matlab小波函数小结(共2篇)
1.matlab小波函数小结 篇一
实训小结
为期一周的MATLAB实训在学习与忙碌中度过了,时间虽短,但我们却真真切切的学到了知识,在现实工作中可以运用的知识。
在第一节课,我们便了解到MATLAB是世界上最流行的、应用最广泛的工程计算和仿真软件,它将计算、可视化和编程等功能同时集于一个易于开发的环境。MATLAB主要应用于数学计算、系统建模与仿真、数学分析与可视化、科学与工程绘图和用户界面设计等。对MATLAB的系统结构和特点等,老师也向我们做出了大致的讲解,同时,我们知道了MATLAB程序的一些最基本的应用和运算,并能够进行一些简单的编程。就这样,实训的第一天大家都在期待和兴奋中度过。
接下来的时间,主要是以大家自学和练习为主,老师进行辅导和考察。在学习过程中,不懂的可以相互之间小声的讨论,也可向老师请教,但必须确保自己真正学到了知识,认真的看书并进行编程练习。一天的学习接近尾声时,就是老师考察大家一天的收获的时候了,老师总会出一些小题目让大家编出它的程序,虽然有的题目对我们来说还是有些难度的,但是在老师的指点下我们还是编出程序的,当我们看到自己编的程序运行正确时,总是会万分的兴奋,充满成就感。
就这样,仅仅一个星期的实训就结束了,虽然不能十分熟悉和运用MATLAB的所有程序,但是我们却打下了一定的基础,在以后,当我们真正开始深入学习这门学问时,我们对它将不会再那么陌生,学起来也将轻松许多。这次实训为我们提供了一个很好的学习机会,唯一不足的就是时间有点短,我们不能在这段时间里学到更多的知识,因此,在这一周打下的基础上,我们需要用自己的努力去自学,以获取更多的知识。
知识是无穷无尽的,知识的获取需要一颗上进的心,老师将我们领进了门,下面的路就应该我们自己去走,即是充满荆棘,也要努力奋斗往前冲。
2.可测函数小结 篇二
(一)可测函数的定义
1、在可测函数定义的学习过程中,对于可测函数的表示:a∈R, 有{x | > a}可测,则f(x)可测 ;用简单间函数列来表示:有简单函数列{φn},f(x)满足limφn = f(x), 则f(x)可测;由鲁津定理得用连续函数逼近可测函数;n通过本章可测函数的学习,要把这三种关系透彻理解、掌握。
2、简单函数的引入对于学习讨论可测函数、L积分都有重要的意义。简单函数是常量函数、分段函数的进一步扩展。通过简单函数,对可测函数及L积分的讨论从简到繁、从特殊到一般过渡;要证明某个命题对于可测函数(或其一部分)成立,可先证明该命题对简单函数成立,再由极限过程过渡到一般可测函数。
3、可测函数列的等价条件。
(二)可测函数列的收敛性
由L测度建立的L积分理论中,零测度集不影响函数的可积性和积分值。实变函数中的L积分与数学分析中的R积分,有一个很重要的不同点,就是命题的成立引入了“几乎处处”的概念。
对于可测函数列的三种强度不等的收敛定义:几乎一致收敛、几乎处处收敛、依测度收敛,要理解其意义与作用及相互关系。
可测函数列{fn(x)}处处收敛与依测度收敛虽然有很大区别,但仍有密切联系,主要表现在于:
(1)处收敛的函数列可能不是依测度收敛,依测度收敛的函数列仍右能不是处处收敛。(2)若{fn(x)}依测度收敛f(x),则必有子列{fn i(x)}几乎处处收敛
于f(x)。
(3)几乎一致收敛函数列{fn(x)}一定依测度收敛于同一函数 ;反之,若{fn(x)}依测度收敛于f(x),则存在子列几乎一致收敛函数f(x)。
(三)函数可测与连续的关系——鲁津定理
区间上的连续函数、单调函数、简单函数都是可测函数,所以可测函数类比连续函数类更广。鲁津定理给出了连续函数与可测函数的关系,表明用连续函数可以“逼近”可测函数,从而用我们比较熟悉的连续函数去把握比较抽象的可测函数,在某些情况下可以适当地把可测函数转换为连续函数。
函数可测与连续关系的主要结论有:(1)闭集上的连续函数可测;(2)任一可测集上的连续函数可测;
(3)f于E几乎处处有限可测,则存在闭集FE,m(E-F)< ε,有连续函数g, 在F上有 f(x)= g(x).上述结论揭示了连续函数与可测函数的密切联系,这种关系让我们对于可测函数的了解更加深入,也是研究可测函数的有效手段。
【matlab小波函数小结】推荐阅读:
matlab函数表总结12-09
传递函数matlab实验01-19
matlab基础知识小结06-27
MATLAB实验小结论文 数学建模09-07
函数复习小结一09-21
Matlab 总结报告06-22
matlab实验报告11-01
matlab习题详解11-04
matlab学习报告12-12
matlab试卷和答案08-14