的“空间向量与立体几何”中利用向量的方法予以证明。

(2)立体几何初步这部分,我们希望能使学生初步感受综合几何的证明。在处理证明时,要充分发挥几何直观的作用,而不是形式上的推导。例如,平行于同一平面的二直线平行的证明方法,有的老师就是采用了一种很直观的证明方法。

直线a、b垂直于同一平面,只有两种情况,直线a、b共面或者异面。如果是共面则直接转化为平面几何的问题,结论易证。如果是异面,则过B点作直线c与直线a平行,可得,直线c与直线a共面,且直线c也垂直于平面。因为直线b和直线c相交于点B,所以直线b和直线c也在同一个平面内。又因为过B点有两条直线b和c都垂直于平面,这与公理矛盾。所以原命题得证。

反证法使学生比较难理解的方法,老师可以通过上述这种直观的方法,来帮助学生理解这个定理的证明。

(3)要把握好立体几何初步中证明的“度”。

上一篇:五年级写景作文400字 八月桂花香下一篇:医院禁烟管理制度