近似数教学设计

2024-09-24

近似数教学设计(精选8篇)

1.近似数教学设计 篇一

四年级数学《近似数》教学设计

教学目标:

1、能结合生活实际判断哪些数是精确数;哪些数是近似数。

2、能用“四舍五入”的方法得到一个数的近似数。教学重点:

理解“四舍五入”法求近似数的合理性,并会用“四舍五入”法求一个数的近似数。

教学难点:

能根据实际问题的需要求一个数的近似数。教学流程:

一、观看2009年国庆阅兵视频导入新课。

看后,让学生说说自己有什么感觉。老师接着学生的话题说:不仅如此,这盛大的阅兵活动中还蕴涵着一些数学信息。

二、认识精确数与近似数。

1、对上面的数据进行分类

2、理解精确数与近似数,体会近似数在生活中的作用。

三、理解“四舍五入”法。

1、学生猜想:巨幅国画《江山如此多娇》的实际面积是18000平方米,而报道称近2万平方米,这合理吗?

2、结合数线图理解18000平方米近似成2万平方米的合理性。认识约等号及它的读法。

3、将1万与2万之间的10500、11000、12000、13000、14000、15000、16000、17000、18000、19000近似成整万数,理解“四舍五入”法求近似数的合理性。知道近似成整万数也叫四舍五入到万位,此时关键要看第千位。

4、结合上面求近似数的过程,理解“四舍五入”法。

四、尝试用四舍五入法求近似数。

1、小组合作学习:参加国庆阅兵的精确人数是233482人,而报道说“约20万人”,这个20万是怎么得到的?(提前发放《合作学习小研究》)

2、全班交流合作学习成果,老师适时点拨。

3、小结用四舍五入法求近似数应注意的问题。

4、将233482四舍五入到其它数位。

五、达标测评。

1、课本试一试第1题。

2、课本试一试第3题。

3、下面的□里可以填哪些数?

□499≈8000

()3□5123≈370000

()74□1032≈7500000

()8□96572≈8000000

()54□78≈50000

()

六、课堂总结。

这节课我们学了什么?如果给这节课起一个题目的话该叫什么?

2.近似数教学设计 篇二

虽然有了以上的铺垫与渗透, “如何用四舍五入法求多位数的近似数”仍是教学上的一大难点。这是为什么呢?仔细研读教材与学生, 我们找到了几大原因:其一, 四年级下册所学的数都是亿以内或亿以上的多位数, 多位数的读写本身就是一个教学难点, 现在又要用四舍五入法来求多位数的近似数, 数位越多干扰因素也越多, 光靠之前的数数经验或数学直觉, 显然不能轻松应对, 教师必须在学法指导上给学生更有效的引领与点拨。其二, 教材在一课时内同时呈现求多位数近似数的3种类型, 即改为用“万”“亿”或最高位上的计数单位作单位的近似数, 如果在探究环节不安排针对这3种类型的有序练习, 那么在之后的运用中, 部分学生就会出现分辨不清、张冠李戴的思维混乱状况。其三, 求多位数的近似数, 教材同时呈现了3种表述方式, 如:省略“万”后面的尾数求近似数、用“万”做单位写出近似数、保留到万位求近似数, 要让学生在第一时间就理解并接受这三种表述方式表达的意思是一样的, 也是教者要努力完成的教学任务之一。其四, 求多位数的近似数, 要省略的尾数位数很多, 而用四舍五入法时只看尾数最高位。在这里, 省略尾数、尾数最高位等概念都是学生第一次接触, 理解这些概念的含义对正确求近似数很重要。而学生之前在生活中接触到的或语文学习中了解到的“省略”意思就是去掉了或不要了, 这与数学学习中的“省略尾数”的意义是完全不同的, 对此学生常常会因为先入为主的原因而出现很顽固的学习负迁移。所以, 在首次教学中就要特别强调, 这里的省略尾数与我们语文学习中的“省略”一词含义是不同的, 在求近似数时, 省略尾数前必须要看尾数最高位上是几, 是0~4时可以直接去掉尾数, 而是5~9时, 先要向前一位进一, 之后才能将尾数去掉。

基于对教材和学生的深度解读与分析, 同时考虑到求大数的近似数应该与后继学习求小数的近似数有一脉相承的紧密联系, 于是我们紧扣求近似数的数学本质, 引领学生生成了极具生长性和结构性的求近似数的思维流程, 并着力引领学生在画图、标注、表述等多元表征中明晰思路、突显方法、建构模型, 从而很好地突破了教学难点, 磨砺了学生的数学思维, 提升了他们的数学素养。

一、在生活情境中走近近似数

师:孩子们, 知道这位慈祥的老人是谁吗?对, 他是我国著名的数学家华罗庚爷爷。请看他的一段名言, 齐读:宇宙之大, 粒子之微, 火箭之速, 化工之巧, 地球之变, 生物之谜, 日用之繁, 无处不用数学。

师:无处不用数学!说得多好!我们身体里就藏着有趣的数学。请看一组数据 (成年人全身有206块骨头;人的舌头由17块肌肉组成;人大脑中的神经细胞有100亿左右;咽喉是人体最繁忙的通道, 在人的一生中约有40吨食物通过。) 上面的数中, 有的能够精确地描述事物的实际数量, 我们称为———精确数, 有的是跟精确数比较接近的数, 我们称为近似数, 今天这节课我们就一起来研究近似数。

师:关于近似数, 你想研究哪些问题呢! (什么是近似数?怎样求近似数?近似数有什么用?) 有疑问才会有发现, 那就让我们先来一起研究“什么是近似数”。 (板书:近似数)

【设计意图】 由华罗庚的名言引出生活中的数学, 再引出精确数与近似数, 这样的导入不仅如行云流水般让学生感到亲切、自然, 更让学生在丰富而鲜活的数学文化中感受到数学与生活的联系, 感受到数学的实用价值, 进而激发出探究近似数的热情与好奇心, 在生疑和提问中兴致勃勃地走进探究之旅。

二、在探究情境中研究近似数

(一) 什么是近似数

1.上面的4个数中, 哪些是精确数?哪些是近似数?怎么想的?

2.从大约、左右等词可以看出, 其中的100亿和40这2个数不是精确数, 而是和精确数比较接近的数, 是近似数。 (板书:和精确数比较接近的数是近似数。)

3.口答书上第22页的“练一练”。

4.在生活或学习中, 你还见过哪些近似数?老师这里也有一些近似数, 谁来读一读! (在南京大屠杀中约有30万人被日本鬼子杀害。我们每个人的头发约有10万根左右。我国现有人口约14亿。我国国土面积大约是960万平方千米) 看到这些近似数, 你有什么感受?

5.在计算中我们也曾遇到过近似数, 比如在进行□□□÷8□的试商过程中, 我们常用多少来快速试商的? (80或90) 在这里, 80其实就是哪些数的近似数? (81~84) 90呢? (85~89)

小结:在生活或学习中, 有时只需要用近似数, 因为用近似数来表示反而更方便、快捷!

【设计意图】 从身体上的近似数到身外的近似数, 从社会文化中的近似数到数学计算中的近似数, 学生亲身经历了建构近似数概念的过程, 明确了和精确数较接近的数是近似数, 会抓住“大约”“左右”等关键词准确判断哪些数是近似数, 感悟到近似数在实际生活与学习中的广泛运用。同时, 社会文化中的近似数还培养了学生热爱祖国、珍爱生命的人文情怀, 试商中的近似数则激活了学生用四舍五入法求近似数的相关旧知, 为进一步的学习打下伏笔。

(二) 在数形结合中求近似数

1.过渡:我们已经会求两位数的近似数了, 那较大数的近似数该如何求?请看一组信息:2012年某市人口情况统计如下表 (呈现例7) 。读大数前先要将它们 (分级) 。请看:总计有多少人? (齐读:770889人) 男性人数呢? (男生齐读:384204人) 女性人数呢? (女生齐读:386685人)

2.启发:这个城市的实际人口数会跟表中的数量一样始终不变吗?为什么?对了, 由于每时每刻都可能会有人出生或死亡, 所以这个市的人口数量总是在不断变化, 不过这种变化的幅度一般很小, 所以通常用近似数来表示人口数, 那这个市的男性和女性人口各接近多少万呢? (生口答38万, 39万)

3.启发:是不是这样呢?我们不妨借助直线图来思考。在这条直线上, 这2点分别表示38万和39万。将这2点间的一段平均分成10份, 每份是多少?怎么想的? (之间间隔一万, 平均分成10份, 每份是1000) 这些点分别表示多少呢?让我们从38万起一千一千地数到39万。 (师点, 生集体数数到39万) 数出的数中哪个恰好在38万和39万的正中间?对, 这一点就表示385000。那表示男性和女性人数的点大约在直线的哪个位置呢?在作业纸上分别描出来, 再指给同座看一看。

4.追问:仔细观察, 男性人口数和女性人口数各接近多少万?你是怎么想的? (看图上点的位置, 384204在385000左边, 接近38万, 386685在385000的右边, 接近39万;或看千位上数字一个是4, 一个是6, 所以一个比385000小, 一个比385000大。)

小结:无论是观察图上点的位置, 还是比较它们千位上数的大小, 我们都发现男性人口数接近38万, 女性人口数接近39万。精确数和它的近似数之间只能用什么符号连接?为什么? (大小不相等, 所以只能用约等号。) 所以, 384204≈38万, 386685≈39万。

【设计意图】 通过例题的学习, 让学生感受到一个城市的人口数量是不断变化的, 一般情况下很难也不需要得到一个精确数, 所以通常用近似数来表示人口数, 从而突显了近似数的本质特征。之后让学生借助直觉、画图和看千位上数字的大小等方法得出男性人口数和女性人口数各接近38万和39万, 为下面介绍用四舍五入法求近似数积累了丰富的表象与活动经验, 为之后突显用四舍五入法求近似数的合理性与方便快捷打下了扎实的认知基础。

(三) 用四舍五入法求近似数

1.说明:为了方便、快捷地求一个数的近似数, 通常要用到四舍五入法。请看大屏幕! (屏幕显示四舍五入法, 并配录音。)

2.以386685为例, 要将它保留到万位, 就是要省略哪一位后面的尾数? (板书:保留到万位, 就是省略万位后面的尾数。生齐读) 。看尾数的哪一位四舍五入?何时四舍, 何时五入? (板书:看尾数最高位四舍五入。0~4, 5~9) 在这里, 保留到万位, 就是保留多少万? (38万) 这是要保留的部分。 (师边说边在38的下面画线) 再看要省略的尾数最高位是多少, 是四舍还是五入? (师在6的下面画点, 并将6用线划去, 同时标出向前一位进1) 最后将尾数的各位都改写为0, 求得约等于390000, 当然也可以写成以万作单位的数39万。) 再看一下刚才的解答过程, 谁能连起来说一说如何求它的近似数? (先看保留部分是38万, 再看尾数最高位上是6, 要五入, 向前一位进1, 最后求得约等于39万。)

强调:为了清晰地展示求近似数的过程, 建议大家用横线标出保留的部分, 用小点标出尾数的最高位, 五入时在前一位上方标出要进的1。

3.如何求男性人口数的近似数呢?你也能像这样清晰地写出解题思路吗?在作业纸上写一写, 再跟同座说一说。看!写对了吗?谁来说一说思路! (先看保留部分是38万, 再看尾数最高位上是4, 要四舍, 最后求得约等于38万。)

追问:借助四舍五入法求得的近似数, 和刚才看图求得的近似数, 结果一样吗?要快速地求一些数的近似数, 你是选择画图法还是四舍五入法?为什么? (四舍五入法比较方便快捷)

4.请用四舍五入法完成数学书第24页的第7题。之后请某个4人小组上台来展示解答过程。

追问:用“万”作单位写近似数, 是什么意思? (就是保留到万位求近似数, 就是省略万位后面的尾数求近似数) 对, 这3种说法表达的是一个意思。

5.省略亿位后面的尾数求近似数。

启发:孩子们, 大胆地推想一下, 如果要保留到亿位求近似数, 该怎么办? (完善板书:保留到 (亿位) , 就是省略 (亿位) 后面的尾数, 看尾数最高位四舍五入。)

生独立完成书第24页的第6题。之后交流思路。

6.省略最高位后面的尾数求近似数。

启发:孩子们, 再大胆地推想一下, 如果只保留一个数的最高位求近似数, 该怎么办? (完善板书:保留到 (最高位) , 就是省略 (最高位) 后面的尾数, 看尾数最高位四舍五入。)

师:请看705, 你能保留它的最高位求近似数吗?可以怎么想? (先看最高位上是7个百, 再看尾数最高位上是0, 要四舍, 最后求得约等于7个百, 是700。) 数学书第24页第9题的其余4个数, 你也能这样求它们各自的近似数吗?写好了在4人小组里交流思路, 并做好上台展示的准备。

生独立完成后4人小组上台交流展示。

7.追问:刚才我们研究了如何省略万位、亿位和最高位后面的尾数求近似数。数学上的省略尾数, 是不是说不管尾数是大是小, 一律省略不看? (省略前要看尾数最高位, 确定是四舍还是五入) 你觉得求近似数时要注意什么? (要明确保留的部分在哪里, 省略的尾数最高位在哪里, 尾数最高位上是0~4就四舍, 是5~9的就五入。)

【设计意图】 借助由扶到放、层次分明的探究过程, 学生完整地经历了如何用四舍五入法来求一个数保留到万位、亿位和最高位的近似数, 并借助标注和表述, 生成了具有结构性、生长性和通融性的思维流程先看保留部分是 () , 再看尾数最高位上是 () 要 () , 最后求得约等于 () 。同时提炼出了直击数学内核的解题模型, 即:将某数保留到某位, 就是省略某位后面的尾数, 看尾数最高位四舍五入, 从而使所学的知识结构化、整体化, 很好地突显了求近似数要关注的2个关键———看保留部分和省略部分的最高位, 使看似繁杂的知识以及内在联系顿时变得澄明和清晰起来, 从而很好地提升了学生的理性认识和思维深度, 突破了学习难点。

三、在应用情境中活用近似数

(一) 求我国总人口数的近似数

师: 2010 年的人口普查显示中国总人口为1370536875人。如果将它分别省略最高位、亿位、万位后面的尾数求近似数, 结果是多少呢?你能将思路清晰地写出来, 并在4人小组里讲出来吗?

追问:比较一下, 用哪个近似数来表示我国人口数更好些? (14亿这个数既简洁, 也比10亿更接近精确数)

小结:看来, 究竟要保留到哪一位求近似数, 要根据实际情况灵活确定。

(二) 填数

练习第24页的第10题。问:方框里可以填几, 怎么想的?先独自填一填, 再跟同座说一说。 (分别是5~9和1~4)

【设计意图】 通过求我国总人口数的近似数, 既让学生感受到近似数在实际生活中的广泛运用与实际价值, 又巩固了求近似数的3种类型, 同时还让学生在真切的对比中体会到, 要灵活地根据实际情况来确定保留到哪一位求近似数更合适, 培养了学生活学活用的实践能力。而填数练习则进一步巩固了四舍五入法的操作要领———一看保留部分是多少;二看尾数最高位是多少, 是5~9的要五入, 是0~4的要四舍。而3900000000=39亿, 所以这里的39□0000000≈39亿, □中只能填1~4。灵活变通的思维能力再次得到了锻炼与提升。

四、在反思情境中总结提升

总结反思:这节课你有哪些收获?

拓展延伸:孩子们, 还记得我们身体里的数学吗?人一生要吃下大约40吨的食物。看到这个近似数, 小明决定用实际行动来报答地球母亲。请看:小明积极参加学校开展的“变废为宝”活动, 他去年全年共收集的饮料瓶数保留最高位约2000只。如果这2000只是用四舍的方法得到的, 那原来的数量最大是 () 只, 最小是 ( ) 只;如果是用五入的方法得到的, 那原来的数量最大是 () 只, 最小是 () 只。这一问题就留着大家课后去研究, 同时希望大家和小明一样, 积极投入保护地球的绿色行动中, 争做环保小达人。

3.求一个小数的近似数 篇三

(1)知识与技能:让学生理解和掌握求一个近似数的方法,能正确地按要求用“四舍五入法”保留一定的小数位数;使学生理解保留小数位数越多,小数的精确程度越高;培养学生的类推能力。

(2)过程与方法:通过旧知类比迁移方法,让学生更容易接受和掌握新知。

(3)情感、态度和价值观:增进学生对数学的理解和应用数学的信心,感知近似数的应用与实际生活密切联系。

教学重点:

(1)学会用“四舍五入”的方法,按照不同的要求求一个小数的近似数。

(2)引导学生理解保留几位小数的方法。

教学难点:理解保留小数位数的多少与精确程度的关系。

教学内容:人民教育出版社 四年级 数学(下册) 第四章第四节。

教学方法:类推法、讲解法、练习法、讨论法、演示法、反馈法。

教学手段:多媒体、小黑板、黑板相结合。

教学过程:

复习旧知

(1)师:我们在四年级上册学过求整数近似数的方法,你们知道采用的是什么方法吗?学生思考回答。(“四舍五入”法)

(2)师:那么,“四舍五入”法的含义是怎样的?学生交流讨论回答。(省略哪一位后面的尾数就要看它后面那一位是幾,大于或等于5的向前进“1”,小于5的直接舍去后面的尾数)

(3)①省略万位后面的尾数,求出它们的近似数。(小黑板出示)

986534 58741 31200 50047 398010 14870

②下面的□里可以填上哪些数?(小黑板出示,学生快速思考作答)

32□645≈32万 47□429≈48万

新课学习:

1.谈话导入新课

师:我们已经复习了求一个整数的近似数。在日常生活中,我们经常和小数打交道。同学们,仔细想想,你们在哪里接触过小数?学生小组合作、交流回答。(如:在商店、菜市场、书本作业本的价格等等)

师:我们生活中处处有小数,但在实际应用小数时,往往没必要说出它的准确数,有时需要求一个小数的近似数。(举例说明:如在菜市场买菜时,电子秤上显示8.13元,而菜摊老板只收你8.1元)这是为什么呢?

师:今天,我们一起来学习“如何求一个小数的近似数?”(板书)

2.教材73页例1(多媒体呈现主题图)

(1)豆豆身高是0.984米,在实际生活中往往没有必要说出它的准确数,只要求说出它的近似数就可以了。

师:图中小红说豆豆身高约为0.98米,小明说豆豆身高约为1米。那他们是怎样得出豆豆的身高的近似数的呢?

(2)让学生以4人为一小组进行讨论:应该采用什么办法求小数的近似数?(提示:整数是如何求近似数的?是否可以采用“四舍五入”法来求呢?)

(3)归纳小结:求一个小数的近似数,同求一个整数的近似数相似,都可以根据“四舍五入”法保留一定的小数位数。(板书:四舍五入法)

(4)讲解:①0.984保留两位小数,就是要把小数部分第三位及后面的尾数省略,也就是精确到百分位,根据“四舍五入”法,小数部分第三位是“4”应该舍去,所以0.984≈0.98。②0.984保留一位小数,就是要把小数部分的第二位及后面的尾数省略,也就是精确到十分位,根据“四舍五入法”小数部分第二位是“8”应该向前进一,而前一位也就是十分位上的数是“9”,9加上进位来的1得10,十分位上满十向个位进一。所以0.984≈1.0。

3.让学生想一想,积极思考:0.984≈ (保留整数)

教师讲解:保留整数就要把小数的第一位及后面的尾数去掉,也就是精确到个位,根据“四舍五入法”,小数部分第一位是9,应向个位进一,所以0.984≈1。

(1)教师总结:求小数的近似数时,保留整数,表示精确到个位;要保留一位小数,表示精确到十分位;保留两位小数;表示精确到百分位……

(2)注意两点:①要根据题目的要求来取小数的近似值,如果保留整数,就看十分位上是几;要保留一位小数,就看百分位上是几;以此类推。采用“四舍五入”法决定是“舍”还是“入”。②求近似数时,在保留的小数数位里,小数末尾的“0”不能去掉。

三、思维拓展

1.0和1数值相等,那么,它们的精确程度是不是相同的呢?在表示近似数时,小数末尾的0能不能去掉呢?

师:近似数是1.0的小数范围在0.95与1.04之间,而近似数为1的小数范围在0.5与1.4之间;在数轴上可以直观清楚地展示出它们的精确范围,所以近似数是1.0比近似数是1精确的程度要高一些。(在黑板上画数轴表示)

师引导学生小结:小数保留的位数越多,精确的程度就越高。在近似数时,小数末尾的“0”不能去掉。

四、课堂练习巩固

(1)教材74页做一做(求下面小数的近似数)。

(2)完成教材练习十二第1、2两题。

五、作业安排

(1)教材76页第5、6题。

(2)数学作业本75~76页(江西教育出版社.四年级下册)。

六、教学反思

本节课注意引导学生从找整数的近似数迁移到找小数的近似数。并且在讲解的过程中注意与求整数近似数的比较区分,提醒学生要按照不同的要求来找出小数的近似数;在遇见连续进位的找小数近似数的题目时,注重详细讲解,让学生多练习;对于近似数末尾的“0”不能去掉这一注意事项在今后的教学中要时刻提醒。

七、板书设计

求一个小数的近似数

方法:“四舍五入”法

注意:在表示近似数时,小数末尾的“0”不能去掉。

0.984≈0.98(保留两位小数) 0.984≈1.0(保留一位小数)

↑ ↑

小于5,舍去 大于5,向前进一

0.984≈1(保留整数)

大于5,向前进一

4.近似数教学反思 篇四

作为一位刚到岗的教师,我们要有一流的教学能力,借助教学反思我们可以拓展自己的教学方式,快来参考教学反思是怎么写的吧!以下是小编精心整理的近似数教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

近似数教学反思1

四年级数学上册《近似数》教学反思在先求近似数再改写这一课中,学生已经在三年级学过估算,能够熟练的对一个数保留整十或整百的数,但是学生表现出来一个问题是,当问题是省略万位以后的数是多少或者保留整万位,学生会做。当问题是四舍五入到万位时,学生就不知道怎么做了,很多学生都做错。原来学习的保留整十或整百,保留的都是最高位,现在让保留的不是最高位时,学生会在最高位再保留一次,导致出现错误。这种情况出现的不多,课堂上没有认真听讲。

学生刚从三年级进入到四年级,所学习的知识在加深,但是学生的思想还没有及时转变过来,过多的沉浸在三年级的学习经验中,会对四年级的学习造成一定的影响,我在上课时要想办法扭转这种现状。在知识的学习中既要注重学生原有知识的应用,还要关注新知识的学习,让新知识在旧知识的基础上衍生出来,学生学起来会更容易,记得牢固。

近似数教学反思2

本案例是一堂新教材新教法的课例.在设计上不同于过去的讲解式、问答式教学,而是充分利用学生参与学习与探讨的热情,让学生充分发表意见,通过对问题的争论与探讨,得出正确的结论.这有利于学生的学习与记忆.在课的开始,设计一些问题,进行小组讨论,再针对相关问题展开.考虑到学生年龄特点,有针对性地对近似数的概念、近似程度(尤其是科学记数法和带单位的情况)进行了讨论和解答,取得了较好的效果,但也存在一些问题待后解决.(1)为什么使用近似数的原因、使用近似数的意义没有在课例中讲述不太清楚.(2)学生对形如2.4万、3.05×104的近似程度的理解及有效数字的计算仍然存在一定的问题.(3)课中一些好的做法仍值得借鉴.如何更好地贯彻新的课改精神,真正地让学生参与到自主探索的学习中去,是今后教学的首要问题.(4)如何在小组讨论中让每一个学生都积极动起来,都得到一定的提高,而不是一个旁观、旁听者,也是今后教学中值得注意的问题.(5)通过选做题的形式,将所学知识引伸到生产实践和生活实际中,让学生进一步理解近似数在生产和生活中的应用,培养学生应用数学的意识,鼓励学有余力的学生进行探究性学习,值得提倡.

近似数教学反思3

在数学过程中,我充分利用学生的认知规律,已有的生活经验和数学的实际,转化“以教材为本”的旧观念,灵活处理教材,根据实际需要对原材料进行优化组合。在教学中,我从多方面“找”数学素材和多让学生到生活中“找”数学,“想”数学,真切感受“生活中处处有数学。”根据这一理念,本环节教学时,例题1不是课本中的例题,是我根据学生已有的知识经验而编制的例题,目的是让学生综合应用所学知识和技能解决问题、发展应用意识、在探索中形成自己的观点,能在相互交流和反思的过程中逐渐完善自己的想法。

在教学过程中,学生的思维是活跃的,教学采用学生自主探究、合作交流的学习方式,鼓励学生积极主动地参与探索新知的全过程。在小组交流中把学生的思维充分暴露出来,加深学生对“用四舍五入法求小数的近似数”的理解。我善于提出问题引导学生思考。所提出的问题不论是实际问题还是理论问题都紧密结合教学内容,并编拟成科学的探究程序。

所以在教学过程中,我是分层次教学的,重点放在教学“①保留两位小数”的方法上,坚持启发式,让学生多说多讨论,激发学生积极思维,引导他们自己发现和掌握有关规律。然后再帮助分析讲解,使学生的思路更加清晰;在教学“②保留一位小数”时,则问得较少,使学生能根据刚才的知识形成一条清晰的思路。<

近似数教学反思4

本节课的内容是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数。本节课的教学重点是理解保留整数、保留一位小数、保留两位小数的含义。教学难点是近似数的连续进位问题。

成功之处:

1.复旧引新,沟通前后知识间的联系。课始出示:把下面各数省略万后面的尾数,求出它们的近似数986413 35628 65214 90088,目的是让学生温故而知新,减少学习中的盲目性,提高课堂教学效率。

2.联系生活实际,体会数学与生活的联系。结合主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。

3.深刻体会保留保留几位小数的含义。通过学习,使学生体会到保留一位小数就是精确到十分位;保留两位小数就是精确到百分位;保留整数就是精确到十分位。

4.重点比较2.5和2.50的区别。通过在数轴上的取值范围,使学生体会到2.5的取值范围在2.45~2.54,2.50的取值范围在2.495~2.504,虽然大小相等,但是精确度不一样,2.5表示精确到十分位,2.50表示精确到百分位。

不足之处:

1.学生对于保留整数就是看十分位上的数是否满5,但对于精确到十分位就是保留整数的逆向理解有些困难。

2.对于典型题中形如9.956保留整数、保留一位小数,学生还是存在不知如何进位的问题。

再教设计:

1.加强保留整数、保留一位小数、保留两位小数的含义的逆向理解,使学生深刻体会保留几位小数的含义。

2.加强典型易错题的练习,消除学习中易出错、易混淆的问题。

近似数教学反思5

师:今天,我们来认识另外一种数,[教学反思]求一个数的近似数教后感。下面,把书本打开,看看书本上是怎样介绍另外一种数的。

生看书自学课文第一、二自然段。

师:同桌交流一下,你看到的数叫什么,生活中碰到过这样的数吗?举例说一说。

全班交流。

生:我知道另一种数叫近似数,它表示大概有多少。

生:我知道近似数就是不是很准确的,只要接近这个数,大约是多少。比如说,我身高大约1米30。

生:我来说,我家离学校骑车大约要10分钟。

……

师:那我们怎样求一个准确数的近似数呢?再来看书本例5例6和下面的那段话。把不懂的地方划出来。同桌交流。

学生再次看书自学。

生:我知道用四舍五入法可以求一个数的近似数。

四人小组讨论什么叫四舍五入法,汇报,请学生结合具体的数来讲一讲。请学生做小老师,到讲台上来讲给学生听,数学论文《[教学反思]求一个数的近似数教后感》。

生:我说101约等于100,我看十位上的数是0,它不满5,直接把尾数舍去。

生:我说289约等于300,我是看十位上的8,它比5大,把尾数舍去后还要向前一位进一,所以约等于300。

师:你们都说得很好。再来讨论一下,你认为979省略最高位后面的尾数约是多少?919呢?4919呢?4499呢?

生依次回答,对4499出现的错误较多,认为应该约等于5000。

师:再来把书本上介绍的四舍五入法齐读一遍,想一想,它到底应该等于几。

生:哦,我看明白了,4499的最高位是千位,我们要看尾数左起第一位,它是百位上的4,4不满5,所以直接把尾数舍去。4499约等于4000,而不是5000。

师:弄懂了四舍五入的意思,我们一起来练一练。

学生做练习第一题。

师:学了求一个数的近似数,对我们的数学有什么好处呢?再次自学书本例7。

生:学了求一个数的近似数,我们可以进行估算。有时,可以帮我们检查计算是不是正确。

师:一起来估算一下328×4约等于多少?

生:我把328省略最高位后面的尾数,约等于300,300×4=1200,所以328×4的结果跟1200接近。

课后反思

在几年的课堂实践中,我发现我对数学书的利用率不是很高。教应用题时,把例题写在小黑板上讲解;教式题、计算题时,有时干脆直接把题目写在大黑板上进行讲解。只有在让学生做练习题时,才叫学生把书本打开。所以有时候,我上到第几页,学生都没处找。在本节课中,我没有按照惯例出示例题,进行示范、讲解,学生被动的接受。而是充分利用教

求小数的近似数教学反思6

本节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方法——四舍五入法,在求小数近似数的过程中,重点把握了三个教学重难点,即:理解“保留几位小数;精确到什么位;省略什么位后面的尾数”这些要求的含义;表示近似数的时候,小数末尾的“0”必须保留,不能去掉;连续进位的问题。

教学从生活出发,让学生感受数学与实际的联系。在引入环节,在超市买菜时,总价是7、53元,而售货员只收7元5角钱,这就是在求7、53这个小数的近似数。在创设情境环节,结合教科书的主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。

在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0。984≈0。98后,我让学生比较了求小数近似数的`方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0。984≈1。0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0。984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。

但在“保留几位小数、精确到什么位、省略什么位后面的尾数”都出现以后,没有把它们之间的联系梳理出来,这样就会给学生造成要求太多记不住的麻烦。如果让学生明白保留两位小数就是要精确到百分位,省略百分位后面的尾数也是要精确到百分位,学生审题后就会自然地归到精确什么位,看什么位进行四舍五入的思维模式,这样就有了更加清晰的思维。

近似数教学反思6

近似数是初中数学的一个微乎其微的知识点,但也是一个重要内容,学生对他们是否掌握至关重要,学没学好对学生以后的知识链接有着很重要的影响,现根据我对这一节的教学做一下反思。

(一)成功之处

本节课,我抓住了教材的关键因素,全面理解教材,对于每一个知识点都给学生对应的设计一些题型,让学生能够结合自己的自学和小组的讨论,对本节课进行全面的把握。另外,就是结合学生小学的基础,让学生在复习的过程中最近新课,在认真的自学中了解新课,在系统的联系中,掌握新知,在激烈的讨论中,提高应用。充分调动了学生的有利因素,让学生在愉快的环境中得到知识,提高了能力,教学效果比较明显。

(二不足之处

本节课虽然取得了成功,但是也暴漏了一些问题,一,教学细节突出不够,因为把大部分时间放给了学生,对于学习主动自觉的学生来说,取得了比较好的效果,但是对学习不太自觉的学生,理解能力较差的学生却没学到什么东西,他们再跟着其他学生走。学生没有完全参与进去,对他们来说没有啥效果。(二)过高的估计了学生的能力,因为近似数是小学学习过的内容,我认为学生应该有比较深的认识,在教学的过程中对于四舍五入法保留没有过多的要求,但是在后来的展示过程中出现来很多的小问题,影响了学生的知识的掌握。

(三)改进之处

对于以上问题,显示出的不只是这一节的问题,而是平时的教学问题,我一定要在教学的过程中关注每一个学生,即面向全体,又要结合每一个学生的自身特点和知识基础,让每一个学生都充分参与课堂,都参与到学习中去,只有这样才能取得良好的教学效果,另外,要注意学生的旧知识的掌握程度,适当的进行复习,让学生不至于脱离轨道,越来越差,对于基础差的学生适当的加强辅导,让他们稳步提高。

近似数教学反思7

《用四舍五入法把数改写成用“万”作单位的数》,这节课并不简单。学生既要学会四舍五入法,又要学会用四舍五入法对数进行改写,而且还并非仅仅是课题中所写的改写成以“万”作单位的数,还需要根据要求改写成以“千”、“百”等作单位的数。而教材的编排意图显然是充分利用学生前面学过的把整万的数改写成“万”作单位的数的经验,力图让学生经历先把一个大数用四舍五入法省略万后面的尾数求出近似的整万数,再改写成用“万”作单位的数的过程。显然,前面的过程是关键。而四舍五入法,四舍比较简单,难的是五入。

从课堂反应及学生的作业批改来看,学生对这一课的掌握情况很不好,出现了一些问题。如:反思学生出现的问题,我觉得是因为我的教学不够严谨、细致,才导致问题的面这么多而广。

原因一、没有激发部分学生的兴趣

原因二、上课内容比较抽象,后进生难以理解,故此没能投入学习互动中来。

改进后,二次教学设计。

汽车价格是193500元,558800,(),()

理清几个概念。

1、什么叫尾数?1389567万位(千位、百位)后面的尾数分别是什么?

2、“省略”是什么意思?是像语文里讲的一样直接省略不写吗?(区别语数中“省略”一词概念的不同)

3、那么,什么情况下直接舍去尾数,什么情况下要向前一位进1呢?关键看哪一位?

4、辩证思考:193500为什么不看成20万?558800为什么不看成55万?

5、拓展:怎么改变这个价格,使它能约等于55万?

预设:生1“千位上改成4、3、2、1、0”,师追问“百位、十位、个位上的数呢?最大是多少?最小是多少?”

生2:万位上改成4,千位上改成5、6、7、8、9。

师板书各情况,并追问“百位、十位、个位上的数呢?最大是多少?最小是多少?”

小结:约等于55万的数,最大的是四舍得到的554999,最小的是五入得到的545000。

6、完成作业本第6页第5题。

7、完成练习二。

一步一步地使学生明白“把12756省略万位后面的尾数求近似数,就是把1后面的尾数都去掉,并写0占位,写成10000,但是题目要的是“万”做单位,所以还要把10000改写成1万。这样就使得学生对求近似数的每一步的用意都有一个清楚的认识。

通过这节课的反思,我认识到教学一定要顺应学生的认知特点和过程来进行,每一步的设计一定要从学生的角度来思考,从教学的重难点来分析。那种“填鸭式”的教学方式,不仅苦的是学生,害的是学生,其实受害最大是老师,因为课后你得利用更多的时间来辅导那些知识上有缺漏的学生。

近似数教学反思8

在教学第七册数学课本“近似数”一课中,有一道带星号的题是这样的“9□8765000≈10亿,方框里可以填哪些数时,这个数的近似数于10亿?”教学这一练习题时,我先让学生独立练习,要求学生也可以进行进行合作讨论,然后交流。结果,学生经过交流后,展示了两种结果:一种是方框里可以填大于或等于5的数;另一种是方框里可以填5、6、7、8、9。我立即追问学生:“这两种填法一样吗?”话音刚落,学生顿时激烈争论起来。有的学生说一样,而有的学生坚决认为不一样,并且列举出比5大的数还有10、11、12……,我顺着学生的思路不断地往下板书,一直写到二十几,然后甩甩手臂,装出手很酸的样子,问:“写完了没有,我的手都写酸了。”学生马上说“写不完,写不完,比5大的数有许多个。”我马上接着说:“写也写不完的数在数学上有无数个”。这时我又问学生:“这两种填法一样吗?”学生坚决而果断地说:“不一样,填5、6、7、8、9是正确的”。

在完成第二道星号题9□8765000≈9亿时,就更有趣了。当我提出方框里可以填哪些数时,有的学生说:“填比5小的数,只能填4、3、2、1、0”。这时有位学生神气活现地说:“还有-1、-2、-3、2.1、3.7等比5小的数,所以方框里填比5小的数是不正确的”。这位同学的回答超过了当前我们所学的整数范围内的数。看着这些聪明而又可爱的学生,我不由自主地赞叹:“你们太棒了,真了不起,能找到哪么多比5小的数”。这时我问学生比5小的数究竟有多少个时,同学们顿时异口同声地说:“比5小的数也有无数个”。“方框里应该填哪些数,同学们现在知道吗?。学生自信地回答:”方框里应填比5小的自然数都是正确的“。

通过这堂练习课,使我深深地反思到:学生的思维不再是一张白纸,新课程注重培养学生学习的兴趣与愿望,把学习的主动权交给学生,让学生更多地参与教学活动,在主动积极的心境下获取知识和发展能力。对学生思维方法的教学法,不能仅靠简单的告知。数学教学最本质也是最显著的特点在于,它所传输的信息不仅仅是数学活动忍气吞声结果----数学知识,还应包括数学思维活动的过程,在教学中教师应该让学生经历一次次数学思维的活动过程。对学生来说,无论是构建一种新的数学知识,还是掌握新的数学思维方法,必须让学生经历数学思维的活动过程,才能让学生的思维有感性认识上升到理性认识。

近似数教学反思9

《新课程标准》指出:数学教学是数学活动,教师要紧密联系学生的生活环境,从学生的经验和已有的知识出发……学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。这一理念教师们都已知道,而家长们却不是很清楚,在辅导孩子学习时经常是脱离生活而纸上谈兵。本节课的教学是专为我校家长开放日而设计的。要求学生能根据要求用四舍五入法求小数的近似数,进一步掌握四舍五入法,丰富所学知识。我的设计分如下几个环节:⑴创设情景、揭示课题⑵复习铺垫,促进迁移;(3)自主探究、合作交流(4)独立学习,掌握知识。⑸畅谈收获,体验成功。

【片断与反思】

【片断一】

创设情景、揭示课题

师:昨天老师到银行办事,只见一位老爷爷和银行工作人员在争论着。原来老爷爷的利息单上写着税后利息:9.547元,银行工作人员付给爷爷9.5元,爷爷觉得不合理,两人发生了争论。你能判一判:付多少利息钱给爷爷比较合理呢?

生一:我认为应该付给爷爷9元5角4分,因为人民币的单位有只有元、角、分,第三位小数应该省略。

生二:我有不同意见。第三位小数是“7”,它比5大,如果直接省略不妥当,应该向前一位进1,所以应该付给爷爷9元5角5分。

师:现在存在分歧了,你能谈谈你的处理意见吗?

(学生交流片刻,一致认为应该付给爷爷9.55元)

生三(若有所思):我听说人民币还有比分更小的单位是厘。不过我没见过几厘钱。

师:你真是个见识多广的孩子。确实,生活中有“厘”这个单位,1分=10厘。由于这个单位太小了,在实际生活中很少用到它。

生四:我发现在买东西的时候也没有用到“分”了,都是几元几角了。

师:你确实很会观察。现在,随着国民经济的发展,人们的消费水平提高了,“分”这个人民币单位几乎从生活中取消了。平时涉及到“分”时,一般都“四舍五入”到“几角”了。

生五:那我觉得应该付给爷爷9元5角钱。

生六:我认为应该付给爷爷9元6角钱。

群生一:9元5角

群生二:9元6角(声音越来越大,争论得面红脖粗)

师:好!争吵总该有个说理依据。今天我们学了求一个小数的近似数之后,你就会非常轻松地解决生活中这类现象了。(出示课题:求一个小数的近似数)

【反思】

数学的兴趣和学习数学的信心对学生来说是十分重要的问题,教师就应该将学生的生活与数学学习结合起来,让学生熟知.亲近.现实的生活化的数学走进学生视野,进入数学课堂,使数学教材变得具体.生动.直观,使学生感悟,发现数学的作用与意义,学会用数学的眼光观察周围的客观世界,增强数学作用意识。为了创设更好的教学情境,了解教材内容体系,了解学生的兴趣爱好,应选择既贴近学生生活,又紧扣教材知识内容的实际问题作为情境,这里从学生熟悉的“存钱得利息”生活情境中引入,在讨论、说理的过程中,让学生初步感知学“求小数的近似数”是生活所趋。把它作为实际背景来区分准确数和近似数容易被学生所接受,使学生感受数学与人类的密切联系,体会数学的价值、增强用数学的意识和学好数学的愿望和信心。

【片断二】

自主探究、合作交流

(一).出示例题:

例1.李明在运动会中的跳远成绩是2.953米,你知道他跳远成绩的近似数是多少吗?

接着明确提出要求:

1.保留两位小数2.保留一位小数3.保留整数

然后让学生进行独立思考,发表意见,说出结果及想法。

1、保留两位小数

师提示思考:保留两位小数要看哪一位上的数?

(1)学生独立探索。

(2)小组交流。

(3)反馈后总结:要保留两位小数,就要省略百分位后面的数,要看千分位上的数。运用四舍五入法,“千分位上的3不满5,舍去。

2.953≈2.95

师讲解:保留两位小数,表示精确到百分位。

师:6.587你会保留两位小数吗?把你的方法介绍给同学们吧。

2、保留一位小数

(1)小组合作学习。

(2)组内交流,组长汇报交流结果。自己总结:要保留一位小数,就要省略十分位后面的数,要看百分位上的数。百分位上是5,省略尾数后向十分位进1。十分位上9+1=10,满十又要向前一位进一,连续两次进位。

2.953≈3.0

师:近似数3.0末尾的0能不能去掉,为什么?

生一:可以去掉,根据小数的性质:去掉小数末尾的0,小数的大小不变。

生二:0不能去掉,如果去掉就保留到了个位。

师:现在有两种不同意见了。你赞同哪一种说法?小组交流交流。

生交流后,一致认为:0不能去掉。

师:确实,近似数末尾的0不能去掉。它起到“占位和表示精确度”的作用。

师问:刚才我们已知道“保留两位小数,表示精确到百分位。”那么保留一位小数,表示精确到哪一位呢?

生齐答:保留一位小数,表示精确到个位。

3.保留整数

师:你认为该怎样处理呢?把你的意见和同桌交流。

点名汇报:保留整数,表示精确到个位,就要省略个位后面的数,要看十分位上的数。十分位上的9满5,省略尾数后向个位进1。2.953≈3

(二)小结:求小数近似数的方法。

要保留整数(表示精确到个位),就要省略个位后面的尾数,把十分位上的数四舍五入;要保留一位小数(表示精确到十分位),就要省略十分位后面的尾数,把百分位上的数四舍五入……

【反思】

在数学过程中,教师应该充分利用学生的认知规律,已有的生活经验和数学的实际,转化“以教材为本”的旧观念,灵活处理教材,根据实际需要对原材料进行优化组合。数学教学中,要从多方面“找”数学素材和多让学生到生活中“找”数学,“想”数学,真切感受“生活中处处有数学。”根据这一理念,本环节教学时,例题1不是课本中的例题,是我根据学生已有的知识经验而编制的例题,目的是让学生综合应用所学知识和技能解决问题、发展应用意识、在探索中形成自己的观点,能在相互交流和反思的过程中逐渐完善自己的想法。在教学过程中,学生的思维是活跃的,教学采用学生自主探究、合作交流的学习方式,鼓励学生积极主动地参与探索新知的全过程。在小组交流中把学生的思维充分暴露出来,加深学生对“用四舍五入法求小数的近似数”的理解。教师善于提出问题引导学生思考。所提出的问题不论是实际问题还是理论问题都紧密结合教学内容,并编拟成科学的探究程序。所以在教学过程中,我是分层次教学的,重点放在教学“①保留两位小数”的方法上,坚持启发式,让学生多说多讨论,激发学生积极思维,引导他们自己发现和掌握有关规律。教师再帮助分析讲解,使学生的思路更加清晰;在教学“②保留一位小数”时,则问得较少,使学生能根据刚才的知识形成一条清晰的思路。;而“③保留整数”我根本不用讲解,学生就能独立自主地解决问题了。

【片断三】

独立学习,掌握知识。

(一)教学例

2.豆豆身高0.984米,我们可以说豆豆大约高﹎﹎﹎﹎米。(你想保留几位小数就保留几位小数)

学生思考,自由保留小数位数回答出0.984米的近似数,老师板书,请其余的同学说说分别保留了几位小数。

生一:0.984米≈1米

师:你知道他是保留了几位小数?

生二:他是保留到整数的生三:这个数也表示精确到个位

生四:0.984米≈1.0米

生五:这个结果保留了一位小数

生六:也是精确到十分位

生七:我还会保留两位小数0.984米≈0.98米

生八:保留两位小数又表示精确到百分位

(二)师:今天我们学习的知识就在课本第73面。请认真看书73页,核对一下刚才例2中的结果,有什么疑问请提出来。

如果没有疑问,就请找出书中你认为需要掌握的知识,做个记号。然后大声地读出来。

【反思】

传统的课堂教学要求教师重视知识的传授,强调知识的熟练程度,新教材要求只是通过几个问题,几句话,做适当的引导,把更多的时间交给学生,留给大量的时间让学生去思考、去讨论,不仅能教会学生与他人合作,与他人交流思维的过程和结果,而且能培养学生形成实事求是的态度以及进行质疑和独立思考的习惯。因此,在本环节的设计中,我把课本中的例题作为兴趣例题2,发散学生思维,让他们想如何保留就如何去做,既尊重了学生,又掌握了知识。

对于小学生来说,要特别重视学法指导,注意发挥教材在学生学习中的作用,使学生学会自我学习、自我发展。现代科学日新月异,知识的海洋博大无比。我们教师不能也不可能教给学生所有的知识,但是我们可以教给学生获取知识的本领——学会学习,学会看书掌握知识。这种学习的技能一旦形成将终身受益。

【片断四】

畅谈收获,体验成功

师:同学们,这节课我们学习了什么?有什么收获?

生一:我学到了怎样求一个小数的近似数。

生二:我知道求一个小数的近似数也要用四舍五入法

生三:保留整数,表示精确到个位…………

师:那么现在,你再会解决“老爷爷得利息”这个问题吗?

生:(干脆利落)会

师:老爷爷的利息单上写着税后利息:9.547元,你能判一判:付多少利息钱给爷爷比较合理呢?

生一:我认为这个问题就是求小数的近似数。

师:你觉得在实际生活中应该保留几位小数比较合理呢?

生二:我觉得在实际生活中,应该保留一位小数。因为大家都知道,我们现在的用到人民币最小的单位是角。

生三:9.547元≈(9.5)元

群生:(欢喜地)对,应该付9.5元

师:你发现生活中哪些地方有小数?请你大声说出来。你想精确到哪一位?考考你的同桌吧。

生同桌互练。

师:小数的近似数在我们生活中应用非常广泛,请同学们课余留心观察,看还有什么地方有了小数近似数,下节课大家再来继续交流。

【反思】

学生学习数学是“运用所学的数学知识和方法解决一些简单的实际问题的,是必要的日常生活的工具。”引导学生把所学知识联系,运用于生活实际,可以促进学生的探索意识和创新意识的形成,培养学生初步的实践能力。学生在解决完“正确处理老爷爷的利息”后兴奋不已。然后又“参与寻找生活中的小数”过程中,从多方面“找”数学素材和多让学生到生活中“找”数学,“想”数学。这样的设计,不仅贴近学生的生活水平,符合学生的需要心理,而且也给学生留有一些瑕想和期盼,使他们将数学知识和实际生活联系得更紧密,学生真切感受“生活中处处有数学。”体会到了数学在生活中的用处。让数学教学充满生活气息和时代色彩,真正调动起学生学习数学的积极性,培养他们的自主创新能力和解决问题的能力。

【点评与拓展】

《新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。教师应激发学生学习的积极性,向学生提供从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课执教者立足于从现实生活入手,创设教学情景,生成数学问题,引发学生的探索兴趣,交给学生学习方法。体现了“数学源于生活,又用于生活”的教育理念。

灵活地处理教材:《新课程标准》提出:教师要创造性地使用教材,不能拘泥于教材。教材中以单独一个例题(量豆豆的身高)出现,执教者巧妙地做了变动,从生活实际引出学生跳远的成绩2.953米,然后重点教学。使学生体会到生活中有数学,生活中用数学,提高了学生的数学应用意识。把教材的例题作为次重点例2,让学生看图,想保留几位小数就保留几位小数,学生掌握了知识,也提高了兴趣。这些构想和尝试体现了教师对教材使用的科学态度,也表现出了对新教材处理的灵活性。

开放的教学风格:《新课程标准》提出:数学教学要给学生提供充分参与数学活动的机会,让他们学会从数学学习中发现问题,通过合作交流,主动探索,寻找解决问题的方法,弄清数学知识之间的联系和区别,体现学生是数学活动的主体,教师是数学活动的组织者、引导者和合作者的理念。执教者从“爷爷的利息”入手,生成了问题。然后充分尊重学生,让他们谈谈该如何处理……整节课教师在为学生创设民主、开放、和谐的学习氛围,学生学得兴趣盎然。

“教学与方法”、“生活与数学”、“教材与课堂”这些关系的处理,从本节课我们可以看到高老师正在努力尝试……

近似数教学反思10

小数除法经常会出现除不尽的情况,或者商的小数位数较多的情况。但是在实际工作和生活中,并不总是需要求出很多位小数的商,而往往只要求出商的近似值就可以了。本节课是在学生已经学过求一个小数的近似值,以及求小数乘法的积的近似值的基础上进行教学的,这里只是通过例7一道计算钱数的应用题,让学生自己想一想,怎样取商的近似值。由于计算钱数时一般算到“分”就可以了,那么题中的结果应保留两位小数,除的时候要除到千分位,也就是要先算出三位小数。然后让学生自己确定,怎样把小数点后面第三位小数按“四舍五入法”处理。接着,让学生试算“做一做”中的练习题。这一题是让学生根据不同要求取商的近似值。使学生更明确,算出的小数位数都要比要求保留的小数位数多一位,然后按“四舍五入法”省略尾数。

1、在读题中理解题意,渗透思想教育。例题给学生留出了更为自由发挥的空间,一句“从中读出了什么信息”的开放问题,引导着学生建立条件与条件间的联系,培养了学生根据条件提出问题的能力,提高了学生收集、处理信息的水平。

2、在试算中发现问题,联系旧知思考。教师有意制造“除不尽”的矛盾冲突,把学生推到自主探究的前台。学生联系求小数的近似数这一旧知,明确了解决问题的方向——取近似数;把握题目中的一个“元”字,结合已有的关于人民币的处理经验,获得了保留两位小数的信息,使学生亲历了“做数学”的过程,学会了用旧知识解决新问题的策略,体验到了学习数学的快乐。

3、在交流中相互启发,探寻取值方法。除到小数位数的哪一位是求商的近似值的关键,教师以同一问题“还要继续除下去吗?”充分开发和利用教学中的现有资源,加强生生之间的互动,在对比中探寻取值方法,把教学建立在更广阔的交流背景之上,为课堂教学注入新的活力。

4、在小结中对比沟通,形成整体认识。充分利用课堂,致力于学生反思意识的培养,有利于学生把零碎的知识串联起来,建构自己的知识系统;让每一位学生站在元认知的高度重新审视自己的学习方式,这既是对知识本身的反思,更是对整个学习过程的反思,对知识、情感、能力、方法等各个方面的反思,这无论是培养学生从小养成良好的学习品质,还是对学生的终身发展都有着重要的意义。

从课后的练习中来看,学生对于这部分内容的算法是清楚的,但是在笔算的错误率还比较高,还需要对计算技能进行训练。

近似数教学反思11

近似数,学生在二年级下册的时候就已经学过了,有了这一基础知识做铺垫,本节课的内容也将会很容易的被学生接受。这是我上课之前所认为的。

在上课的过程中,学生的反应也很积极,课堂气氛也很活跃,我当时就觉得我之前的认为是正确的。结果,作业收上来一看,我傻眼了,即使上课我把该将的都讲了,该强调的也都强调了,可是,还是有部分学生做的作业一塌糊涂。不是忘了四舍五入,就是保留的小数出错。针对这一问题,我想了想,还是我在上课的时候处理不当。学生反应积极,我就理所当然的认为他们都会,接着,讲课的速度就有点快了。这恰恰就把那些似懂非懂的学生以及完全不懂得学生丢弃了。所以,在下一节课,我还是慢慢的把上节课重点和难点再讲解了一遍,这次,作业情况有很大的改善。

所以,我想以后再简单的内容,我也不会粗心大意,草草了事。

近似数教学反思12

学生在四年级已掌握了求数的近似值的知识和小数乘法,因此这节课的重点是让学生在求出积之后,能够根据题目要求或者现实需要,把积保留若干位小数,所以这节课更多的是让学生了解根据客观生活需要对于乘积进行位数保留。

由于之前已经学习了相关的近似值的知识,所以计算问题我列在了次位,在计算过程中,我注重让学生培养审题能力,尤其是应用题的审题。只有拥有良好的思考问题的能力才能更好的解决问题,能力比问题的对错更有意义。

在上交作业的时候,我发现部分同学不能及时完成作业,于是我分析了原因。经过我的调查我发现,一部分同学是因为基础较差,在计算过程中耗时较长,因此不能及时完成作业,为此,我为其安排了成绩较好的同学为其提供辅导,这种一帮一的做法还是有一定效果的。另一部分同学则是属于比较懒惰,贪玩,自制力较差。对于此类同学,我安排其四周同学轮流对其进行监督,如果不能及时完成作业则不允许其随便出去玩耍,通过一段时间的监督,这部分同学的表现也有了很大改善。对于每位同学只有不放弃,才能让他们得到更好的发展。

近似数教学反思13

1.复习铺垫,激发学生的自信心。

复习铺垫能帮助学生沟通新旧知识的联系,分散难点,从而顺利地完成学习任务。本教学设计在课前复习求一个小数的近似数,为下面的教学做好铺垫,另一方面也加强了知识间的联系。复习时通过不同的方式表扬学生,使学生有信心学好这节课。

2.创设情境,探究新知。

通过创设情境,能够有效地激发学生的学习兴趣,形成认知冲突,唤起求知欲望,使课堂教学充满活力,促进了学生主动学习。本教学设计以学生的自主探究为主线,从学生的生活经验和已有知识出发,将枯燥的教学置于学生熟悉的、感兴趣的现实情境中,让学生在解决现实问题的过程中感受截取商的近似数的必要性。在这一环节积极为学生主动尝试、交流、讨论等创造条件,提供充分探索的时间,让学生在自主合作、探索交流中发现问题

近似数教学反思14

去年教学《近似数》,批阅作业时那个头痛至今都忘不了。一是当时对这节内容没有教学过,心中总是没有一定的“自信”;二是又感觉不会很难,不就是用个“四舍五入法”求一个数的近似数么?导致自己的备课与学生的实际情况有些脱离,所以交上来的作业,可想而知,学生出现的错误直接告诉自己没有上好这一节内容。自我认为很是简单,教材也是安排一个课时结束新知,可实际不然。所以今天在教学这个内容时,把事速度放慢了许多,也打算用2个课时来完成。与其快速没有效果的完成,还不如让学生掌握牢固多用一个课时来消化。

今年放慢了速度,所以在课堂上出现了一些问题,而这些问题也正是让我明白学生对于求一个数的近似数的真实情况,以免后面会忘记,所以特记下来,以备下次之需,同时也改进自己的教学。

问题一:学生明白“四舍五入法”,不明白的是怎么用这个方法。

在讲解完“四舍五入法”时,学生通过其他人的理解和老师的引导,能够接受‘满五要也向前一位进一,不满五就要舍’的道理。但是真正用的时候,他们还是不理解。例如教材中安排了“233184人约等于20万人,说说你是怎么得到的?”有些孩子一下子就明白了,“四舍五入到十万位,就看万位是不是比5大?”;可在今天的课堂中仍然有一些孩子提出自己的“质疑”:那8不是比5大吗?为什么不是“进一”,而是“舍掉”。从这些孩子的理解上出了问题。课堂上没有直接消除他们的疑问,而是由两个孩子说了自己的看法。A说,8在十位上,表示八十,对20万是根本不受影响的。B说,就算是五入,8向前进一位,那也只能说百位上变成,然后不能再继续向前进一位了。C说“233184”在数线上离20万更近,所以约等于20万;其实三个孩子的说法都有一定的理由,同时孩子能在较短的时间内进解述自己的看法,已经是非常了不起。于是在孩子们的想法上,我把“四舍五入”的方法进行了讲解,可还是有一部分人不明白什么“四舍五入到十万”。所以要让学生掌握到关键:四舍五入到哪一位,再看这一位的下一位。

问题二:15000约等于多少?

教材为了让学生理解近似数更接近于哪一个精确的数,安排了一个直观的“数线找位置”的方法,再观察与哪个更接近,再约等于哪个数。这个方法很好,非常直观。课堂当中有一位男生对18000接近于20000,理解就非常好。这个孩子告诉大家,在数线上,先找到15000,如果比15000大一些就近2万,如果比15000小一些就近约等于1万。其实就可以说是直观的“四舍五入法”了。但是有人就提出疑问,那如果正好在中间,15000又是近似哪一个数。

今天这节课虽然没有按照教材的安排一个课时完成,但课堂中学生提出的疑惑让人很是开心。这些暴露在学生中的问题,既是今后在备课教学所需要注意的,也是能看出学生在课堂中有善于思考,学会提出问题。这应该也是课堂中的一个较大的收获。

近似数教学反思15

数学的兴趣和学习数学的信心对学生来说是十分重要的问题,我把学生的生活与数学学习结合起来,让学生熟知.亲近.现实的生活化的数学走进学生视野,进入数学课堂,使数学教材变得具体.生动.直观,使学生感悟,发现了数学的作用与意义,学会了用数学的眼光观察周围的客观世界,增强数学作用意识。我从学生熟悉的“整数四舍五入”和“学生量身高”的生活情境中引入,在讨论、说理的过程中,让学生初步感知学“求小数的近似数”是生活所趋。把它作为实际背景来区分准确数和近似数容易被学生所接受,使学生感受到了数学与人类的密切联系,体会到了数学的价值、增强了用数学的意识和学好数学的愿望和信心。

在教学过程中,我充分利用学生的认知规律,已有的生活经验和数学的实际,转化“以教材为本”的旧观念,灵活处理教材,根据实际需要对原材料进行优化组合。数学教学中,要从多方面“找”数学素材和多让学生到生活中“找”数学,“想”数学,真切感受“生活中处处有数学。”根据这一理念,本环节教学时,例题1是课本中的例题,目的是让学生综合应用所学知识和技能解决问题、发展应用意识、在探索中形成自己的观点,能在相互交流和反思的过程中逐渐完善自己的想法。在教学过程中,学生的思维是活跃的,我采用学生自主探究、合作交流的学习方式,鼓励学生积极主动地参与探索新知的全过程。在小组交流中把学生的思维充分暴露出来,加深学生对“用四舍五入法求小数的近似数”的理解。我提出问题引导学生思考。所提出的问题不论是实际问题还是理论问题都紧密结合教学内容,并编拟成科学的探究程序。所以在教学过程中,我是分层次教学的,重点放在教学“①保留两位小数”的方法上,坚持启发式,让学生多说多讨论,激发学生积极思维,引导他们自己发现和掌握有关规律。教师再帮助分析讲解,使学生的思路更加清晰;在教学“②保留一位小数”时,则问得较少,使学生能根据刚才的知识形成一条清晰的思路。;而“③保留整数”我根本不用讲解,学生就能独立自主地解决问题了。

传统的课堂教学要求教师重视知识的传授,强调知识的熟练程度,新教材要求只是通过几个问题,几句话,做适当的引导,把更多的时间交给学生,留给大量的时间让学生去思考、去讨论,不仅能教会学生与他人合作,与他人交流思维的过程和结果,而且能培养学生形成实事求是的态度以及进行质疑和独立思考的习惯。因此,在本环节的设计中,我发散了学生的思维,让他们想如何保留就如何去做,既尊重了学生,又掌握了知识。

对于小学生来说,要特别重视学法指导,注意发挥教材在学生学习中的作

用,使学生学会自我学习、自我发展。现代科学日新月异,知识的海洋博大无比。我们教师不能也不可能教给学生所有的知识,但是我们可以教给学生获取知识的本领——学会学习,学会看书掌握知识。这种学习的技能一旦形成将终身受益。

这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

但是上完之后,我总觉得:学生掌握得不是很好,尤其是根据“四舍五入法”求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。整节课时间比较紧张,后面巩固练习和课小结的环节有点匆匆过场的味道,与自己曾设想的场景有一定的差距。自己激励性的语言还欠缺,这也将影响到学生的学习情绪。课堂气氛也不够活跃。

5.近似数教学反思 篇五

四年级数学上册《近似数》教学反思在先求近似数再改写这一课中,学生已经在三年级学过估算,能够熟练的对一个数保留整十或整百的数,但是学生表现出来一个问题是,当问题是省略万位以后的数是多少或者保留整万位,学生会做。当问题是四舍五入到万位时,学生就不知道怎么做了,很多学生都做错。原来学习的保留整十或整百,保留的都是最高位,现在让保留的不是最高位时,学生会在最高位再保留一次,导致出现错误。这种情况出现的不多,课堂上没有认真听讲。

学生刚从三年级进入到四年级,所学习的知识在加深,但是学生的思想还没有及时转变过来,过多的沉浸在三年级的学习经验中,会对四年级的学习造成一定的影响,我在上课时要想办法扭转这种现状。在知识的学习中既要注重学生原有知识的应用,还要关注新知识的学习,让新知识在旧知识的基础上衍生出来,学生学起来会更容易,记得牢固。

6.1.7近似数教学设计 篇六

课题:近似数

第课时

设计人李静静审核人李中锋执教人教学预设时间43min

一、教材分析、学情分析

教材分析:前面学习了科学记数法,本节近似数,还有精确度的确定,按照要求写出一个数的精确度,对以后的学习大有帮助。

学情分析:与科学记数法联系,会求一个用科学记数法的数的精确度。

二、学习目标:

1.了解近似数的概念。

2.会判断一个数是不是近似数。3.会确定一个数的精确度。

三、学习“三点”:

教学重点:掌握近似数的概念。

教学难点:判断一个数是不是近似数。易错点:精确度的确定。

四、教学过程:

(一)温故导新

1.用科学记数法表示下列各数。

(1)6400000(2)-260000(3)-20370000 2.下列用科学记数法表示的数,把原数写出来。(1)-3.06107(2)-3.002106 生:写在草稿本上 师:巡视指导

(二)指导自学

指导自学一:

生:预习教材P45-46至第四段,并将P45操作的问题写在草稿本上。师:巡视指导 指导自学二:

生:预习教材P46第五段至P47练习题的上面 师:巡视指导

(三)自主合作、探究新知

一、师:举出是精确值与近似值的例子 生:小组讨论,举手回答

师:什么是准确数?什么是近似数?

生:举手回答

师:准确值是与实际情况完全吻合的数,近似值是与实际数值很接近的数. 师:什么是误差?怎么表示?误差的大小和正负? 生:点名回答

师:误差=近似值-准确值,误差可能是正数也可能是负数,误差的绝对值越小,近似值就越接近准确值,也就是准确程度越高。

(四)点拨拓展

二、师:把你觉得最重要的一句话画出来 生:画出

师:什么是精确度?一般如何表示? 生:小组内交流,报告回答

师:近似数与准确数的接近程度可以用精确度表示(按四舍五入保留小数)师:点拨例3(3)2.40万=24000,2.40万的末位上的数字0位于百位,即精确到百位。

(五)强化训练(作业)

1.下列由四舍五入法得到的近似数,各精确到哪一位?

(1)54.8;(2)0.00204;(3)3.6万.

解:(1)54.8,精确到十分位;(2)0.00204,精确到十万分位;(3)3.6万,精确到千位.

生:每组三名同学写到各自的黑板上,其他同学写在练习本上 师:巡视指导

2.用四舍五入法,按括号里的要求对下列各数取近似值:

(1)0.65148(精确到千分位);(2)1.5673(精确到0.01);(3)0.03097(精确到0.0001);(4)75460(精确到万位);(5)90990(精确到千位).

解:(1)0.65148≈0.651;(2)1.5673≈1.57;(3)0.03097≈0.0310;(4)75460≈8×104;(5)90990≈9.1×104.生:每组五名同学写到各自的黑板上,其他同学写在练习本上 师:巡视指导

(六)归纳总结:

生:小组讨论,各组长发言总结 师:补充总结

1.准确值是与实际情况完全吻合的数,近似值是与实际数值很接近的数。一般测量得到的数都是近似数.

2.一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。近似数精确到哪一位,只需看这个数的最末一位在原数的哪一位。

7.近似数教学设计 篇七

拿到教材,大部分教师会采取自主学习、自主迁移的方法进行教学,重在“法”的指导,忽视了“理”的存在. 一节课下来,课堂效果可谓扎实高效. 课后访问学生: “为什么可以用四舍五入法求小数的近似数? 保留一位小数时为什么只看百分位就可以了? 在表示近似数时,小数末尾的0为什么不能去掉?”学生一脸茫然. 这样的教学果真高效吗? 面对静态呈现的教材内容,我们该如何动态解读教材,充实教材,让学生不仅知其然更能知其所以然呢? 下面,笔者就结合《求小数的近似数》中的三个具体片段来谈,希望对大家有所启发.

【片段一】理解“为什么可以用四舍五入法求小数的近似数?”

由于学生有用“四舍五入”法求整数近似数的知识基础,借助自主迁移掌握方法并不困难,关键在于方法背后的道理. 借助数轴,帮助学生直击问题本质. 具体如下:

根据小数的意义,学生找到了数轴上3. 84所在的位置. 学生还发现了3. 84距离3. 8近一些,所以3. 84≈3. 8. 紧接着,教师追问道: “你还能找出近似数是3. 8的两位小数吗?”学生一下子就找到了3. 83,3. 82,3. 81这几个小数, 而且发现了这四个小数百分位上都是比5小的数,符合了 “四舍”的原理.“3. 89保留一位小数,近似数是多少? 为什么?”教师接着问道. 有了刚才的学习经验,学生很快明白了3. 89≈3. 9的道理. 教师趁热打铁再问: “你还能找出近似数是3. 9的两位小数吗?”话音刚落,学生就说出了3. 86, 3. 87,3. 88这几个小数. 那3. 85呢? 它所在的位置到3. 8和3. 9的距离是一样的. 实际上我们都会习惯地将其往上估,因此得到3. 85≈3. 9. 仔细观察这四个小数,学生发现百分位上都是满5的数,符合了“五入”的原理.

就在这不断追问、不断思考的过程中,学生彻底明白了用四舍五入法求小数近似数背后的道理了: 只要在数轴上位置接近3. 8的,保留一位小数近似数都是3. 8; 位置接近3. 9的,保留一位小数近似数都是3. 9.

【片段二】理解“保留一位小数,为什么只看百分位就可以了?”

在上一环节中,学生已经明白了用四舍五入法求小数近似数背后的道理. 但是,对于“保留一位小数,为什么只看百分位就可以了?”这一问题仍然存在困惑. 同样可以借助数轴帮助学生化解困惑. 具体如下:

教师出示数轴,先引导学生找到3. 841所在的位置,观察数轴上3. 841到3. 8和3. 9之间的距离. 学生发现: 3. 841离3. 8近一些,在保留一位小数时约等于3. 8. 基于这样的认知经验,引导学生在数轴上不断找点,不断追问: “3. 842呢? 3. 843呢? 3. 849呢? 3. 8499呢? 3. 8499999呢? ……”一连串对话下来,学生发现: 这些数只要不超过3. 85, 所在的位置都比较接近3. 8,在保留一位小数时都约等于3. 8.“到底是哪个数位上的数决定了它们在保留一位小数时都约等于3. 8呢?”这是关键性的一问,学生通过观察这一组数据发现了: 是百分位上的4决定的. 也就是说: 只要百分位是4,不管千分位、万分位上的数是几,这些数在保留一位小数时都约等于3. 8.

那如果是3. 87251793或3. 85000000呢? 学生同样可以借助数轴,发现这两个数距离3. 9近一些,保留一位小数时都约等于3. 9. 充分的对话交流中,学生对“保留一位小数时只看百分位就可以了”可以说理解得既透彻又到位.

【片段三】理解“在表示近似数时,小数末尾的0为什么不能去掉?”

为了突破教学难点“2. 04保留一位小数后到底是2,还是2. 0? 这个近似数末尾的0到底该不该去掉?”从而理解 “保留的小数位数越多,求出的近似数就越精确”这一知识点点. 在在教教学学时时可可以以出出示示如如下下数数轴轴:

由于数轴体现了数与形的联系,将数与直线上的点建立起了对应关系,从而使抽象的数有“形”可依. 借助数轴, 引导学生在“找一找、圈一圈、画一画、议一议”的活动中,直观感受到近似数是2的取值范围在1. 5 ~ 2. 5( 不包括2. 5) 之间,范围比较大. 而近似数是2. 0的取值范围在1. 95 ~ 2. 05( 不包括2. 05) 之间,范围比较小. 所以,近似数2. 0比2的精确度要高一些. 也就是说: 保留的小数位数越多,近似数的精确度就越高. 正因为这样,在表示小数近似数时,小数末尾的0不能去掉. 一旦去掉了小数末尾的0,精确度就发生了变化. 这样一来,本课的教学难点就迎刃而解了.

8.浅谈近似数中的两个问题 篇八

关键词 近似数;精确度

近似数是针对准确数而言的,在我们解决实际问题时,所遇到的数一般是近似数。比如我国土地资源部每年都会对我国土地的受灾情况进行统计,在这里若全部使用精确数,显然不现实。再如去商店买1米布料,拉紧一点可能要少一二毫米,拉得松一点可能多一二毫米,这对于做衣是没有多大妨碍的。要做到完全准确是不易办到的,要想比较深入地了解近似数,还必须注意以下两个问题:

一、精确度与有效数字

一个近似数的精确程度就是精确度。一般地,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位;这时从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数的有效数字,如近似数0.05067四舍五入到万分位是0.0507,这时就是精确到万分位;其左边第一个不是0的数是5,从5到0所有的数是507,5左边的两个0不能算,但5与7之间的0要算,所以这个近似数有3个有效数字。

精确度对一个近似数本身而言,精确度越高,其有效数字也越多,比如,3.14159精确到0.01是3.14,精确到0.001是3.142,前者是3个有效数字,而后者有四个。

精确度对于两个或两个以上的近似数而言,其精确的程度就要具体分析了。比如用刻度尺量得书本的长度20.3cm(精确到0.1cm),量得桌子的长度是106.5cm(精确到0.1cm),这就是说这两个近似数与准确数的误差都不超过0.05cm,所以人们常误以为它们精确程度是一样的,

事实上,量书本时,平均每厘米产生的误差最多是 ,而量桌子时,平均每厘米产生的误差最多只有 ,这就是说每度量100cm,前者平均最多产生0.25cm的误差,而后者最多只产生0.05cm的误差,显然后者要比前者的精确程度要高。

从另一个角度看,前者是三个有效数字,而后者是四个有效数字,一个近似数的有效数字越多,其精确程度也越高,这就是有效数字的真实意义,

二、四舍五入的运用

在运用四舍五入取近似值时,精确到哪一位,只需把后面紧跟的一位数字四舍五入就行了。如:

(1)求2.85146的近似值(精确到0.001)

正确解答是2.85146≈2.851

错误解答是2.85146≈2.8515≈2.852

(2)求2.8961的近似值(精确到0.01)。

正确的解答是2.8961≈2.90

错误的解答是2.8961≈2.9

这里的2.90与2.9是不一样的,区别就在于两者的精确度不同。前者精确到0.01,而后者精确到0.1;有数数字不同,前者是三个有效数字,而后者只有两个有效数字。

“四舍五入”对于近似数的处理是一条重要原则,然而针对某些实际问题也不能机械的套用,我们用下面两个例子来说明这个问题。

例1 小明的奶奶要将3.3千克蜂蜜分装在一些玻璃瓶里,每个瓶子最多可盛0.4千克,需要准备几个瓶子?

解答这个问题算式很简单,即3.3÷0.4=8.25≈8(个),这个算式按四舍五入的原则是无可非议的,然而它与实际又不符,因为8个玻璃瓶只能装下0.4×8=3.2(千克)蜂蜜,所以正确的解答是:

3.3÷0.4=8.25≈9(个)

故正确答案应是9个。

像这种根据实际情况,4以下采用“只入不舍”的方法,我们把它叫做近似数的“收尾法”。

例2 某飞机所载油料最多只能在空中连续飞行4小时,飞去的速度为900千米/小时,飞回的速度为850千米/小时,问这架飞机飞出多少千米后就应该返回?(精确到千米)

在解答这个问题时,可直接设未知數,即设飞出x千米后就应该返回,依据题意可得方程

=1748.5……=1749(千米)

这个结论按四舍五入的原则是对的,但面对这个问题的实际就不行了,因为取1749千米,可能就会出现机毁人亡的局面,故应取1748千米,像这种根据实际情况,5以上采取“只舍不入”的方法,我们把它叫做近似数的“去尾法”。

上一篇:儿童节祝福语小篇下一篇:国家职业核心能力培训认证项目背景