六年级数学分数乘除法(10篇)
1.六年级数学分数乘除法 篇一
教学内容
一个数除以分数
教材第31、第32页的内容。
教学目标
1、结合具体情境,理解整数除以分数和分数除以分数的算理,掌握一个数除以分数的计算方法。
2、能够熟练、正确地进行计算。
3、渗透转化的数学思想。
重点难点
重点:理解一个数除以分数的.算理,掌握计算方法。
难点:能够熟练、正确地进行分数除法的计算。
教具学具
练习题投影片。
教学过程
一导入
1、口算。
3、解答应用题。
投影出示:小明步行2小时走了6千米。他每小时走多少千米?
学生计算后,说出这道题中的数量关系。
板书:路程÷时间=速度。
二教学实施
揭示课题:我们已经学过了分数除以整数的计算方法,如果除数是分数该怎样计算呢?今天,我们就来研究一个数除以分数的计算方法。
板书课题:一个数除以分数
1、出示例2。
(1)学生读题,明确题意。
提问:这道题应该怎样解决呢?(算出每人的速度各是多少,再比较大小)
(2)列式。
提问:怎样求小明的速度和小红的速度?
引导学生利用“速度=路程÷时间”这个关系式列式。
了2千米”。
提问:1小时行多少千米,在图上怎样表示?
小时行了多少千米)
4、归纳方法。
老师:观察比较例2的两个算式,你发现了什么?你会用自己的方式描述你发现的规律吗?
学生自由发言。
板书:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
5、练习。
(1)完成教材第32页“做一做”的第1、2、3题。
(2)完成教材第34页练习七的第1~8题。
学生独立完成,集体订正。
三课堂作业新设计
1、在○里填上运算符号,在里填上适当的数。
四思维训练参考答案
思维训练
练习七
板书设计
3、分数除以分数
4、甲数除以乙数(0除外),等于甲数乘乙数的倒数。
当一个数(0除外)除以小于1的数,商大于被除数;当除以大于1的数,商小于被
除数;当除数为1时,商等于被除数。另外,0除以任何数都为0。
备课参考教材与学情分析
本节课根据已有的数量关系,引出一个数除以分数的计算。在分数除以整数的基础上,例3研究一个数除以分数的计算,这是一个难点。教材以比较小明、小红两位同学“谁走得快些”,引导学生根据“路程÷时间=速度”这个数量关系列出两个除法算式。算式列出后,请同学们估一估结果是多少,是比被除数2大还是小,然后想办法进行验证,这个环节的设计既激发学生的探究欲望,又为发现被除数和商之间的关系留下悬念。另外,例2的设计体现了一种转化的思想。将“图”与“式”相对照进行解释、分析、说理,使学生在讲述算理的过程中,感受到用“数形结合”的思想解决问题的便捷性、科学性。
课堂设计说明
1、借助线段图引导学生一点点进行分析、说理,学生很自然就理解到要乘除数的倒数。因为有线段图辅助,学生理解起来很容易,自然而然地就明白了算理。
2、渗透思想,明确结构。
每一个数学知识都不是孤立存在的,计算教学更是如此,每个新内容都是在已学知识的基础上的进一步延伸,都是在已有知识基础上生长出来的。所以每次新课内容都不能把它看作一个孤立的内容。
2.六年级数学分数乘除法 篇二
一、利用生活实际, 引入分数乘除法情境教学
解答分数乘除法应用题最基本的是理顺题目意思, 找准计算方法, 但很多学生容易混淆乘法、除法和乘除混合运算, 使得计算题变复杂化。在实际教学过程中, 教师可以利用情境教学法, 将应用题与生活实例相结合, 创设学生有兴趣的教学情景。如在学习“分数乘法”应用题时, 教师可以创设以下情境“:周末, 小明跟妈妈一起逛街, 妈妈给了小明10 块零用钱, 小明买了一个玩具后, 还剩下1/2, 请问, 小明的玩具花了多少钱?”, 通过设立类似的情境, 让学生将乘法应用题跟自己生活中常发生的事情联系在一起, 当遇到此类题目时, 容易产生联想。在课堂中, 可以将学生分成平均小组展开相关讨论, 找到解题思路。
在创设情境过程中, 教师应注意以下两个部分:基于情境类型来看, 可以灵活变动情境教学的出现方式, 吸引学生注意力, 激发学生探索欲望和好奇心, 更好地帮助学生感知抽象知识;基于课堂气氛来看, 情境教学有利于营造良好气氛, 能让学生全身心参与到课堂过程。
二、变换多种形式, 灵活讲解分数乘除法题目
分数乘除法应用题的出题方式较多, 但万变不离其宗, 教师应抓住应用题的中心思想, 灵活变动其形式, 让学生掌握“举一反三”、“一题多解”的解题技巧, 帮助学生理解基础知识, 抓住题目的核心意思, 找准题目中单位“1”的代表量, 写出数量关系式。以“3 是9 的几分之几?”为例, 可以变换为以下形式:
变式1:9 的1/3 是多少?答:3 。
变式2:已知x的1/3 是3, 请问x是多少? 答: 9 。
分析:通过这两种形式, 让学生准确掌握分数乘法和除法之间的关系, 在找出题目已知量和未知量的情况下, 确定好使用乘法或者除法。
在这个过程中, 教师应注意题目难度的变化, 选择好典型例题, 综合考虑学生认知特点、题目特征等方面的因素, 深入了解学生知识疑难点, 仔细观察每个学生的情况, 进行适当的变式练习, 灵活变动讲解方法, 提升学生课堂参与率。如苏教版中例题“:学校准备在校外修建一条长4400 的马拉松跑道, 已经修了2400 米, 请问, 再修多少米才能正好修完这条跑道的3/4?”
分析:教师首先可以再黑板或大屏幕上画出一条跑道并标上4400 米, 帮助学生找到单位“1”, 再引导学生正确的计算方法。
解答:4400×3/4=3300 (米)
3300-2400=900 (米)
三、重视思维教学, 培养学生分数乘除法思路
分数乘除法应用题应该重视思维教学, 抓住学生思考方向, 适时引导学生找到解题突破口, 把握住应用题本质[4]。如:“在秋天农民伯伯收获了粮食, 分三周卖完, 第一周被买走全部的1/3 吨, 第二周买走1/5 吨, 还剩下全部粮食的1/4吨没被买走, 请问农民伯伯收获了多少吨粮食?”
分析:在这个例题中主要让学生分清楚“被买走全部的1/3”、“买走1/2”和“剩下全部粮食的1/4”的区别, 第一个是全部单位“1”中的“1/3”, 而“1/2”是具体数据, “剩下全部粮食的1/4”是全部单位中的剩下的“1/4”。
解答:1-1/3-1/4=5/12
1/2÷5/12=6/5 (吨)
在这个过程中, 教师重点培养学生解题思维, 帮助学生理顺乘法、除法和混算之间的转换。将乘除法应用题教学过程简化, 使用简单的描述语言, 培养学生分数乘除法思路。
四、实施因材施教, 创新分数乘除法教学方式
因材施教是分数乘除法中重要教学方式, 受到基础知识情况、兴趣情况等方面的影响, 学生在解答应用题时, 思维方式、切入点都会有所不同, 因此教师必须根据学生的差异性, 创新分数乘除法教学方式。如使用阶梯制教学方式:
第一阶梯:小明有36 颗糖果, 小红的糖果是小明的3/4, 请问小红有多少糖果?
第二阶梯:小明有36 颗糖果, 小红的糖果是小明的3/4, 小白的糖果是小红的2/5, 请问小白有多少糖果?
第三阶梯:小明有36 颗糖果, 小红吃了1/4, 小明自己吃了1/3, 请问还剩下多少?
通过递进的方式, 教师可以全面掌握学生情况, 了解学生真正困难的地方, 建立和谐的师生关系, 提升分数乘除法应用题讲解有效性。
四、结束语
综上所述, 研究小学数学分数乘除法应用题的具体教学方式。创新应用题教学课堂, 需要教师加强自身修养, 不断拓宽教学思路, 利用学生好奇心, 通过创立新颖的分数乘除法应用题教学情景, 帮助学生克服心理困难, 构建解答应用题的思维, 找到理论知识和实际生活的沟通桥梁。注重课堂灵活教学方式, 多变换应用题类型, 训练学生举一反三的学习能力, 培养学生良好学习习惯, 尊重学生个体独立性, 以发展的眼光看待学生, 以激励、表扬的方式引导学生理解分数乘除法应用题, 促进学生全面健康发展。
参考文献
[1]孙开飞.用“整体思想”设计小学数学教学——《稍复杂的分数乘除实际问题》教学思考[J].教学与管理, 2015.17:41-42
[2]钱金戈, 周丽叶.谈在小学数学教学中发展求异思维培养学生创新能力[J].中国培训, 2015, 18:247.
[3]刘娟.体验式教学对高师生数学学习效果的实验研究[J].佳木斯职业学院学报, 2015.12:273-274
[4]杨艺辉.创设实践机会引领主动学习——谈小学生数学自主学习能力的培养[J].福建教育学院学报, 2015.11:61-62
3.六年级数学分数乘除法 篇三
1、五年级运砖150块,六年级运的是五年级的.2/5,六年级运砖多少块?
2、六年级运砖15块,六年级运的是五年级的2/5,五年级运砖多少块?
3、五年级运砖150块,六年级比五年级多运2/5,六年级比五年级多运多少块?
4、五年级运砖150块,六年级比五年级多运2/5,六年级运了多少块砖?
5、五年级运砖150块,五年级比六年级多运2/5,六年级运砖多少块?
6、五年级植树145颗,六年级植树210颗,五年级是六年级的几分之几?
7、五年级植树145颗,六年级植树210颗,六年级比五年级多几分之几?
8、五年级植树145颗,六年级植树210颗,五年级比六年级少几分之几?
9、五年级植树145颗,六年级比五年级少植树20颗,六年级比五年级少几分之几?
10、五年级植树145颗,六年级比五年级少植树20颗,五年级比六年级多几分之几?
11、五年级植树145颗,五年级比六年级多植树20颗,五年级比六年级多几分之几?
12、五年级植树145颗,五年级比六年级多植树20颗,六年级比五年级少几分之几?
4.六年级数学分数乘除法 篇四
第一类、求一个数的几分之几是多少。已知单位“1”,用乘法。
“是”“比”“占”后面是单位1。
1,已知甲数是乙数的2/5,乙数是25,求甲数是多少?
2,某校有男生240人,女生是男生的3/8,女生有多少人?
第二类、已知一个数的几分之几是A,求这个数是多少。未知单位“1”,用除法。
1,甲数是乙数的3/7,甲数是15,求乙是多少?
2,果园里有桃树120棵,桃树的棵数是梨树的4/9,果园里有桃树多少棵?
第三类、两步乘除
此类型的题是第一第二类题目综合运用,一般要经过两步才能得到答案。
例:小明有图书48本,小芳的图书是小明的3/8,小利的图书是小芳的2/9,小利有图书多少本?
第四类、已知单位“1”,求比单位“1”多几分之几或者少几分之几的数是多少。(乘法)
单位1的量 ×(1+几分之几)=所求量 单位1的量 ×(1-几分之几)=所求量
1、商店运来一批水果,其中苹果有180kg,梨比苹果多1/6,苹果多少千克?
2、某校有男生240人,女生比男生少1/4,女生有多少人?
第五类、已知比单位“1”多几分之几或者少几分之几的量是A,求单位“1”的量。
方法1:甲比乙多几分之几,已知甲,求乙。乙=甲÷(1+几分之几)甲比乙少几分之几,已知甲,求乙。乙=甲÷(1-几分之几)方法2:将单位1的量设为X,根据等量关系式列方程。
1.商店运来一批水果,其中梨有20kg, 梨比苹果多1/4,苹果多少千克? 2.林场有180棵槐树,槐树的棵数比杨树多2/3,林场有多少棵杨树?
3.某校有女生200人,女生比男生少3/8,男生有多少人?
第六类、分数的和倍、差倍问题
已知两个数的和(或差)及这两个数的倍数关系,求这两个数。方法
一、和倍问题:单位1=和÷(1+倍数)另一个数=和-单位1 差倍问题:单位1=和÷(1-倍数)另一个数=差 + 单位1 方法
二、列方程,设单位1的量为x
1、某单位四、五月份一共用电1680千瓦时,已知四月份的用电量是五月份的3/5。五月份用电多少千瓦时?
2、小利买了一只圆珠笔和一只钢笔,共用去了12元,圆珠笔的单价是钢笔的1/3。圆珠笔和钢笔的单价各是多少元?
工程问题
工程问题的特点: 一般工程问题都是,已知独做的工作时间(或合作的工作时 间),求合作的时间(或独做的工作时间).将工作总量看做整单位1.数量关系:工作效率×工作时间=工作总量
1.一个蓄水池装有两个进水管,单开甲管10分钟可以将水池注满,单开乙管12分钟可以将水池注满。如果同时打开两管,多少分钟可以将水池注满?
2.一项工程甲队独做要40天完成,甲队工效是乙队的1/4,若两队合做,完成这项工程要多少天?
3.修一条公路,单独修甲要8天完成,乙要10天完成,甲乙合做4天后,还余下72米没有修,这条公路全长多少米?
5.六年级数学分数乘除法 篇五
单元教材分析:
本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。主要内容包括分数除法的意义和计算;解决问题;比的意义与基本性质,求比值一化简比,以及比的应用。通过本单元的学习,学生可以比较系统大掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。
单元教学目标:
1、理解并掌握分数除法的计算方法,回进行分数除法计算。
2、回解答已知一个数的几分之几是多少求这个数的实际问题。
3、理解不的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化
简比和求比值
4、能运用比的知识解决有关的实际问题。
学情分析:
本单元学习之前,学生基本上完成了分数加、减以及分数乘法的学习。学生可以根据整数除法的意
义理解分数除法的意义。
单元课时安排:
1、分数除法..............5课时
2、解决问题..............3 课时
3、比和比的应用.......4 课时
4、整理和复习..........2 课时
一 分数除法
第一课时 分数除法的意义和整数除以分数
教学目标:
知识目标:通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数
除以整数的计算法则。能力目标:动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
情感目标:培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教学过程:
一、复习
1、复习整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)
2、口算下面各题(题略)
二、新授
1、教学例1(1)出示插图及乘法应用题,学生列式计算:100×3=300(克)(2)学生把这道乘法应用题改编成两道除法应用题,并解答。A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)(3)将100克化成 千克,300克化成 千克,得出三道分数乘、除法算式。
1/10×3=3/10(千克)3/10÷3=1/10(千克)3/10÷1/10=3(盒)
(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。
2、巩固分数除法意义的练习:P28“做一做”
3、教学例2(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的4/5平均分成2份,并通过操作得
出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的4/5平均分成2份,每份是这张纸的2/5。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
A、4/5÷2=(4÷2)/5 =2/5,每份就是2个1/5。B、4/5÷2=4/5 ×1/2 =2/5,每份就是单位1 的2/5。(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对
比,让学生发现第二种方法适用的范围更广。
4、引导学生观察 4/5÷2和4/5 ÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等
于乘上这个整数的倒数。
三、练习
8/15÷4 9/10÷3 5/7÷2 7/12÷7 5/21÷10 6/35÷6
四、总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
第二课时 一个数除以分数
教学目标:
知识目标:在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。
能力目标:培养学生的语言表达能力和抽象概括能力。
情感目标:培养学生良好的计算习惯。
教学重点:
总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。
教学难点:
利用法则正确、迅速地进行计算,并能解决一些实际问题。
教学过程:
一、复习
1、列式,说清数量关系
小明2小时走了6 km,平均每小时走多少千米?(速度=路程÷时间)
2、直接写出得数(题略)
二、新授
1、默读例3,理解题意,列出算式:2÷ 2/3 5/6÷5/12
2、探索整数除以分数的计算方法
(1)2÷2/3 如何计算?引导学生结合线段图进行理解。(2)先画一条线段表示1小时走的路程,怎么样表示2/3小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是2/3小时走的路程)
(3)引导学生讨论交流:已知2/3小时走了2 km,要求1小时走了多少千米?可以先算什么,再算
什么?
(4)根据学生的回答把线段图补充完整,并板书出过程。
先求2/3小时走了多少千米,也就是求2个1/2,算式:2×1/2
再求3个1/3 小时走了多少千米,算式:2×1/2 ×3(1)综合整个计算过程:2÷2/3 =2×1/2 ×3=2×3/2
2、小结出计算法则:从上面这个推算过程,我们发现——整数除以,分数等于用整数乘这个分数的倒数。
3、计算5/6 ÷5/12,探索分数除以分数的计算方法
(1)学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。
5/6÷5/12 = 5/6× 12/5=2(km)(2)学生用自己的方法来验证结果是否正确。
4、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。
三、练习
1、P31“做一做”的第1、2题。
2、练习八第2、4题。
教学反思:
第三课时 分数除法的练习
练习内容
分数除法计算(课本第33页第6~9题)
练习目标
1、使学生熟练掌握分数除法的计算方法,能正确的进行计算,并能解决有关的简单问题。
2、能根据除数的特征,判断除法算式中商与被除数的大小关系。
教学过程
一、基础练习
1、填一填,说一说。
()/()÷()/()=()/()
5/8×1/3=5/24
()/()÷()/()=()/()
过程要求:(1)根据题意填写算式;(2)说一说分数除法与乘法的关系。
2、计算。
2/7÷2/3 1/3÷5/4 5/8÷4 20÷2/3 过程要求:(1)学生独立计算;(2)说一说是怎么算的;(3)用一句话归纳分数除法计算法则。
二、专项练习完成课文练习八第6题。
1、不用计算,判断各式的商与被除数的大小关系。
2、与同伴交流思维过程和结果。
3、汇报交流情况。
学生有可能将除法算式转化为乘法算式,然后根据算式的含义进行判断。
如:6/7÷3=6/7×1/3 6/7的1/3,表示把6/7平均分成3份,只取其中1份,结果一定小于6/7。
教师按照学生汇报的结果,进行归类。
商大于被除数的: 商小于被除数的:
4、引导发现规律。比较两边的算式,有什么发现? 学生通过观察、思考,并和同伴交流后,得出自己的发现规律。
除以小于1(0除外)的数时,商大于被除数;
除以大于1的数时,商小于被除数。
三、巩固练习完成练习八第7~9题。
1、第7题 学生根据题意列出算式,并计算。
2、第8题 认真审题,说一说题中的数量关系,列式计算。
3、第9题 认真审题,说一说题中的数量关系,并和第8题比较。
“半秒”怎么表示?“1分钟”怎么表示?
四、作业 选用课时作业
第四课时 分数混合运算
教学目标:
知识目标:通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地
进行计算。
能力目标:通过练习,培养学生的计算能力及初步的逻辑思维能力。通过观察、类推,使学生进一步理解整数四则混合运算的运算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便
运算。
情感目标:通过练习,培养学生观察、类推的思维能力和灵活计算的能力。
教学重点:确定运算顺序再进行计算。教学难点:明确混合运算的顺序。
教学过程:
一、复习
1、复习整数混合运算的运算顺序
(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法
又有乘除法,应该先算乘除法,后算加减法。
(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算
中括号外面的。
2、说出下面各题的运算顺序。
(1)428+63÷9―17×
5(2)1.8+1.5÷4―3×0.4(3)3.2÷[(1.6+0.7)×2.5](4)[7+(5.78—3.12)]×(41.2―39)
二、新授
1、教学例4(1)学生读题,明确已知条件及问题,尝试说说自己的解题思路。(2)根据学生的回答,归纳出两种思路:
A、可以从条件出发思考,根据彩带长8m,每朵花用2/3m 彩带,可以先算出一共做了多少
朵花。
B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。(3)学生独立列出综合算式后,让他们说说运算顺序,再进行计算。
2、巩固练习:P34“做一做”
(1)学生独立完成第一题,然后全班校对。引导学生比较计算分数连除或连乘除的两种算法,通过比较,使学生发现统一约分后再计算比分步计算简便。
(2)学生读题理解题意,指名说说解题思路,再让学生独立列式计算。
三、练习
1、练习九第1题:前三题提倡学生选择统一成乘法的方法进行计算。
2、练习九第2-4题
(1)第2题:可以先求每层有多高,再求楼的楼板到地面的高度,但要注意引导学生意识到6楼楼
板到地面的高度实际上只有5层楼的高度。
(2)第3题可引导学生形成两种思路:A、先求每小时录入了这篇论文的几分之几,再求8小时可录入这篇论文的几分之几;B、先求8小时是3小时的几倍,再求8小时录入几分之几。(3)第4题同样有两种方法:A、可以先求一共能装多少袋,列式:240÷ 1/4× 3/4;B、可以先求装完的3/4 有多少千克,综合算式是240×3/4 ÷1/4。
四、布置作业
练习九第5-9题。教学反思:
第五课时 分数混合运算的练习
练习内容
分数除法计算及四则混合运算(课本第36页第5~10题)
练习目标
1、使学生较熟练的掌握分数除法的计算方法,熟练掌握分数四则混合运算顺序,并能正确地进行计
算。
2、能综合运用所学知识解决有关实际问题。
3、对不懂的地方有提出疑问的意识,发现错误能及时改正。
教学过程
一、基础练习
1、口算。
4/7÷2 9/10÷1/5 15÷1/3 3/4×2/9 1/2-1/4 1/2÷1/4 1/2×1/4 1/4÷1/2 过程要求:(1)用口算卡依次出示各算式;(2)学生完整表达算式,计算过程及结果;(3)说一
说分数四则运算的计算方法。
2、计算下列各题。
4/13÷2+1 5/63/7÷3/5 0.6÷3/4×5/12 过程要求:(1)学生独立计算;(2)汇报计算方法。
3、简便计算。3/8+1/3÷5/9+2/5 过程要求:(1)学生独立计算,然后与同伴交流;(2)怎么计算简便?学生汇报,集体评价。
二、巩固练习
完成课文练习九第5~10题。
1、第5题(1)学生独立计算;(2)汇报计算方法。如:2/9÷0.375÷6/7 式中含有小数,要怎么办?
=2/9÷3/8÷6/7 连除的式子,要怎么算?
=2/9×8/3×7/6 能约分的要先约分。=56/81
2、第6题(1)学生独立解方程,然后与同伴交流;(2)选讲其中两题。
3、第7、8、9题。(1)认真读题,理解题意;(2)说一说解题思路;(3)列式计算,集体订正。
4、第10题
(1)按题目要求计算出每一步结果。(2)说一说你发现了什么。(3)想一想:这是为什么?
三、作业
选用课时作业。
二 解决问题
第六课时 已知一个数的几分之几是多少求这个数的应用题
教学目标:
知识目标:使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练
地列方程解答这类应用题。
能力目标:进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应
用题的能力。
情感目标:培养学生良好的学习习惯。
教学重点:
弄清单位“1”的量,会分析题中的数量关系。
教学、难点:
分数除法应用题的特点及解题思路和解题方法。
教学过程:
一、复习
1、出示复习题:
根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5,六年级学生小明的体重为35千克,他体内的水分有多少千克?
2、让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。
3、选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。
小明的体重× 4/5 =体内水分的重量
4、指名口头列式计算。
二、新授
1、教学例1的第一个问题:小明的体重是多少千克?
(1)读题、理解题意,并画出线段图来表示题意:
(2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。
小明的体重× 4/5 =体内水分的重量
(3)这道题与复习题相比有什么相同点和不同点?(相同点是它们的数量关系是一样的;不同点是
已知条件和问题变了)
(4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为χ,列方程来解决问题)
(5)启发学生应用算术解来解答应用题。(根据数量关系式:小明的体重×4/5 =体内水分的重量,反过来,体内水分的重量÷4/5 =小明的体重)
2、解决第二个问题:小明的体重是爸爸的7/15,爸爸的体重是多少千克?
(1)启发学生找到分率句,确定单位“1”。
(2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。
(3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(出示线段图)
爸爸: 小明:
爸爸的体重×7/15 =小明的体重
①方程解:解:设爸爸的体重是χ千克。②算术解: 35÷7/15 =75(千克)
7/15χ=35 χ=35÷7/15
χ=75
3、巩固练习:P38“做一做”(学生先独立审题完成,然后全班再一起分析题意、评讲)
三、练习
1、练习十第1—3题。(先分析数量关系式,然后确定单位“1”,最后再进行解答。第二题注意引导
学生发现250ml的鲜牛奶是多余条件)
2、练习十第6题(引导学生先求出单位“1”——爸爸妈妈两人的工资和1500+1000,再根据数量关
系式进行计算)
四、总结 这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。
教学反思:
第七课时 练习课
练习内容
两步计算解决问题(课本第40页练习十第5~9题)
练习目标
1、使学生能用除法计算熟练解决“已知一个数的几分之几是多少,求这个数”的问题。
2、能综合运用所学知识解决有关的实际问题。
教学过程
一、基础练习完成课本练习十第5题。
过程要求:(1)学生独立计算,教师巡视,发现问题及时纠正;
(2)选取几道计算题,让学生上台演板。
(3)集体评价。
(4)小结分数四则混合运算的计算方法。
二、专项练习
1、只列式不计算。
(1)男生30人,是女生人数的2倍,女生有多少人?(2)男生30人,是女生人数的1.5倍,女生有多少人?
(3)男生30人,是女生人数的1/2,女生有多少人?(4)男生30人,是女生人数的2/3,女生有多少人? 过程要求:依次出示题目,学生根据题意列出除法算式;
说一说有什么体会。
通过交流,使学生明白这类问题的特征和解答方法。
教师结合板书帮助分析。
一个数×几/几=具体量 → 单位“1”的量×几/几=具体量
→ 单位“1”的量=具体量÷几/几
2、即时练习。
学校田径队有女队员20人,是男队员人数的4/5,男队员有多少人?
过程要求:(1)学生尝试用除法解答。(2)引导提问:4/5把什么看作单位“1”?
如何求单位“1”的量?
具体量是多少,占单位“1”的几分之几?
怎样列式计算?
三、巩固练习
完成课本练习十第6~9题。
1、第6题: 3/5把什么看作单位“1”?
求每月开支多少元,就是求什么?
列式计算。
2、第7题: 4/5把什么看作单位“1”?
单位“1”的量已知吗?用什么方法解答?
求出的单位“1”是什么时候的产量?求全年产量应该怎么办?
3、第8题: 说一说题中的数量关系?
你用什么方法解答,怎样解答比较简单?
4、第9题: 认真审题,弄清题意;这里的1/
6、1/
3、1/2都是以什么数看作单位“1”?
说一说你的解答思路。再计算,把结果填在表上。
四、作业 选用课时作业。
第八课时 稍复杂的分数除法应用题
教学目标:
知识目标:通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些
简单的实际问题。
能力目标:通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。
情感目标:培养学生良好的学习习惯。
教学重点:
弄清单位“1”的量,会分析题中的数量关系。
教学难点:分析题中的数量关系。
教学过程:
一、复习
小红家买来一袋大米,重40千克,吃了5/8,还剩多少千克?
1、指定一学生口述题目的条件和问题,其他学生画出线段图。
2、学生独立解答。
3、集体订正。提问学生说一说两种方法解题的过程。
4、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新授
1、教学补充例题:小红家买来一袋大米,吃了5/8,还剩15千克。买来大米多少千克?
(1)吃了5/8是什么意思?应该把哪个数量看作单位“1”?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量
(4)指名列出方程。解:设买来大米X千克。
x-5/8x=15
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多1/4是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数
占航模组的
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数(4)根据等量关系式解答问题。解:设航模小组有χ人。
χ+1/4χ=25(1+1/4)χ=25
χ=25÷5/4 χ=20
三、小结
1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。
教学反思:
三 比和比的应用
第九课时 比的意义
教学目标:
知识目标:使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。能力目标:引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能
力。
情感目标:培养学生良好的学习习惯。教学重点:比与除法、分数的关系
教学难点:理解比的意义
教学过程:
一、复习。
1.某车间有男工人5人,女工人8人,男工人数是女工人数的几分之几?女工人数是男工人数的几
倍?
2.分数与除法有什么关系?
二、新授。1. 教学比的意义。(1)教学同类量的比。
A、2003年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。杨利伟展示的两面旗都是长15cm,宽10cm,怎样用算式表示它们的长和宽的关系?(引导学生说出:可以求长是宽的几倍? 或求红旗的宽
是长的几分之几?)
B、这两个关系都是用什么方法来求的?(除法)
C、比较这两个数量之间的关系,除了除法,还有一种表示方法,即“比”。可以说成是:长和宽的比
是15比10,或宽和长的比是10比15。
D、不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。
(2)教学不同类量的比。
A、“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?(路程÷时间=速度,算式:
42252÷90)
B、对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,这里的42252千米与
90小时是两个不同类的量。
(3)归纳比的意义。
A、通过上面两个例子,你认为什么是比?(学生试说,教师总结:两个数相除,又叫做两个数的比。)
B、练习:判断,下面数量间的关系是表示两个数的比吗?
①甲数是9,乙数是7,甲数和乙数的比是9比7;乙数和甲数的比是7比9。
② 拖拉机45分耕了2公顷地,工作总量和工作时间的比是2比45。
③ 足球比赛,甲队和乙队的比分是3比2。
2.教学比的写法、比的各部分名称。
比的写法。
15比10 记作15∶10 10比15 记作10∶15
42252比90记作42252∶ 90
比的各部分名称。
A、学生自学课本,小组讨论概括知识点。
B、小组汇报并举例:
“:”是比号,读作“比”。比号前面的数,叫做比的前项,比号后面的数叫做比的后项。比的前项除以
后项所得的商,叫做比值。例如: ∶ 2=3÷2=3/2
3.教学比与除法、分数的关系。
(1)比与除法的关系
A、观察上面的式子,比的前项相当于什么?(被除数),后项相当于什么?(除数)比值相当于什
么?(商)。
B、比的后项能不能是零?为什么?(比的后项不能是零。因为比的后项相当于除数,除数不能是0,所以比的后项也不能是0)
C、比值通常用分数表示,也可以用小数或整数表示。
(2)比与分数的关系。
A、根据分数与除法的关系,可以推知比与分数有什么关系?(引导学生回答:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。)
a)两个数的比也可以写成分数的形式。例如15∶10,可写成,读作15比10。
结合上面的讲解,板书下表:
除法 被除数 ÷(除号)除数 商
分数 分子 -(分数线)分母 分数值
比 前项 ∶(比号)后项 比值
三、巩固练习。1.完成课本“做一做”。2.练习十一第1、2题。
四、布置作业。1.课本练习十一的第3题。
2.补充:求出比值。
0.375∶0.875 0.25∶ 0.75 2.6∶3.9
教学小记:
学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。
第十课时 比的基本性质
教学目的:
知识目标:通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。
能力目标:通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活
性。
情感目标:通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。
教学重点:理解比的基本性质,掌握化简比的方法
教学难点:化简比与求比值0的不同
教学过程:
一、复习。
1、什么叫做比?比的各部分名称是什么?
2、比与除法和分数有什么关系?
比 前项 :(比号)后项 比值 除法 被除数 ÷(除号)除数 商 分数 分子 -(分数线)分母 分数值
3、除法中的商不变规律是什么?举例:6÷8=(6×2)÷(8×2)=12÷16
4、分数的基本性质是什么?举例: = =
二、新授
1、猜测比的性质:除法有“商不变性质”,分数也有“分数的基本性质”,根据比与除法和分数的关系,同学们猜想看看,比也有这样的一条性质吗?如果有,这条性质的内容是什么?(学生猜测,并相互补充,把这条性质说完整)
2、验证猜测的性质能否成立:学生以四人小组为单位,讨论研究。
6÷8=(6×2)÷(8×2)=12÷16 6:8=(6×2)∶(8×2)=12:16 6:8=(6÷2)∶(8÷2)=3:4 6÷8=(6÷2)÷(8÷2)=3÷4
1、小组派代表说明验证过程,其他同学补充说明。
2、正式得出“比的基本性质”:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫
做比的基本性质。
3、教学例1
(1)出示例题:把下面各比化成最简单的整数比
15∶10 0.75∶2(2)引导学生审题,说说题目提出了几个要求(两个,一是化成整数比,二必须是最简的)
(3)指名学生说出自己化简的方法,全班评判。
三、练习
1、P46“做一做”
2、练习十一第2题(提醒学生第二个长方形,长的那条为“长”,短的那条为“宽”)
四、总结
今天我们学习了什么知识?比的基本性质可以应用在哪些方面?
教学反思:
第十一课时 比的应用
教学目标:
知识目标:结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。能力目标:培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。情感目标:渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。
教学重点:
进一步掌握按比例分配应用题的结构特点和解题思路。
教学难点:
正确分析解答比例分配应用题。
教学过程:
一、复习。
1、我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常
叫按比例分配。
2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,__________?(补充
问题并解答)
二、新授。
1、教学例2。(1)出示例2:
(2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;
浓缩液和水的体积按1∶4进行分配。)
(3)问:“浓缩液和水的体积1∶4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)
(4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)
① 稀释液平均分成的份数:1+4=5 ② 浓缩液的体积:500× 1/5 =100(ml)③ 水的体积: 500× 4/5 =400(ml)
答:稀释液100ml,水400ml。
(5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1∶4(6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)
2、补充练习
(1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47∶45∶48来分配。)
(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)
(4)怎样分别算出各班应种的棵数?引导学生解答: ① 三个班的总人数:47+45+48=140(人)② 一班应栽的棵数: 280× = 94(人)③ 二班应栽的棵数: 280× = 90(人)④ 三班应栽的棵数: 280× = 96(人)答:一班栽树94棵,二班栽树90棵,三班栽树96棵。
(5)学生进行检验。
(6)学生试做“做一做”中的第2题。
三、巩固练习。练习十二的第1、3题。
四、布置作业。
练习十二第2、4、5、6、7题。
教学反思:
第十二课时 比的应用练习
练习内容
比的应用的综合练习(课本第51页的第5~7题,第48页的第7题)。
练习目标 使学生进一步理解掌握按一定的比进行分配的问题结构特征及数量关系,解决有关的问题。
教学过程
一、基础练习
1、填一填。
(1)某班男生人数与女生人数的比是4∶3,男生人数占全班人数的()/(),女生人数占全班
人数的()/()。
(2)修筑一段公路,已修的部分占全长的3/5,未修的部分占全长的()/(),未修的部分与已
修部分的最简单整数比是()/()。
2、一本书,已看的部分与未看的部分的比是3∶2。
(1)根据题意,你能得到哪些数量关系?
学生思考后回答,教师记录。
已看的部分占未看的3/2;未看的部分占已看的2/3;已看的部分占全书的3/5;未看的部分占全书的2/5。(2)解决问题。
如果已看了60页,未看的有多少页? 60×2/3 如果未看的是40页,全书有多少页? 40÷2/5
你还能提出哪些问题?怎样解答? 让学生与同伴互相提问,解答,然后汇报。
二、深化练习
1、例题:一个长方形的周长是84dm,长与宽的比是4∶3,这个长方形的长和宽各是多少dm?
(1)认真审题,弄清题意。(2)说一说你的解答思路。
长与宽的和:842=42
4+3=7 长:42×4/7=24dm 宽:42×3/7=18dm
2、完成课本第5、6题。第5题:(1)认真审题,弄清题意,(2)说一说解答思路:先求出长、宽、高的和,再分别求出长、宽、高各是多少。
(3)怎样求长、宽、高的和?(4)为什么要120÷4?
(5)学生列式解答,指名演板。
第6题:
(1)认真审题,说一说题目的意思,(2)要怎么解决?(3)学生列式计算。
3、思考题。第51页第7题。
(1)认真审题,弄清题意,说一说题中的数量关系的特征。
(2)要怎样解决?(3)列式计算(4)还有其它方法吗? 第48页第7题。
说一说根据两数的比是2∶3,能得到哪些数量关系?
三、作业 选用课时作业。
四 整理和复习
第十三课时 整理复习(1)
复习目标:
使学生进一步掌握本章所学的基本概念和计算法则,提高学生的计算能力和解题能力。
复习重点:分数除法的计算方法,化简比。
复习难点:正确计算分数除法。
复习过程:
一、复习分数除法的意义和计算法则
1、这一章我们学习了分数除法的有关知识.请大家回忆一下分数除法有几种类型?
(1)分数除以整数,例如5/7 ÷5;
(2)一个数除以分数,它又包括整数除以分数,例如20÷4/5 ;和分数除以分数,例如 2/3 ÷ 6/7。
(3)做第52页“整理和复习”的第2题。
2、分数除法的意义
(1)第52页“整理和复习”的第1题:要把这道乘法算式改写成两道除法算式,应该怎么办呢?(引导学生根据乘、除法的关系进行改写,然后让学生将改写的算式填写在书上)
(2)让学生说说是怎样题改写成两道分数除法算式的。
(3)分数除法的意义是什么呢?(使学生明确,分数除法的意义与整数除法的意义相同,都是:已知两个因数的积与其中一个因数,求另一个因数的运算)
3、分数除法的计算法则
(1)分数除以整数应该怎样计算?一个数除以分数应该怎样计算?
(2)引导学生概括出分数除法的统一计算法则:除以一个数(0除外),等于乘这个数的倒数。
(3)完成P52“整理和复习”第2题。
(4)P53练习十三第2题。
二、复习比的意义和基本性质
1、比的意义
(1)什么叫做比?(两个数相除又叫做两个数的比)什么叫做比值?(比的前项除以后项所得的商.)
(2)以“3∶2”为例,让学生分别说出“比号”“前项”和“后项”。
3∶2 =1.5 ┇ ┇ ┇
┇
前 比 后
比
项 号 项 值
(3)比和比值有什么区别和联系呢?(比值是一个数,是比的前项除以比的后项所得的商,它通常用分数表示,也可以用小数表示,有时还是整数。而比所表示的是两个数的关系,如3∶2,虽然也可以写成分数的形式,但仍读作3比2。特别强调比的后项不能为0)
(4)比和除法、分数的联系
除法 被除数 ÷(除号)除数 商 分数 分子 -(分数线)分母 分数值 比 前项 ∶(比号)后项 比值
2、比的基本性质(1)复习概念及化简方法 ①比的基本性质是什么?
②应用比的基本性质,怎样对整数比进行化简?
③不是整数的比应该怎样化简?
(2)学生做P52“整理和复习”第3题(指名学生说说自己是怎样想的)
三、课堂练习
1、练习十三的第1题(先让学生独立完成.订正时,要让学生说出判断正误的理由)
2、做练习十四的第2题.
3、做练习十四的第3题(学生独立完成.教师注意巡视,察看学生所用算法是否简便)
4、做练习十四的第7题.
第十四课时 整理复习(2)
教学目的:
使学生进一步掌握用方程或算术方法解答已知一个数的几分之几是多少求这个数的应用题和稍复杂的分数乘除法应用题,提高学生解答分数应用题的能力.
教学重点:正确解答分数乘除法应用题 教学难点:分数乘除法应用题的联系与区别
教学过程:
一、推理训练
1、男生占全班人数的3/5,女生占全班人数的()。
2、一堆煤,用去了4/7,还剩下()。
3、今年比去年增产 1/8,今年相当于去年的()。
二、对比训练:
1、一步分数应用题
① 张大爷养了200只鹅,500只鸭,鹅的只数与鸭的只数的几分之几? ② 张大爷养了200只鹅,鹅的只数是鸭的只数的2/5,养了多少只鹅? ③ 张大爷养了200只鹅,鸭的只数是鹅的只数的5/2,养了多少只鸭?
(1)比较相同点和不同点
引导学生进行比较,使学生更清楚地认识到,在结构上,这三道应用题都含有同样的数量关系,即:鹅的只数,鸭的只数, 鹅的只数是鸭的几分之几;不同的是已知和未知发生了变化。在解题思路上,都要弄清以谁作标准,正确判定把哪一种数量看作单位“1”;不同的是需要根据已知、未知的变化确定该用什么
方法解答。
(2)比较完后,学生将三道题的解答过程写在练习本上。
2、出示题组:
① 上海到汉口的水路长1125千米,一艘轮船从上每开往汉口,已经行了3/5,离汉口还有多少千
米?
② 一艘轮船从上海开往汉口,已经行了3/5,离汉口还有450千米,上海到汉口的水路长多少千米?
(1)学生自己画线段图,分析,解答。
(2)对比:两题有什么异同?你是怎样分析的,如何区别的?
3、出示题组:
① 停车场有8辆大客车,小汽车的辆数比大客车多1/6,小汽车有多少辆? ② 停车场有8辆大客车,大客车的辆数比小汽车少1/7,小汽车有多少辆? ③ 停车场有21辆小汽车,大客车的辆数比小汽车少1/7,大客车有多少辆 ④ 停车场有21辆小汽车,小汽车的辆数比大客车多1/6,大客车有多少辆?
(1)学生独立画线段图,分析,解答。
(2)对比:
1、2两题有什么异同?
3、4两题呢?你是怎样分析的,如何区别的?
(3)解答稍复杂的分数乘除法应用题有规律吗?规律是什么?
引导学生归纳出:
㈠ 分析“分率句”,判断单位“1”是哪个数量? ㈡ 画出线段图,找出“量”和“率”的对应关系。
㈢ 确定已知单位“1”用乘法,求单位“1”用除法或用方程解。
三、课堂练习:
1、第53页“整理和复习”的第4题(根据题目的条件应该确定把谁看作单位“1”? 单位“1”已知还是未
知?)
2、练习十三第4、5题,独立完成,集体订正。
6.六年级数学分数乘除法 篇六
在教学分数和整数相乘时,根据学生的已有的知识基础,引导学生回忆复习整理整数乘法的意义和同分母分数的加法的计算法则。另外科学的学习方法,能提高学习效率,能使学生的智慧得到充分发挥。在教学分数和整数相乘的计算法则时,从学生所熟悉的整数和小数乘法的意义入手,引入分数乘法。
此外本单元在备课之初,师傅就提示自己在教学完分数乘整数和一个数乘分数后要先补充一个课时比较分数加法和分数乘法之间的区别,再进行分数乘法混合运算和简便计算的教学。当时的自己是听的一头雾水,不明白师傅的用意。直到真的开始教学分数乘法混合运算时,才明白了师傅的良苦用心。虽然在师傅的提醒下自己有进行分数加法和乘法的对比教学。但是晚上的作业还是有部分学生计算分数加法时按照分数乘法运算的规则进行计算(按分子和分子相加,分母和分母相加),到这时自己才知道师傅当时为什么要让自己对比分数乘法和加法。看到学生的作业,自己在第二天的分数乘法混合运算时,在课前复习时再次讲解分数乘法和加法的不同。让学生在计算的时候有个比较清楚的认识。虽然这个问题解决了,但是学生在分数乘法混合运算时又遇到了另一个问题,部分学生在计算加乘混合运算时,特别是加法在前面而乘法在后面的问题时,先计算加法而不是先计算乘法,在老师的指点之下才恍然大悟。说明学生对于四则运算的运算顺序不够熟练。自己在今后的教学中,也应着重强调四则运算的运算顺序。
本单元的教学,分数乘法解决问题也是一个重点内容。在帮助学生分析题意时,学生如果会画线段图,对于理解题意会有很大的帮助。但可能是由于在五年级时,比较少要求学生画出线段图,根据线段图理解题意。因此当六年级明确要求要根据题意画出线段图时,学生刚开始时很不习惯,画出的线段图也不能很好的反应题意,对于这一方面,教学时需要再进行加强,因为这对于提高学生分析问题,解决问题的能力将会有很大提高。而下一单元的教学如果学生能根据题意画出合适的线段图,对正确解答问题将会有很大的帮助。
7.六年级数学分数乘除法 篇七
教学目标
1.理解以“和倍”问题为基础的分数应用题的解题思路.会列方程解答此类应用题.
2.培养学生的迁移类推能力.
3.培养学生运用所学的知识解决生活中的实际问题的能力.
教学重点
理解应用的数量关系,找到题目中的等量关系.
教学难点
找准题中的等量关系.
教学过程
一、复习。(用含有字母的式子表示)
1、果园里有苹果树x棵,梨树的棵数是苹果树棵数的3/4。梨树有|()棵。
苹果树和梨树一共有()棵。
2、饲养小组养了黑兔a只,白兔的只数是黑兔的5倍,白兔有()只;黑兔和白兔一共有()只。
二、生活引入.
上一年,有一位学生问我|:“老师,您今年有多少岁啦?我说:我和杨莹的年龄和是42岁,杨莹的年龄是我的年龄的2/5。你能算出老师的年龄是多少岁吗?那杨莹的年龄又是多少岁呢? 1. 老师说:你能解决这个问题吗?通过今天知识的学习,你们就能知道了. 2. 板书课题:分数除法应用题。
3、学生读题,理解题意弄清谁是单位“1”,画出线段图.
4、分层指导。
思考:(1)根据我和杨莹的年龄和是42岁这个条件找到它的等量关系吗?
(2)根据杨莹的年龄是我的年龄的2/5这个条件,可以把谁设为x?老师、杨莹的岁数用含有x的式子怎么表示?
5.学生练习,集体订正,说明思路。
三、尝试练习
(一)出示例3 例3.饲养小组养的白兔和黑兔共有18只,其中黑兔的只数是白兔的.白兔和黑兔 各有几只?
1.读题,理解题意弄清谁是单位“1”,画出线段图. 2.小组回答:
(1)根据饲养小组养白兔和黑兔共有18只这个条件找到它的等量关系吗?
(2)根据黑兔的只数是白兔的这个条件,可以把谁设为x?白兔、黑兔的只数用含 有x的式子怎么表示? 3. 4. 学生练习。
学生打开书本对答。(65页)
151515解:设白兔的只数为x只,黑兔的只数是x.
白兔只数+黑兔只数=总只数
1xx18 511x18 511x18 51x181
5x15 11x153 55答:白兔有15只,黑兔有3只. 4.教师提问:这道题还可以怎样列式? 18÷(1+)什么意思? 1
5(二)写出下面应用题的等量关系,只列出含有未知数x的等式,不解答.
1.商店运来苹果和沙果350筐,其中沙果的筐数是苹果的,苹果和沙果各有多少筐?
2.商店运来的苹果比沙果多60筐,其中沙果的筐数是苹果的,苹果和沙果各有多 少筐?
教师归纳:今天学习的应用题在解答时要根据分率句确定单位“1”,把单位“1”设为x.
另一个数就是几分之几x.根据已知条件列出方程解答.
四、巩固练习.
(一)变式练习
小文买一支钢笔和一支圆珠笔,买钢笔的价钱比买圆珠笔多13元,圆珠笔的单价是钢笔的6/19,圆珠笔和钢笔各多少元?
(二)对比练习
1.李明家九月份用水18吨,十月份用的水是九月份的,九月份和十月份一共用水多 少吨?
2.李明家九月份和十月份共用水34吨,九月份的用水吨数是十月份的,九月份、十月份各用水多少吨?
(三)选择练习89892323果园里苹果树和桃树共350棵,其中苹果的棵数是桃树的,桃树有多少棵? 解:设桃树有x棵.
A.x350
B.xx350
33xx350 C.350
D.134343444
五、质疑总结.
1.用方程解这类题的关键是什么? 2.用算术方法解答时应注意什么?
六、板书设计
分数除法应用题
解:设老师的年龄是x岁.
x2x42 521x42 52x421
5x30
„„老师年龄
42-30=12
„„ 杨莹的年龄
8.六年级数学分数乘除法 篇八
教学目标
1.使学生进一步熟悉应用题的数量关系,能够掌握用算术、方程法解答两步计算的分数小数应用题。
2.提高学生分析和解答应用题的能力。3.渗透对应思想。教学重点
掌握数量关系,明确解题思路。教学难点
会分析数量间的等量关系。教学准备 投影片。教学过程(一)复习
1.看句子列算式。2.复习数量关系。
(1)行程问题中的三量关系式是什么?
(2)相遇问题与行程问题三量关系有什么区别?是什么? 投影出示:速度和×相遇时间=合走路程 合走路程÷速度和=相遇时间 合走路程÷相遇时间=速度和
(3)它们同类量之间有什么关系? 合走路程=甲走的路程+乙走路程 速度和=甲的速度+乙的速度(二)导入新课
这些数量关系以前学过,解决了一些实际问题,今天我们就来应用这些数量关系解决分数、小数中的一些实际问题。(板书课题)(三)讲授新课
例1两地相距13千米,甲乙二人从两地同时出发,相向而行,经 1.读题,说出已知、未知条件分别是什么? 2.分析:
(1)这是什么类型的题?和我们以前学过的相遇问题有什么区别?(相遇问题,相遇时间给的是分数。)(相遇时间,甲乙二人都行了这么长时间。)在日常生活中,遇到的数不可能都是整数,那就要用分数、小数来表示。这样的问题你们会解决吗?
(3)请同学们自己选择方法做这道题。(4)投影反馈各种不同做法,讲算理。说每步的算理。
解③设乙每小时行x千米。
为什么这样列方程,根据是什么?(甲走的路程+乙走的路程=总路程)解④设(略)列方程根据是:速度和×相遇时间=距离。
(5)对比用方程解答和用算术方法解答从解题思路上有什么不同?
(算术法是根据已知量,运用关系式,求出未知量;方程法是根据关系式确定等量关系,让未知数x参加运算。)(6)小结:解答应用题时,首先明确数量之间的关系,灵活运用,选择多角度思考,用不同方法解答。
(1)读题分析:
这道题是一道什么样的应用题? 分数应用题的解题步骤是什么?
(一、认真审题;
二、分析重点句;
三、确定单位“1”;
四、准确画图;
五、列式计算。)(2)根据解题步骤同桌讨论后,说出解题思路。(重点句是“两周正好 共修的总和。)(3)同学们自己画图,列式。(一生板演)解①设这段公路长x米。
等号左边和等号右边各表示什么? 为什么这样列式?
以先求两周共修的,然后再求这段公路全长多少千米。)(4)两种解法的思路有什么不同?
(方程法设全长单位“1”为x,根据分数乘法的意义来列等量关系 出单位“1”。)(5)例2与以前学的简单分数应用题的区别是什么?
(简单分数应用题是直接给出相对应的量率;而今天学的是运用对应思想,间接地求出相对应的量率。)以上两个例题的学习使我们明白,在整数应用题时所学的数量关系,在小数、分数中照样可以应用,思路相同。
(三)巩固练习
1.课本第77页的“做一做”,任选一种方法列式计算,投影两种解法,区别比较。
方程法算术法
解设运来桔子x吨。
(用方程法解,思路清晰;用算术方法解逆向思维,尤其是加上0.5,不易理解。)2.课本第78页的“做一做”,任选一种方法列式计算,投影订正。3.选择正确答案。(举号选择)(设钢笔价钱为x元)第二月比第一月多生产30条。前两个月共生产毛巾被多少条?(四)布置作业 第80页1~4题。课堂教学设计说明
这节课是分数、小数应用题的第一课时,关键要把整数之间的数量关系迁移到分数、小数范围内,目的是迁移、巩固、提高。所以在设计这节课的教案时,改变过去以老师讲解为主的状况,让学生互相讨论,说解题思路,大胆放手让学生试做,然后根据学生所做的情况,说算理,说列方程的依据,明确列方程的等量关系。由于分析、思考的角度不同,所以确定的等量关系式也不同,列的方程式也就不同,这样就从多角度复习了数量之间的关系,发散了学生的思维。
分数应用题是这册书的重点。例2是在以前学过简单的分数应用题的基础上出现的,引导学生通过充分说算理,正确地画出图形,列出方程式和算术式,进一步加深了学生对求一个数的几分之几意义的理解。同时,向学生渗透对应思想,由简单的一一对应,向间接地求出相对应的量和率过渡,明确数量之间关系,为今后解决较复杂的分数应用题做好铺垫。
9.六年级数学分数乘除法 篇九
一、先画线段图,然后再列式解答。
1、(1)一袋大米50千克,吃了这袋大米的(2)一袋大米吃了这袋大米的2、(1)畜牧场养牛600头,养猪的头数比牛多
(2)畜牧场养牛600头,养猪的头数比牛少
(3)畜牧场养牛600头,比养猪的头数多
(4)畜牧场养牛600头,比养猪的头数少
2、(1)学校铺设一条塑胶跑道,原计划投资10万元,实际投资比原计划节约
(2)学校铺设一条塑胶跑道,实际投资8万元,比原计划节约
(3)学校铺设一条塑胶跑道,原计划投资10万元,实际投资比原计划节约
4,还剩多少千克大米? 54后,还剩下10千克,这袋大米多少千克? 51。畜牧场养猪多少头? 51。畜牧场养猪多少头? 51。畜牧场养猪多少头? 51。畜牧场养猪多少头? 51。实际投资多少万元? 51。原计划投资多少万元? 51。节约多少万元? 5
(4)学校铺设一条塑胶跑道,实际投资8万元,比原计划节约
3、(1)儿童床原价1180元,现降价
(2)儿童床原价1180元,现降价
4、(1)一本故事书200页,第一天看了全书的(2)一本故事书200页,第一天看了全书的(3)一本故事书200页,第一天看了全书的★
5、大华织袜厂上半年全年完成计划的双。全年计划生产袜子多少万双?
★★★6.一袋大米,第一天吃了
★★★7.一袋大米,第一天吃了这袋大米的1。节约多少万元? 51出售,现价是多少元? 21出售,便宜了多少元? 211,第二天看了全书的,两天一共看了多少页? 5411,第二天看了全书的,第二天比第一天多看了多少页? 5411,第二天看了全书的,还剩下多少页未看? 5413,下半年又完成全年计划的。全年实际比原计划多生产袜子60万
10.六年级数学分数乘除法 篇十
成功:
1.在审查概念时,主要审查划分的意义和意义。通过公式b×3/4 = a,我们知道b的3/4等于a,b×3/4 = a产生a÷3/4 = b;a÷b = 3/4,a和b为3:4,使学生更清楚地感知乘法和除法,得分和内部关系之间的关系。2.在计算的审查中,让学生谈谈计算方法的划分,让学生可以看到整数分母是一个分数,因此不管除数,除数是一个整数(除0)或分数,乘以一个数字(除了0),等于数的倒数。3.在简化审查率方面,通过让学生说比率和分数,得分之间的关??系,简化基础,然后完成第三个问题,结合简化方法的主题总结总结。
相同分母的最小公倍数
分数比 项目之前和之后,按其最大公约数除
整数比最简单的整数比
小数位数与上一项目的小数位数相同
重点在于简化比率和比率之间的差异:简单比率是比率的形式,并且比率是数字。4.在审查比率的应用中,通过分析关系的数量,改变条件,让学生感觉到上帝的相同意义的分数倍增和分裂。
六年级男孩60人,(),女孩多少人?
(1)女孩的数量是男孩的2/3(2)男孩的数量是女孩的2/3(3)男孩的数量比女孩多2/3(4)男孩的数量少于女孩的2/3(5)女生多于男生2/3(6)女生少于男生2/3 通过不同形式的变体练习,让学生意识到只要有多少关系,就可以解决问题。
不足:
1.审查只关注基本练习,但类型不断变化,学生缺乏灵活性来解决问题。2.对于实际数量和差价之间,学生容易 困惑。
重新教学设计:
【六年级数学分数乘除法】推荐阅读:
小学六年级数学上册《分数除法》教案优秀09-11
五年级数学下册《分数除法》教学反思09-01
六年级数学下册百分数10-09
六年级数学分数应用题01-13
五年级数学下册第二单元第8课分数的意义与分数与除法关系的练习教案07-01
六年级数学 分数应用题教案01-26
六年级数学上册《分数乘法》教学反思02-16
六年级数学分数应用题解题方法11-06