初中数学数轴(11篇)
1.初中数学数轴 篇一
变量之间的关系
【学习目标】
1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。
2.在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子。
3.能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测。
【学习方法】自主探究与小组合作交流相结合.
【学习重难点】重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变化情况。
难点:对表格所表达的两个变量关系的理解。
【学习过程】
模块一 预习反馈
一、学习准备
1.我们生活在一个变化的世界中,很多东西都在悄悄地发生变化.
你能从生活中举出一些发生变化的例子吗?
教材精读
1.请同学们观察思考,逐一回答下面的问题:
根据上表回答下列问题:
(1)支撑物高度为70厘米时,小车下滑时间是多少?
(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?
(3)h每增加10厘米,t的变化情况相同吗?
(4)估计当h=110厘米时,t的值是多少,你是怎样估计的?
(5)随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?
支撑物的高度h和小车下滑的时间t都在变化,它们都是 。其中小车下滑的时间t随支撑物的高度h的变化而变化。支撑物的高度h是 ,小车下滑的时间t是 。
在这一变化过程中,小车下滑的距离(木板的长度)一直 变化。像这种在变化过程中 的量叫做 。
我国从1949年到的人口统计数据如下(精确到0.01亿):
(1)如果用x表示时间,y表示我国人口总数,那么随着x的变化,y的变化趋势是什么?
(2)X和y哪个是自变量?哪个是因变量?
(3)从1949年起,时间每向后推移,我国人口是怎样的变化?
(4)你能根据此表格预测时我国人口将会是多少?
在“人口统计数据”中:
时间和人口数都在变化,它们都是 。其中人口数随时间的变化而变化。时间是 ,人口数是 。
归纳:借助表格,我们可以表示因变量随自变量的变化而变化的情况
模块二 合作探究
1.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当氮肥的施用量是101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?
(3)据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由。
(4)粗略说一说氮肥的施用量对土豆产量的影响。
模块三 形成提升
某电影院地面的一部分是扇形,座位按下列方式设置:
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)第5排、第6排各有多少个座位?
(3)第n排有多少个 座位?请说明你的理由。
模块四 小结反思
一、本课知识
1. 变量、自变量、因变量:在某一变化过程中不断变化的量,叫做 ;如果一个变量y随另一个变量x的变化而变化,则把x叫做 ,y叫做 。即先发生变化的量叫做 ,后发生变化或者随自变量的变化而变化的量叫做 。
2.常量: 。
二、我的困惑;
2.初中数学数轴 篇二
关键词:数轴;计算;认识时间
数轴在平面直角坐标系,用于有理数的加减法、比较大小以及计算时间等,简单直观易操作;数轴以其优越的数形结合思想成为学生在学习探索数与代数领域的知识时最受欢迎的工具。纵观北师大版小学数学教材,并没有明确提出数轴的概念,但是数轴却贯穿整个小学阶段。北师大版教科书从一年级开始就引入数线,出现类似尺子的实物图,这实际上是数轴的“雏形”,利用数线既可以体会数的顺序和比较大小,又可以进行计算。
二年级学习乘法口诀时,又出现了数线,数线上相同的长度描述了等差数列,提示了乘法口诀之间内在的关系。三年级判断较复杂的两数的相差关系,都需要借助于数线。四年级求近似数、五年级认识分数、分数单位、分数的基本性质等,都需要用到数显,数线的出现为分数的标记做出了区间定位。所以数轴在小学数学教学中发挥着重要的作用。
一、数轴为认识数提供了直观展示平台
数轴的出现使数与直线上的点建立起对应关系,揭示了数和形的内在联系,成为“数形结合”的基础,使抽象的数变得有“形”可依,为学生数感的建立起到了促进作用。
第一,数轴上的数包含单位长度的数量和排列的方向,提示了数的大小,为学生思考夯实了基础。
第二,数轴上同一个点可以分别用分数、小数和百分数来表示,也可以用不同分数单位的分数来表示,反映出不同数的数值相等关系,便于学生发现数之间的内在关系,提示了一些数的互换。
二、数轴为数的计算提供了思维载体
1.数轴将抽象的“数”直观形象化,也有助于理解运算
借助数轴帮助学生理解运算,需要将计数与图像联系起来,如“加1个”就是与数序中的后一个数相关联,在数轴上表现为向右数;“减1个”则反之。乘法就是在数轴上从原点开始几个几个地向右数,数到几,积就是几;除法则反之。这种在数轴上的移动形式为计算策略提供了依据。
北师大教材把表示乘法的几个几个地数形象化为小动物均匀跳格,这样的“等距离连续跳跃”可以帮助学生进一步理解相同数连加的乘法本质,启发学生用运动、发展、联系的观点建立一个整体的大数轴概念。
2.数线还可以提升学生的数感,进一步提高精确计算的能力
四年级学习近似数时,让学生在数线上标出接近某数的位置,能使学生比较深刻地理解近似数的意义。
在五年级上册的小数除法练习中,有许多在数轴上标出计算结果大概位置的题目。做这种题型时学生的思维经过了三个步骤:先估出计算结果,再找到数线上比较接近计算结果的点,最后思考在该点的左边还是右边,即比该数大还是小。借助数线来完成估算,有利于学生事先把握运算结果的范围,为判断计算器、心算和笔算结果是否合理提供了依据,从而使学生体会数之间的规律,提高判断、选择的能力,是发展学生数感的重要途径。
3.利用数线将数量关系展现在学生面前
在小学数学解决问题中有这样一类题目“差倍问题”,即已知两数之差和两数之间的倍数关系,求出两数。教师都比较喜欢使用两条线段图对比获得数量关系,诚然倍数关系很明了,但是差往往隐藏其中。
例如:甲乙两筐苹果质量相等,从甲筐拿出12千克放入乙筐,结果乙筐苹果的重量是甲筐的4倍,求甲乙两筐原来各有多少千克苹果?
本题难点在于学生找到了倍数关系却找不到对应的差,即不知道乙筐比甲筐多多少千克。为此只需要绘制一条带有正方向的数线来解决问题:根据题意在数线上首先用同一个的点表示原来甲乙的数值,“从甲筐拿出12千克放入乙筐”则表示甲向左返回一段距离即减去12千克,乙向右前进相同的长度即加上12千克。那么很容易看出此时甲乙相差两个12千克,列式为:
(12×2)÷(4-1)=8(千克)
8+12=20(千克)
答:原来各有20千克。
利用数线解决这样的问题,可以直观、清晰地将数量关系展现在学生面前,方便学生很快解题,同时也锻炼了学生的数感和结题思维。
三、数轴为认识时间扫清了障碍
北师大版教材三年级上册开始计算经过的时间,其中有两个非常重要却又极易混淆的概念:“时刻”与“时间”。如果教师借助数轴来表示就简单多了:“时刻”是数轴线上的某一个点,而“时间”是两个点之间的距离。这使复杂的关系变得简捷明了,抽象的概念变得具体形象,只需要用数轴上右边点对应的时刻减去左边点对应的时刻即可计算经过的时间。
数轴在数学学习中的应用,对于培养学生的数学思维、理性思维具有重要的意义,在小学阶段打好数线基本知识的积累,为学生今后的数学学习奠定基础。
3.初一数学数轴教案人教版 篇三
教学目标: 1、使学生在现实情境中理解有理数加法的意义
2、经历探索有理数加法法则的过程,掌握有理数加法法则,并能准确地进行加法运算。[]
3、在教学中适当渗透分类讨论思想。
重点:有理数的加法法则
重点:异号两数相加的法则
教学过程:
二、讲授新课
1、同号两数相加的法则
问题:一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作-5m。如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少?
学生回答:两次运动后物体从起点向右运动了8m。写成算式就是5+3=8(m)
教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?
学生回答:两次运动后物体从起点向左运动了8m。写成算式就是(-5)+(-3)=-8(m)
师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。
2、异号两数相加的法则
教师:如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向哪个方向运动了多少米?
学生回答:两次运动后物体从起点向右运动了2m。写成算式就是5+(-3)=2(m)
师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两个数相加得零。
教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?
学生回答:经过两次运动后,物体又回到了原点。也就是物体运动了0m。
师生共同归纳出:互为相反数的两个数相加得零
教师:你能用加法法则来解释这个法则吗?
学生回答:可用异号两数相加的法则来解释。
一般地,还有一个数同0相加,仍得这个数。
三、巩固知识
课本P18 例1,例2、课本P118 练习1、2题
四、总结
运算的关键:先分类,再按法则运算;
运算的步骤:先确定符号,再计算绝对值。
注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。
五、布置作业
课本P24习题1.3第1、7题。
初一数学数轴教案人教版2
一、教学目标设计
[知识与技能目标]
1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。
2、通过应用绝对值解决实际问题,体会绝对值的意义和作用。
[过程与方法目标]
限度的发挥学生的主体参与,让学生在教师的引导启发,师生的交流与探索下,轻松愉快地学到新知识。
[情感态度与价值观]
借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想,让学生采取自主探索,合作交流的学习方式。
二、教材解读
借助数轴引出对绝对值的概念,并通过计算、观察、交流、发现绝对值的性质特征,利用绝对值来比较两个负数的大小。
让学生直观理解绝对值的含义,不要在绝对值符号内部出现多重符号和
字母,多鼓励学生通过观察、归纳、验证。
、教学过程设计与分析
一、情境导入
[课件展示,激趣感知]
博物馆、农场到学校与学校到博物馆农场的距离的关系。
[媒体展示课件,认知生活中的有些问题]
不考虑相反意义,只考虑具体数值。
[创设情境,实例导入]利用动画展示,让学生在有趣的图画中感受绝对值激发学生的兴趣。
实物的形象符合学生心理,学生兴趣很高,踊跃发言,95%的学生能顺利的解决问题。
师生互动
[提出问题,引发讨论]
1、引导学生得出绝对值定义及表示方法。
2、同桌之间互相举例。
[展示:启发学生交流了解绝对值]
归纳绝对值概念,教师指出表示方法。
[师生互动、探索新知]:学生根据情境感知初步认知绝对值,并通过对其概念的理解求解一个数的绝对值。
同桌之间举例,效果良好,体现了“自主——协作”学习。
阅读课文,互动探索
求解各数的绝对值后讨论
1、想一想互为相反数的两个数的绝对值有什么关系?学生举例,并进行观察、比较、归纳。
2、议一议一个数的绝对值与这个数有什么关系?小组讨论、交流教师引导学生用自己的语言描述所得结论教师质疑:一个数的绝对值是否为负数?学生通过分析理解绝对值的内在涵义。
阅读课文:从各数的绝对值归纳绝对值的代数意义。
[阅读课文:“想一想]提出问题,引起学生的思考。
[阅读课文:“议一议]
学生分析各类数的绝对值与本身的关系,并对教师的质疑进行深究。
[趣引妙答,思路点拨]通过学生举例思考,对互为相反数的两个数的绝对值进行观察对比,从而得到它们的关系。
学生从“特殊——一般”分类归纳绝对值的代数意义,并通过归纳总结出绝对值的内在涵义,体现学生的主体性。
积极调动学生的思维,使学生在协商、讨论中将问题逐渐明朗化、具体化,在共享集体思维成果的基础上达到对当前所学内容比较全面、正确的理解。
3、做一做
[激趣探知]
教师出示过关题目
学生通过自主探索最终找到两个负数比较大小的方法,绝对值大的反而小。
师生归纳两页数比较大小的两种方法。
[探索用绝对值比较两负数的方法]
体验概念的形式过程
旧知识的引用,让学生在轻松愉快的环境中获取新知,从已有知识逐渐到新知识,不但可激发学生的兴趣,并且培养学生的探索精神,同时分解了本节的难点。
从旧知识层层引入,学生兴趣十足,提高了教学效果,突破了难点,学生接受轻而易举。
巩固练习
[绝对值比较两负数大小的运用]
情境:比较下列每组数的大小。
[媒体展示,出示习题]:
运用绝对值比较负数大小。
[变成训练,巩固反馈]
继续对绝对值比较负数大小进行巩固练习。
由以上练习层层深入,学生解决问题的能力大大提高,并且印象深刻。
知识延伸
[学生探究,教师点拨]
[媒体展示]
绝对值定义,代数意义及内在涵义的的灵活应用。
[知识延伸,目标升华]
充分发挥学生的自主探索能力,使学生能够深入、细致的理解知识点。
学生能够互相评点,共同探索,既发展了自主学习能力,又强化了协作精神。
初一数学数轴教案人教版3
一、内容简介
本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
关键信息:
1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。
2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。
二、学习者分析:
1、在学习本课之前应具备的基本知识和技能:
①同类项的定义。
②合并同类项法则
③多项式乘以多项式法则。
2、学习者对即将学习的内容已经具备的水平:
在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。
三、教学/学习目标及其对应的课程标准:
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理
数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。
(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同
角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难
和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。
四、教育理念和教学方式:
1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。
教学是师生交往、积极互动、共同发展的过程。当学生迷路的时
候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。
2、采用“问题情景—探究交流—得出结论—强化训练”的模式
展开教学。
3、教学评价方式:
(1) 通过课堂观察,关注学生在观察、总结、训练等活动中的主
动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。
(2) 通过判断和举例,给学生更多机会,在自然放松的状态下,
揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。
(3) 通过课后访谈和作业分析,及时查漏补缺,确保达到预期的
教学效果。
五、教学媒体 :多媒体 六、教学和活动过程:
教学过程设计如下:
〈一〉、提出问题
[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析问题
1、[学生回答] 分组交流、讨论
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,
(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。
(1)原式的特点。
(2)结果的项数特点。
(3)三项系数的特点(特别是符号的特点)。
(4)三项与原多项式中两个单项式的关系。
2、[学生回答] 总结完全平方公式的语言描述:
两数和的平方,等于它们平方的和,加上它们乘积的两倍;
两数差的平方,等于它们平方的和,减去它们乘积的两倍。
3、[学生回答] 完全平方公式的数学表达式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、运用公式,解决问题
1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
(m+n)2=____________, (m-n)2=_______________,
(-m+n)2=____________, (-m-n)2=______________,
(a+3)2=______________, (-c+5)2=______________,
(-7-a)2=______________, (0.5-a)2=______________.
2、判断:
( )① (a-2b)2= a2-2ab+b2
( )② (2m+n)2= 2m2+4mn+n2
( )③ (-n-3m)2= n2-6mn+9m2
( )④ (5a+0.2b)2= 25a2+5ab+0.4b2
( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2
( )⑥ (-a-2b)2=(a+2b)2
( )⑦ (2a-4b)2=(4a-2b)2
( )⑧ (-5m+n)2=(-n+5m)2
3、小试牛刀
① (x+y)2 =______________;② (-y-x)2 =_______________;
③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;
⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;
⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.
〈四〉、[学生小结]
你认为完全平方公式在应用过程中,需要注意那些问题?
(1) 公式右边共有3项。
(2) 两个平方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
〈五〉、冒险岛:
(1)(-3a+2b)2=________________________________
(2)(-7-2m) 2 =__________________________________
(3)(-0.5m+2n) 2=_______________________________
(4)(3/5a-1/2b) 2=________________________________
(5)(mn+3) 2=__________________________________
(6)(a2b-0.2) 2=_________________________________
(7)(2xy2-3x2y) 2=_______________________________
(8)(2n3-3m3) 2=________________________________
〈六〉、学生自我评价
[小结] 通过本节课的学习,你有什么收获和感悟?
本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。
〈七〉[作业] P34 随堂练习P36习题
初一数学数轴教案人教版4
学习目标
1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.毛
2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.
重点难点
同位角、内错角、同旁内角的特征
教学过程
一·导入
1.指出右图中所有的邻补角和对顶角?
2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?
若都不是,请自学课本P6内容后回答它们各是什么关系的角?
二·问题导学
1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成“直线 和直线 与直线 相交” 也可以说成“两条直线 , 被第三条直线 所截”.构成了小于平角的角共有 个,通常将这种图形称作为“三线八角”。其中直线 , 称为两被截线,直线 称为截线。
2. 如图⑶是“直线 , 被直线 所截”形成的图形
(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如“ ” 字型.具有这种关系的一对角叫同位角。
(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如“ ” 字型.具有这种关系的一对角叫内错角。
(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如“ ” 字型.具有这种关系的一对角叫同旁内角。
3.找出图⑶中所有的同位角、内错角、同旁内角
4.讨论与交流:
(1)“同位角、内错角、同旁内角”与“邻补角、对顶角”在识别方法上有什么区别?
(2)归纳总结同位角、内错角、同旁内角的特征:
同位角:“F” 字型,“同旁同侧”
“三线八角” 内错角:“Z” 字型,“之间两侧”
同旁内角:“U” 字型,“之间同侧”
三·典题训练
例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?
小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;
两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;
自我检测
⒈如图⑷,下列说法不正确的是( )
A、∠1与∠2是同位角 B、∠2与∠3是同位角
C、∠1与∠3是同位角 D、∠1与∠4不是同位角
⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.
⒊如图⑹, 直线DE截AB, AC, 构成八个角:
① 指出图中所有的同位角、内错角、同旁内角.
②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?
⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .
①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.
②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)
相交线与平行线练习
课型:复习课: 备课人:徐新齐 审核人:霍红超
一.基础知识填空
1、如图,∵AB⊥CD(已知)
∴∠BOC=90°( )
2、如图,∵∠AOC=90°(已知)
∴AB⊥CD( )
3、∵a∥b,a∥c(已知)
∴b∥c( )
4、∵a⊥b,a⊥c(已知)
∴b∥c( )
5、如图,∵∠D=∠DCF(已知)
∴_____//______( )
6、如图,∵∠D+∠BAD=180°(已知)
∴_____//______( )
(第1、2题) (第5、6题) (第7题) (第9题)
7、如图,∵ ∠2 = ∠3( )
∠1 = ∠2(已知)
∴∠1 = ∠3( )
∴CD____EF ( )
8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)
∴∠1 = ∠3( )
9、∵a//b(已知)
∴∠1=∠2( )
∠2=∠3( )
∠2+∠4=180°( )
10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.
二.基础过关题:
1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。
证明:∵∠A=∠F ( 已知 )
∴AC∥DF ( )
∴∠D=∠ ( )
又∵∠C=∠D ( 已知 ),
∴∠1=∠C ( 等量代换 )
∴BD∥CE( )。
2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。
证明:∵∠B=∠BGD ( 已知 )
∴AB∥CD ( )
∵∠DGF=∠F;( 已知 )
∴CD∥EF ( )
∵AB∥EF ( )
∴∠B + ∠F =180°( )。
3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.
初一数学数轴教案人教版5
学习目标
1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛
2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角
重点、难点
重点:邻补角、对顶角的概念,对顶角性质与应用.
难点:理解对顶角相等的性质的探索.
教学过程
一、复习导入
教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.
学生欣赏图片,阅读其中的文字.
师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.
二、自学指导
观察剪刀剪布的过程,引入两条相交直线所成的角
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.
三、问题导学
认识邻补角和对顶角,探索对顶角性质
(1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流.
∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.
∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.
( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.
(3).概括形成邻补角、对顶角概念.
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.
四、典题训练
1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
2.:判断下列图中是否存在对顶角.
小结
自我检测
一、判断题:
1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )
2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )
二、填空题:
1.如图1,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF 的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.
(1) (2)
2.如图2,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________.
三、解答题:
1.如图,直线AB、CD相交于点O.
(1)若∠AOC+∠BOD=100°,求各角的度数.
(2)若∠BOC比∠AOC的2倍多33°,求各角的度数.毛
2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?
4.初中数学数轴 篇四
金海河
本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。通过本节课的学习,使学生初步了解数轴的结构,会利用数轴表示一个有理数,还会借助数轴比较几个有理数的大小等问题,为今后充分有效利用数轴这个工具打下牢固的基础。七年级学生的理解能力和思维特征是,他们的抽象能力和想象能力都不强,往往需要依赖直观形象的图形解决问题,而此时七年级学生刚刚学习有理数中的正负数,对正负数的概念理解还不很深刻,造成许多学生知识的遗忘和混淆,对有理数的分类特别混乱。
为使课堂高效、生动、针对性强,我一贯坚持走课改之路,积极探索,大胆实践,力争走出适合我校的课改成功之路。课堂教学中我经常把学生自学、小组讨论、展示交流贯穿于整个教学始终,采用多种有效地教学模式,注意师生之间的情感交流,并教给学生“多观察、多动脑、大胆猜、勤钻研”的研讨式学习方法。在教学中,充分发挥学生的主体作用,给学生创造更多的表现机会和活动空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生形成数形结合的思想。
一、教学流程:
(一)、温故知新,激发兴趣:
首先提出问题:有理数包括那些数?一生回答后让大家讨论:你能找出用刻度表示这些数的实例吗?学生会举出很多例子,但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计,并读出数据(正确的表达方法):
(1)零上5°C用 5 表示。(2)零下15°C 用-15 表示。(3)0°C 用 0 表示。
然后让大家思考:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数、负数和0呢?(答案是肯定的,从而引出课题:数轴。)
(这样设计,对刚刚学习了有理数中的正负数,对正负数的概念理解还不够深刻,容易造成知识遗忘的七年级学生来说是比较合理的。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于生活,同时对新知识的学习有了期待,为顺利完成本节课的教学任务作了充分的思想准备。)
(二)、得出定义,揭示内涵:
教师设问:到底什么是数轴?如何画数轴呢?(然后学生开始看书自学,教师巡回指导,掌握学生的自学情况)
(1)画直线,取原点(2)标正方向(3)选取单位长度,画完数轴后小组开始进行讨论,并且完成讨论题:“怎样用数学语言来描述数轴?”(教师参与学生的讨论,并给与指导)通过讨论最终得出数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。(至此,我们将一个具体的事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论的认识过程,完成了第一个教学目标:使学生理解数轴的三要素,会画数轴。)
(三)、手脑并用,深入理解:
1、让学生讨论:给出图形哪些是数轴,哪些不是,为什么?
(通过练习总结问题中容易出现的几种常见的错误:负数次序不对、没有方向、没有原点、单位长度不统一)
给学生足够的观察、思考的时间然后展开充分的讨论,教师参与到学生的讨论之中去接触学生,认识学生,关注学生,了解学生。
2、为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练习本上画一个数轴(请三个小组同学到黑板上去画,加以巩固所学知识),学生在画数轴时教师巡视并给予个别指导,关注学生的个体发展,画完后教师给出评价,如“很好”、“很规范”、“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并强调:原点、正方向和单位长度是数轴的三要素,画数轴时这三要素缺一不可,从而达到强化数轴概念的作用。(对数轴概念和数轴的三要素,学生不易理解,容易造成画图中丢三落四的现象,所以教学中教师针对容易出现的问题给予强调。而我设计以上两个练习的目的正是:
一、通过动手操作加深对概念的理解;
二、动脑想,通过观察、分析、判断正误来加深对正确概念的理解。)
(四)、启发诱导,初步运用:
有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴上的点是否都表示有理数呢?(作为一个问题我让学生去思考,为后面实数的学习打下伏笔,这里不再展开。)例 在数轴上画出表示下列各数的点: 3.5,-1.5,0,6,-4 A点表示-4; B点表示-1.5;O点表示0; C点表示3.5;D点表示6.
利用黑板上的例题图形让学生来动手操作,教师提出要求,结合学生所画的情况,再加以点拨强调:
1、要把点标在线上
2、要把数标在点的下方
这时,此题再拓展成说出几个有理数让学生去标点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解。(通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点表示数的方法,同时激发学生的学习兴趣,调动学生的积极性,从而使学生真正成为教学的主体。)
从上面的例子不难看出,在数轴上表示的两个数,右边的数总比左边的数大,又从正数和负数在数轴上的位置,可以很自然地得出两个有理数的大小关系:
(1)在数轴上表示的两数,右边的数总比左边的数大。(2)正数都有大于0,负数都小于0,正数大于一切负数。(3)比较大小时,要注意不等号的使用要与题的要求一致。
(因此也完成了第二个教学目标:学生会用数轴上的点表示有理数;会利用数轴比较有理数的大小;并在这个学习过程中,初步了解数形结合的思想方法,培养了学生用联系的观点看待问题。)
(五)巩固所学,拓展提高:
(为巩固本节的教学重点,让学生独立完成下面的问题:)
1、课本9页练习1、2,2、课本14页2题的(让几个小组分别板书并讲解)
3、数轴上的点P与表示有理数3的点A距离是2,(1)试确定点P表示的有理数;
(2)将A向右移动2个单位到B点,点B表示的有理数是多少?(3)再由B点向左移动9个单位到C点,则C点表示的有理数是多少?(先让小组进行讨论,然后根据得出的结果,使学生在掌握知识的基础上达到灵活运用,并形成一定的能力。)
(六)、总结归纳,形成思想: 根据学生的特点,师生共同小结:
1、为了巩固本节课的教学重点提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数?
2、深化提高:数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?(让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数,它们之间不存在“一一对应”的关系,为以后学习实数打下伏笔。)
二、检查课堂教学效果
小学里学生曾学过利用直线上的点来表示数,本节课学生在知识技能、情感态度和价值观上得到了新的发展:
1、数轴的概念:数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了
教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。
2、关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点并不都表示有理数这一事实,也就是数轴上的点和有理数并不存在“一一对应”的关系。根据几个有理数在数轴上所对应的点的相互位置关系,能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想,让学生知道数学来源于生活实践,培养学生用相互联系的方法解决问题的能力。
三、课堂教学评析
有了数轴,数和形得到了初步结合,这有利于学生对数学问题的研究,数形结合是学生理解数学、学好数学的重要思想方法。
为了突出正确理解数轴的概念和有理数在数轴上的表示方法这个教学重点,突破建立有理数与数轴上的点的对应关系(数与形的结合)这个教学难点,在本节课的教学过程中,我始终注意发挥学生的主体作用,让学生通过自主学习、合作探究、展示交流来主动发现数学知识和数学结论,实现师生互动,通过这样的课堂教学模式取得了良好的教学效果,学生在课堂上获得了所学的知识,并且思维能力也得到了新的发展。
5.-《数轴》 - 副本 篇五
广河县第五中学 魏骊颖
我说课的内容是人教版七年级教科书第一册第二章第二节“数轴”的第一课时内容。下面我将从教材分析、教学目标、教法与学法、教学过程、板书设计、效果预测等几个方面对本节课的教学设计进行说明。
一、教材分析:(一)教材的地位及作用
数轴是人教版七年级上册第一章第二节有理数的重点内容之一,本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一实例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。
(二)学情分析
1.从心理特征来说,七年级学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力尽可能集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
2.从认知状况来说,七年级学生刚刚学习了有理数中的正负数,这为顺利完成本节课的教学任务打下了基础,但学生对于正负数的
在教学中不仅要使学生“知其然”,而且要使学生“知其所以然”,我们在以学生既为主体又为客体的原则下,展现获取知识和方法的思维过程,因为新课标和新理念认为,获得数学知识的过程比获得知识更为重要。基于本节课的特点以及学生的理解能力,为使课堂生动、有趣、高效,我将观察、思考与讨论贯穿于整个教学环节之中,主要以参与式、探究式的教学方法为主,充分利用多媒体教学技术生动形象展示出数轴的相关知识,从而引导学生自主探索,学会数形结合的数学思想。
(二)学法
为使学生主动学习,本节课采用学生小组合作、讨论交流、观察发现、师生互动的学习方式。教学中积极利用板书和练习中的图形,向学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,进而培养学生良好的学习习惯。
四、教学过程
为充分发挥学生的主体性和教师的主导作用,教学过程中我设计了七个教学环节:
(一)温故知新 引入课题(二)得出定义 揭示内涵(三)强化概念 深入理解(四)例题示范 初步运用(五)分层练习形成能力(六)归纳小结 强化思想(七)布置作业 引导预习
为正方向,由于我们只能画出直线的一部分,因此标上箭头指明正方向。)
(3)选取单位长度,标数(这里说明任选适当的长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3等依次类推,从原点向左每隔一个单位长度取一点,依次表示-
1、-
2、-3等依次类推。单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)
设计意图:画完数轴后教师引导学生讨论:怎样用数学语言来描述数轴?(通过教师的亲切的语言启发学生,以培养师生间的默契。)通过讨论由师生共同得到数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。至此,我们将一个具体的事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论的认识过程。
强化概念 深入理解
1.课件显示一组图形(A、B、C三个图形从数轴的三要素出发,D和F是学生可能出现的错误,在这里给出前馈,避免学生在画数轴时出现类似的错误。),让学生观察并讨论:下列图形哪些是数轴,哪些不是,为什么?这个问题将给学生足够的时间去观察、思考,然后展开充分的讨论,教师参与到学生的讨论中去接触学生,认识学生,并关注学生。
2.为进一步强化概念,在对数轴有了正确认识的基础上,让学生在练习本上画一个数轴,(请两位同学画在黑板上)学生在画数轴时教师巡视并予以个别指导,关注学生的个体发展,画完后教师以
当然,此题还可以再说出几个有理数让学生去标点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解。
分层练习形成能力
1.数轴上的点P与表示有理数3的点A的距离是2,(1)试确定点P表示的有理数。
(2)现将A向右移动2个单位到B点,则点B表示的有理数是 多少?
(3)再由B点向左移动9个单位到C点,则C点表示的有理数是多少?
设计意图:先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。
归纳小结 强化思想
根据学生的特点,师生共同小结:
1.数轴的概念、数轴的三要素。2.用数轴上的点表示有理数的方法。
3.所有的有理数都可以用数轴上的点来表示。
让学生小组讨论:数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?教师强调:一个有理数,只对应数轴上的一个点。
布置作业 引导预习
结合学生的能力层次,为面向全体学生,安排如下: 1.在数轴上表示下列各数:
3
6.数轴教案 篇六
教学目标:
1.使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示; 2.向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想。
3.使学生进一步理解有理数与数轴上的点的对应关系;巩固在数轴上由数找点、由点读数的方法;4.会借用数轴直观的进行有理数的大小比较,体会数形结合的数学思想。
教学重点:是掌握数轴的概念和画法,明确其三要素缺一不可;利用数轴比较有理数的大小,并归纳出一般规律。
教学难点:数轴上的点与有理数的对应关系的理解是难点。教学中要求学生多动手,增强对“形”的感性认识,培养动手、动脑和实际操作能力。【流程设计】
一、情景创设
1.有理数包括哪些数?0是正数还是负数?
2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直数学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。链接课件素材20301,展示实物模型,演示从温度计抽象成数轴的动画,激发学生学习兴趣,使学生受到把实际问题抽象成数学问题的训练,同时把类比的思想方法贯穿于概念的形成过程。
二、新知探索
1.请学生阅读新课第52-53页,思考并讨论:
①零上25℃用正数_____表示。0℃用数____表示;零下10℃用负数_____表示。②数轴要具备哪三个要素?
③原点表示什么数?原点右方表示什么数?原点左方表示什么数? ④表示+2的点在什么位置?表示-3的点在什么位置?
⑤原点向右0.5个单位长度的A点表示什么数?原点向左11个单位长度的B点表示
2尺、弹簧秤等)?
什么数?
2.数轴的画法
师生共同总结数轴的画法步骤:
第一步:画一条直线(通常是水平的直线),在这条直线上任取一点O,叫做原点,用这点表示数0;(相当于温度计上的0℃。)
第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来)。相反的方向就是负方向;(相当于温度计0℃以上为正,0℃以下为负。)
第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度。(相当于温度计上1℃占1小格的长度。)
在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,„,从 原点向左,每隔一个单位长度取一点,它们依次表示–1,–2,–3,„。
3.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的取向、单位长度大小的确定,都是根据需要认为规定的。直线也不一定是水平的。
链接课件素材20302,动态演示各种类型的数轴。认识和掌握判断一条直线是不是数轴的依据。
4.温度计里的大小:观察温度计的刻度,发现上边的温度总比下边的高。类似地,在数轴上表示的两个数,右边的数总比左边的数大。
进一步观察数轴,发现所有的负数都在“0”的左边,所有的正数都在“0”的右边,这说明什么? 由学生归纳出: 正数都大于0;负数都小于0;正数大于一切负数。
三、范例共做
例1:判断下图中所画的数轴是否正确?如不正确,指出错在哪里?
分析:原点、正方向、单位长度这数轴的三要素缺一不可。
解答:都不正确,(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致。
例2:把下面各小题的数分别表示在三条数轴上:
(1)2,-1,0,32,+3.5 3(2)-5,0,+5,15,20;
(3)-1500,-500,0,500,1000。
分析:要在数轴上表示数,首先要正确画出数轴,标明原点、正方向(一般从左到右为正方向)和单位长度这三要素,然后再表示数,第(1)题,数不大,单位长度取1cm代表1,第(2)、(3)题数轴较大,可取1cm分别代表5和500。数轴上原点的位置要根据需要来定,不一定要居中,如第(1)题的原点可居中,(2)的原点可偏左,(3)的原点可偏右,单位长度也应根据需要来确定,但在同一条数轴上,单位长度不能变。表示某个数的点,在图形上一定要用较大的“.”突出来,并且在数轴上写出该点表示的数。这样画出的图形较合理、美观。
例3:借助数轴回答下列问题
(1)有没有最小的正整数?有没有最大的正整数?如果有,把它指出来;(2)有没有最小的负整数?有没有最大的负整数?如果有,把它标出来。解答:观察数轴易知:
(1)有最小的正整数,它是1,没有最大的正整数;
(2)没有最小的负整数,有最大的负整数,它是-1.
例4:比较–3,0,2的大小。
分析一:先在数轴上分别找到表示–3、0、2的点,由“右边的数总比左边的数大”得到–3<0<2;
分析二:直接由“正数都大于0;负数都小于0;正数大于一切负数”的规律得出–3<0<2。
例5:把下列各组数用“<”号连接起来.(1)–10,2,–14;(2)
5–100,0,0.01;
(3)34,–4.75,3.75。解:(1)–14<–10<2;(2)–100<0<0.01;(3)–4.75<3.75<34。
说明:按题意用“<”号连接,解题中不能用“>”号连接,否则与题意不符,更不能把“<”与“>”混用,如第(1)小题不能写成“–10<2>–14”或者写成“2>–14<–10”的形式。
四、检测反馈
1.判断下图中所画的数轴是否正确?
(1)
2.下面数轴上的点A、B、C、D、E分别表示什么数?
(2)
3.将-
3、1.5、21、-
6、2.25、1、-
5、1各数用数轴上的点表示出来。
224.画一条数轴,并在上面标出下列的点。
±100 ±200 ±300 提示:1.图(1)是数据标注错误;图(2)的画法是正确的,在以后的学习中会遇到。
五、小结提高
1.数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但反过来并不是数轴上的所有点都表示有理数;
2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确。
六、巩固练习
教材P.56 1、2、3
七、课后思考
1.一个点从原点开始,按下列条件移动两次后到达终点,说出它是表示什么数的点?(1)向右移动11个单位长度,再向左移动2个单位。
2(2)向左移动3个单位长度,再向左移动2个单位长度。
2.数轴上表示3和-3的点离开原点的距离是多少?这两个点的位置有什么不同? 3.数轴上到原点的距离是5的点有几个?它们分别表示什么数?
4.某数轴的单位长度是1cm,若在这个数轴上随意画一条长100cm的线段AB,则线段AB盖住的整数点有()A.99个或100个
C.99个或101个
教后感:
B.100个或101个
7.数轴定义 篇七
数轴定义:规定了原点(origin),正方向和单位长度的直线叫数轴。所有的实数都可以用数轴上的点来表示。也可以用数轴来比较两个实数的大小。画一条水平直线,在直线上取一点表示0(叫做原点,origin),选取某一长度作为单位长度(unit length),规定直线上向右的方向为正方向(positive direction),就得到数轴。所以原点、单位长度、正方向是数轴的三要素。利用数轴可以比较实数的大小,数轴上从左往右的点表示的数就是按从小到大的顺序。
几何意义:数轴是一种特定几何图形;原点、正方向、单位长度称数轴的三要素,这三者缺一不可。
1)从原点出发,朝正方向的射线(正半轴)上的点对应正数,相反方向的射线(负半轴)上的点对应负数,原点对应零。
2)在数轴上表示的两个数,右边的数总比左边的数大。3)正数都大于0,负数都小于0,正数大于一切负数。
注:单位长度则是指取适当的长度作为单位长度,比如可以取2m作为单位长度“1”,那么4m就表示2个单位长度。长度单位则是指米,厘米,毫米等表示长度的单位。
二者不容混淆。
任何一个实数都可以用数轴上的一个点来表示。
相反数:只有符号不同的两个数叫做互为相反数,其中的一个数叫做另一个数的相反数。
(a≠0)a的相反数是-a,0的相反数是0。
绝对值:数轴上表示一个数的点离原点的距离就叫做这个数的绝对值
一个正数的绝对值是它本身,一个负数的绝对值是它的相反数。0的绝对值是0。公式|a|=? 若a大于0,则a的绝对值还等于a; 若a等于0,则a的绝对值等于0 ;
若a小于0,则a的绝对值等于-a。性质 绝对值有非负性 有理数比较大小:
一切正数大于0,0大于一切负数,正数大于一切负数。
说明:数轴上右边的数总比左边的数大,两个负数相比较,绝对值大的反而小。
数轴的作用:
(1)规定了原点、正方向和单位长度的直线叫做数轴.
这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不可.二是这三个要素都是规定的.
(2)数轴能形象地表示数,数轴上的点和实数成一一对应,即每一个实数都可以用数轴上的一个点来表示.
(3)比较大小,以0为中心,右边的数比左边的数大!
8.《数轴示数》教案 篇八
一、回顾复习旧知
1、读数,指出哪些是正数,哪些是负数?
-62.9 +0.16 -4/5 +7/120 +305 -88
二、新课讲授
1、教学例3。
(1)教师:怎样用数来表示这些学生和大树的相对位置关系呢?
组织学生在小组中议一议,然后汇报。
(2)教师结合学生的汇报,用课件出示数轴,在相应点的下方标出对应的数。
(3)让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(4)教师总结:
我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。
2、观察数轴,比较数的.大小。
引导学生观察数轴。
①从0起往右依次是?从0起往左依次是?你发现什么规律?
②在数轴上分别找到
1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?
师及时小结:
数轴除了可以表示整数,还可以表示小数、分数。每个数都能在数轴上找到它们相对应的点。
三、巩固练习
1、完成教材第5页的“做一做”。
学生独立练习,指名汇报。
2、完成教材第6页练习一的第4、5题。
组织学生独立完成,并在小组中相互交流、检查。
四、课堂小结
9.《数轴》教学反思 篇九
在进入新课时,又借助实物让学生对数轴有一个感性的认识,引导学生回答在实际生活中类似于温度计的例子,让学生注意力集中,思维活跃。
教师对教材中的例1进行灵活性的解释,学生通过实际生活中的具体模型归纳他们所具有的共同特点,从而得出数轴的定义,教学中应在学生的归纳处突出数轴的三要素,学生踊跃发言,共同不漏,兴趣提升,课堂气氛活跃。
在这节课的教学过程中,学生的思维始终保持高度的活跃的性,出现了很多的闪光点,对我的启发也很大。
在教学中应把握教材的精神,创造性的利用教材,在设计安排和组织教学过程的每一个环节都应当很意识的体现探索的内容和方法,避免教学内容的过分抽象和形成化,使学生通过直观感受去理解和把握体验数学学习的乐趣。积累数学活动经验,体现数学学习的乐趣,积累数学活动经验,体验数学思维的意义,让学生在中学中逐步形成创新意识。
本节课中,相信学生,并为学生提供充分展示自己的机会,教学活动的设计力求使学生多动手,多思考,多反思,充分发挥学生的主题作用,创设实际情景,情境,给学生足够的时间和空间进行充分的探索和交流,通过动手实践,自主探索,合作交流的学习方式进行有效的学习。
10.描绘教研数轴开启教研新路 篇十
——东里小学新学期第一次教研活动顺利开展
东里小学讯(王晓辉)2月18日,三原县东里小学全体教师在学校会议室召开了新学期第一次教研活动。
活动分两个环节进行,首先进行的是集体学习会。学习会上,教研主任组织大家认真学习了本学期的教研工作计划,明确了将要开展的各项活动和任务。随之,张喜玲校长对教研处和广大教师提出了总体要求:教研组要夯实常规工作,巩固教学研究秩序,坚持“个人研修”、“每周一课”活动;要深钻教材,不断探索,不断进行教学研究,充分发挥团队的互助作用,提升整个团队的水平。
11.数轴2教案 篇十一
【基础知识精讲】
1.明确数轴的三要素,即原点、正方向和长度单位.
2.能将已知数在数轴上表示出来,能说出数轴上已知点表示的数. 3.会比较数轴上数的大小. 4.掌握相反数的概念.
【重点难点解析】
1.明确数轴的概念、画法和作用
规定了原点、正方向和单位长度的直线叫做数轴.数轴的三要素(原点、正方向、单位长度),在画数轴时三者缺一不可.例如以下画法中均满足数轴的三要素,所以都是正确画法.
而下面的几种画法均不正确.
一般情况下,我们把水平向右的方向定为数轴的正方向.而对于每一个有理数,都可以用数轴上一个确定的点来表示(但是数轴上的每一个点不都表示有理数).由于数轴上表示的两个数,右边的点总比左边的点表示的数大,所以可知(1)正数>0>负数(2)负数中离原点的距离越远的负数就越小.数轴还可以用来进行有理数的运算.例如:利用数轴计算:2(5).
2即+2看成从原点出发向右移动2个单位+(-5)表示再左移5个单位,2(5)3. 注意:想像能力在数学方面是非常重要的;如果我们能在脑子里,想像出数轴的形象及相关点的位置,那么在比较大小和做有理数的简单运算时,就没有必要真的画出数轴了.
2.明确相反数的意义及其与倒数的区别.
在一个有理数a的前面加上“-”号,就表示这个数的相反数,即“-a”与“a”互为相反数,它与倒数的区分是:
(1)两个互为相反数的数,它们符号相反;两个互为倒数的数,它们符号相同.(2)两个互为相反数的数,其绝对值相等;两个互为倒数的数,除±1外,其绝对值不等.
(3)零的相反数是零,而零没有倒数.
(4)两个互为相反数的数和为零;两个互为倒数的数积为1.
A.重点、难点提示
(这是重点,也是难点,要掌握好)(这是数形结合的数学思想,要掌握好)
数轴的概念—数轴的三要素—有理数与数轴上的点的对应关系概念—相反数的概念—相反数的意义
有理数大小的意义—利用数轴比较两个有理数的大小(这是数形结合的数学思想的应用)
B.考点指要
利用数轴比较两个有理数的大小是中考的一个重要内容。规定了原点、正方向和单位长度的直线叫数轴。
数轴有三要素:原点、正方向、单位长度,三者缺一不可。任何一个有理数都可以用数轴上的一个点来表示,原点表示0,原点左侧的点表示负数,原点右侧的点表示正数。(数形结合的数学思想)
数轴上两个点表示的数,右边的总比左边的大,负数小于0,正数大于0,正数大于一切负数。
如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数,正数的相反数是负数,负数的相反数是正数,特别地,0的相反数是0。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。(0是惟一的相反数等于自身的数)
【难题巧解点拨】
例1 下列各图中,是数轴的是()
解:对照数轴的三要素,可以得出正确答案D。
例2 在数轴上表示下列各数,并用“<”把它们连接起来: -5,311,1,0,4。32解:要想在数轴上准确地描出各点,首先要看数的符号,表示负数的点描在原点的左侧,表示正数的点描在原点的右侧,再根据各数的数值定出位置,表示0的点就是原点,如图2-1所示。然后根据在“数轴上表示的两个数,右边的数总比左边的大”写出不等式。
(数轴上表示的两个数,右边的数总比左边的大)用“<”连接:5111034。23例3 画数轴,并在数轴上作出表示下列各数的点:
-100,250,300,400。
解:画数轴要根据所给定的数据,适当选择原点的位置和单位长度。此题中原点应取在较左的位置上,并选取单位长度表示为100,如图2-2所示:
例4 判断正误:
11和是相反数; 2313131(3)和是相反数;
(4)的相反数是2。
15152(1)-2是相反数;
(2)解:(1)错。因为相反数成对出现。(2)错。因为(3)对。(4)错。11和在数轴上表示的点与原点的距离不等。2311的相反数是。
22例5 化简下列各数前面的双重符号:
-(+5),-(-5),+(+5),+(-5)
解:-(+5)是+5的相反数,也就是-5,所以-(+5)=-5; -(-5)是-5的相反数,也就是+5,所以-(-5)=+5 +(+5)表示+5本身,所以+(+5)=+5
+(-5)表示-5本身,所以+(-5)=-5。(你发出了什么规律?)
注:从以上四个等式不难发现简化“有理数前面的双重符号”的法则:即同号得“+”,异号得“-”。
【典型热点考题】
例1 在数轴上,与表示+2的点距离是4个单位长度的点有几个?它们分别表示什么数?
点悟:注意左、右两侧各有一个.
解:有2个.它们分别表示-2和+6.
点拔:在数轴上,与一个已知点距离相等的点一定有两个,它们分别位于已知点的左、右两侧.
例2 如图2-2-3,字母a,b,c都表示有理数,比较它们的大小.
点悟:应考虑a,-b,c相对于原点的位置及a,b,c是正数还是负数. 解:,bac.
点拔:-b到原点的距离大于a到原点的距离.a与c到原点的距离虽然差不多,但一个是正数,一个是负数.解此类题目的要点是,一看到原点的距离,二看符号.
例3 有理数a、b、c在数轴上对应的点分别为A、B、C,其位置如下图:试化简|c||cb||ac||ba|.
点悟:有理数a、b、c,在数轴上对应的点分别为A、B、C,在数轴上A点在原点的右边,它表示的数a0,B、C两点在原点左边且C点在B点的右边,b0,c0,它表示的数c大于B点表示的数b,所以|b||c|.利用上述条件去绝对值符号,原绝对值符号内的数是正的,去掉绝对值符号,符号保持不变;原绝对值符号内的数是负的,去掉绝对值符号后原数改为它的相反数.
解:
|c||cb||ac||ba|c[(cb)](ac)[(ba)]c(cb)(ac)(ba)ccbacbac.例4 已知a、b、c的位置如图2-2-5,试化简|ab||bc||ca|.
解:由图可知,c0ab,ab0,bc0,ca0.|ab||bc||ca|(ab)(bc)(ca)
abbcca2b2c.【考题误区警示】
例
数轴上一个点到+1的距离是3,求这个点表示的数. 常见错解:它表示的数为4. 正解:画出数轴(如图2-2-6):表示到+1的距离是3的数有两个,分别为-2和4.
【同步达纲练习】
一、选择题
1.把四个数-0.05,-3.1,0,0.01从大到小用“>”连接,正确的有()A.-0.05>-3.1>0>0.01
B.-0.05>0>-3.1>0.01 C.0.01>0>-0.05>-3.1
D.0.01>-0.05>0>-3.1 2.下列四个数中,比所有负数都大的数是()
A.0.00001 C.
B.D.0
100001
1000000
二、填空题
3.规定了___________________________________________叫数轴. 4.用“>”或“<”填空:
正数_______负数零 ______负数正数________零 5.图2-2-7中的___________是数轴.
6.在数轴上表示下列各数的点,位于原点右边的有___________________.
15,0,-,10.5,1000 22117.3到6之间的整数是__________________.
32-100,20,38.如图2-2-8,数轴上A、B、C、D、E各点表示的数分别是:
A(),B(),C(),D(),E()
三、解答题
9.画数轴,并在数轴上标出表示下列各数的点:
11,-2,0,3.5,3211,2
(2)2.3___________4.4; 10.利用数轴,把下列各数用“<”连接起来: +4,0,-3,11.比较下面各组数的大小:
(1)3_______________-5(3)3(5)11___________3;
22(4)0_____________-2;
11______________0;(6)5____________1. 10004112.在数轴上与原点距离为个单位的点表示的数是___________,在数轴上与3所对应的点距离为5个单位的点表示的数是________________.
13.所有的有理数都可以在数轴上表示出来吗?数轴上的点都表示有理数吗?
14.在数轴上,到511所对应的点的距离为4的点表示的数是__________________. 2315.数轴上到原点的距离小于3的整数的个数为x,不大于3的整数的个数为y,等于3的整数的个数为z,则x+y+z=______________________.
16.如图2-2-9,数轴上A、B两点对应的有理数都是整数,若A对应有理数a,B对应有理数b,且b-2a=5,请指出数轴的原点.
【综合能力训练】
1.规定了___________、___________、___________的直线叫数轴。2.数轴上表示正数的点在原点的___________,表示负数的点在原点的___________。3.数轴上表示两个数,___________的数总比___________的数大。
4.数轴上离原点4.5个长度单位的数有___________个,这些数分别为___________和___________。
5.3的倒数的相反数是___________。46.如果a的相反数是a,则a是___________。7.(1)写出所有比4小的正整数:___________;(2)写出所有比-4大的负整数:___________。8.比较下列各对数的大小:(1)-1与1;
45与; 561(3)0与。
10(2)9.将下列各数在数轴上表示出来,并用“<”连接起来。
5,-3,2.5,0,-1.5,3。
310.判断下列各小题的说法是否正确:(1)当x=4时,5x164;(2)当x=5时,83x5。
11.文具店、书店和玩具店依次座落在上海市南京路东西走向的大街上,文具店在书店西边20m处,玩具店位于书店东边100m处,小明从书店沿街向东走了40m,接着又向西
增了60m,此时小明的位置在()
A.文具店
B.玩具店
C.文具店西边40m
D.玩具店东边-60m
参考答案
【同步达纲练习】
一、1.C2.A、D
二、3.原点,正方向和单位长度的直线; 4.>,>,>; 5.①,④,⑤; 6.20,31,10.5,1000; 27.±3,±2,±1,0,4,5,6; 8.A(1),B(6),C(-3),D(3),E(8).
三、9.略. 10.311024 2211.(1)>;(2)<;(3)<;(4)>;(5)>;(6)<. 12.1,-2或8. 213.可以,但数轴上的点表示的不全是有理数. 14.759,6615.14. 16.
【综合能力训练】
1.原点、单位长度、正方向;
2.右边,左边;
3.右边,左边;
4.2,4.5和-4.5;
5.4;
6.0;
7.(1)1,2,3;(2)-1,-2,-3; 358.(1)<,(2)>,(3)<;
9.31.502.53;
310.(1)当x=4时,得4>4,所以错;(2)当x=5时,得820,所以正确;
【初中数学数轴】推荐阅读:
初中数学数轴说课11-24
初中数学说课稿数轴12-13
初一数学数轴练习07-17
七年级数学数轴测试题09-29
初中数学数学教学叙事11-25
初中数学分式09-18
初中数学研修心得07-16
初中数学经典题型08-10
初中数学课堂效率08-19