2022高中数学教案 1.1.2 余弦定理

2024-09-05

2022高中数学教案 1.1.2 余弦定理(共6篇)

1.2022高中数学教案 1.1.2 余弦定理 篇一

1.1.2余弦定理

教学过程

推进新课

1.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍

在幻灯片1.1.2B中我们可以看到它的两种表示形式 形式一

a2=b2+c2-2bccosA,b2=a2+c2-2accosB,c2=a2+

b2-2abcosC形式二b2c2a2

cosA2bcc2a2b2cosB2caa2

b2c2cosC2ab

师 在余弦定理中,令C =90°时,这时cosC=0,所以c2=a2+b2,由此可知余弦定理是勾股定理的推广.另外,对于余弦定理的证明,我们也可以仿照正弦定理的证明方法二采用向量法证明,以进一步体会向量知识的工具性作用

.[合作

探究

2.向量法证明余弦定理

(1)

证明思路分析

联系已经学过的知识和方法,可用什么途径来解决这个问题?

用正弦定理试求,发现因A、B均未知,所以较难求边C.由于余弦定理中涉及到的角是以余弦形式出现,从而可以考虑用向量来研究这个问题.由于涉及边长问题,那么可以与哪些向量知识产生联系呢

生 向量数量积的定义式a·b=|a||b|cosθ,其中θ为A、B的夹角

师 在这一点联系上与向量法证明正弦定理有相似之处,但又有所区别.首先因为无须进行正、余弦形式的转换,也就少去添加辅助向量的麻烦.当然,在各边所在向量的联系上仍然通过向量加法的三角形法则,而在数量积的构造上则以两向量夹角为引导,比如证明形式中含有角C,则构造CBCA这一数量积以使出现cosC.同样在证明过程中应注意两向量夹角是以同起点为前提

(2)

向量法证明余弦定理过程

如图,在△ABC中,设AB、BC、CA的长分别是c、a、b

由向量加法的三角形法则,可得

∴ACAC=(AB+BC)(AB+BC)=AB2+2ABBC+BC2 =AB+2ABBCcos(180?B)+BC

=

c2-2accosB+a2,即b

2=a2+c2-2ac

cosB

由向量减法的三角形法则,可得BC=AC-AB

1∴BC

BC=(AC-AB)(AC-AB)=AC2-2ACAB+AB

2=AC-2ACABcosA+AB=b2-2bccosA+c2,即a=b+c-

2bccosA

由向量加法的三角形法则,可得AB=AC+CB=AC-BC

∴ABAB=(AC-BC)(AC-BC)=AC2-2ACBC+BC2

=AC2-

2ACBCcosC+BC=b2-2bacosC+a2,即c=a+b-2abcosC

[方法引导

(1)上述证明过程中应注意正确运用向量加法(减法)的三角形法则

(2)在证明过程中应强调学生注意的是两向量夹角的确定,AC与AB属于同起点向量,则夹角为A;AB与BC是首尾相接,则夹角为角B的补角180

?

B;AC与

BC是

同终点,则夹角

仍是角C[合作探究

师 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?

生(留点时间让学生自己动手推出)从余弦定理,又可得到以下推论:

b2c2a2a2c2b2

b2a2c2

cosA,cosB,cosC

2bc2ac2ba

师 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角

形中三边平方之间的关系,如何看这两个定理之间的关系? 生(学生思考片刻后会总结出)若△ABC

中,C =90°,则cosC=0,这时c2=a2+b2.由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.

师 从余弦定理和余弦函数的性质可知,在一个三角形中,如果两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果两边的平方和小于第三边的平方,那么第三边所对的角是钝角,如果两边的平方和大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理可以看作是勾股定理的推广.现在,三角函数把几何中关于三角形的定性结果都变

成可定量计算的公式了.

师 在证明了余弦定理之后,我们来进一步学习余弦定理的应用(给出幻灯片1.1.2B

通过幻灯片中余弦定理的两种表示形式我们可以得到,利用余弦定理,可以解决以下两类有

关三角形的问题

(1)已知三边,求三个角

这类问题由于三边确定,故三角也确定,解唯一,课本P8例4属这类情况(2)已知两边和它们的夹角,求第三边和其他两个角

这类问题第三边确定,因而其他两个角唯一,故解唯一,不会产生类似利用正弦定理解三角形

所产生的判断取舍等问题

接下来,我们通过例题来进一步体会一下 [例题剖析]

【例1】在△ABC中,已知B=60 cm,C=34 cm,A=41°,解三角形(角度精确到1°,边长精确到1 cm)

解:

根据余弦定理,a2=b2+c2-2bccosA=602+342-2·60·34cos41°≈3 600+1 156-所以A≈41 c 由正弦定理得sinC=

csinA34sin413

40.656

≈a4141

因为C不是三角形中最大的边,所以C是锐角.利用计数器可得

C

B=180°-A-C=180°-41°-

【例2】在△ABC中,已知a =134.6 cm,b=87.8 cm,c =161.7 cm,解三角形解:由余弦定理的推论,得

b2c2a287.82161.72134.62

cosA=≈0.554 3,A

2bc287.8161.7c2a2b2134.62161.7287.82

cosB=≈0.839 8,B

2ca2134.6161.7

C =180°-(A+B)=180°-

[

知识拓展 补充例题:

【例1】在△ABC中,已知a=7,b=10,c=6,求A、B和C.(精确到

分析:此题属于已知三角形三边求角的问题,可以利用余弦定理,意在使学生熟悉余弦定理的形式二

b

2c2a2102627

20.725 解:∵cosA

2bc2106

A

a2b

2c27210262113∵cosC=

2ab2710140

C

∴B=180°-(A+C)=180°-(44°+36°)=100°.[

教师精讲

(1)为保证求解结果符合三角形内角和定理,即三角形内角和为180°,可用余弦定理求出两角,第三角用三角形内角和定理求出

(2)对于较复杂运算,可以利用计算器运算

【例2】在△ABC中,已知a=2.730,b=3.696,c=82°28′,解这个三角形(边长保留四个有效数字,角度精确到

1′)

分析:此题属于已知两边及其夹角解三角形的类型,可通过余弦定理形式一先求出第三边,在第三边求出后其余角求解有两种思路:一是利用余弦定理的形式二根据三边求其余角,二是利用两边和一边对角利用正弦定理求解,但根据1.1.1斜三角形求解经验,若用正弦定理需对两

种结果进行判断取舍,而在0°~180°之间,余弦有唯一解,故用余弦定理较好解:由c2=a2+b2-2abcosC=2.7302+3.6962-2×2.730×3.696×cos82°28′, 得c

b2c

2a23.69624.29722.7302

∵cosA=

2bc23.6964.297

A

∴B=180°-(A+C)=180°-[教师

精讲

通过例2,我们可以体会在解斜三角形时,如果正弦定理与余弦定理都可选用,那么求边用两个定理均可,求角则用余弦定理可免去判断取舍的麻烦 【例3】在△ABC中,已知A=8,B=7,B=60°,求C及S△

ABC

分析:根据已知条件可以先由正弦定理求出角A,再结合三角形内角和定理求出角C,再利用正弦定理求出边C,而三角形面积由公式S△ABC=

acsinB

可以求出 2

若用余弦定理求C,表面上缺少C,但可利用余弦定理b2=c2+a2-2cacosB建立关于C的方程,亦能达到求C的目的下面给出两种解法 解法一:由正弦定理得∴A1=81.8°,A

2∴C1=38.2°,C

2由

87

sinAsin60

7c

,得c1=3,c2

sin60sinC

1∴S△ABC=ac1sinB6或S△ABC=ac2sinB

1022

解法二:由余弦定理得b2=c+a2-2cacos

B

∴72=c+82-2×8×

cco 整理得c2-8c 解之,得c1=3,c2=5.∴S△ABC=

ac1sinB6或S△ABC= ac2sinB

10322

[教师精讲]

在解法一的思路里,应注意由正弦定理应有两种结果,避免遗漏;而解法二更有耐人寻味之处,体现出余弦定理作为公式而直接应用的另外用处,即可以用之建立方程,从而运用方程的观点去解决,故解法二应引起学生的注意

综合上述例题,要求学生总结余弦定理在求解三角形时的适用范围;已知三边求角或已知两边及其夹角解三角形,同时注意余弦定理在求角时的优势以及利用余弦定理建立方程的解法,即已知两边、一角解三角形可用余弦定理解之 课堂练习1.在△ABC

(1)已知c=8,b=3,b=60°,求A(2)已知a=20,bB=29,c=21,求

B(3)已知a=33,c=2,b=150°,求

B(4)已知a=2,b=2,c=3+1,求A

解:(1)由a2=b2+c2-2bccosA,得a2=82+32-2×8×3cos60°=49.∴A

c2a2b220221229

20.∴

(2)由cosB,得cosBB

2ca2202

1(3)由b2=c2+a2-2cacosB,得b2=(33)2+22-2×33×2cos150°=49.∴b

b2c2a2(2)2(31)2222

(4)由cosA,得cosA.∴

A

2bc222(1)

评述:此练习目的在于让学生熟悉余弦定理的基本形式,要求学生注意运算的准确性及解题

效率

2.根据下列条件解三角形(角度精确到(1)a=31,b=42,c(2)a=9,b=10,c

b2c2a2422272312解:(1)由cosA,得cosA≈0.675 5,∴

A

2bc24227c2a2b2312272422由cosB≈-0.044 2,∴

B

2ca23127

∴C=180°-(A+B)=180°-

b2c2a210215292,得cosA

(2)由

2bc2101

5∴

A

c2a2b215292102

由cosB≈0.763 0,2ca2915

B

∴C=180°-(A+B)=180°-

评述:此练习的目的除了让学生进一步熟悉余弦定理之外,还要求学生能够利用计算器进行较复杂的运算.同时,增强解斜三角形的能力 课堂小结

通过本节学习,我们一起研究了余弦定理的证明方法,同时又进一步了解了向量的工具性作用,并且明确了利用余弦定理所能解决的两类有关三角形问题

(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;

(2)余弦定理的应用范围:①已知三边求三角;②已知两边、一角解三角形. 布置作业

课本第8页练习第1(1)、2(1)题

教学反思

1.注重过程与方法,提升探究能力

数学教学是一个过程,在这个过程中要注意对学生逻辑思维、分析问题、解决问题等能力的培养,而不能把结论直接抛给学生,学习只有通过自身的体验,才能得到“同化”和“顺应”,数学教学是数学活动的教学,是师生之间、学生之间相互交往、积极互动、共同发展的过程,是“沟通”与“合作”的过程.本节课从具体的实例出发,从特殊到一般,让学生经历提出问题,解决问题,初步应用等过程,采用问题串的形式引导学生进行探究活动.余弦定理的发现和证明,先从学生最近发展区入手,根据初中的平面几何知识,这是符合学生的认知结构,让学生自己发现余弦定理,鼓励学生独立思考,积极发表自己的见解。从平面几何法—解析法—向量法,层层递进,环环相扣,让学生从不同角度去认识余弦定理,对求边长的方法也有个深入的了解,有利于学生思维的扩展,充分认识到数学知识的发生、发展过程以及探究问题的方法.整节课气氛活泼,教学目标得到较好的落实.

2.关注师生间互动,提高课堂效益

大部分学生对于定理教学通常都是依赖老师的讲解,被动接受教材中的证明思路,觉得理所当然,缺乏主动性,积极性.教师如何引导学生发现问题,提出问题就非常重要.教学实验表明,学生能否提出数学问题,不仅受其数学基础、生活经历、学习方式等自身因素的影响,还受其所处的环境、教师对提问的态度等外在因素的制约。因此,教师不仅要注重创设适宜的数学情境,而且要真正转变对学生提问的态度,提高引导水平,一方面要鼓励学生大胆地提出问题,另一方面要妥善处理学生提出的问题。把“质疑提问”,培养学生的数学问题意识,提高学生提出数学问题的能力作为教与学活动的起点与归宿。

3.创造性使用教材,优化教学结构

本节课紧紧围绕余弦定理课题,对教学内容做了一些整合和补充.教材例题中的角都非特殊角,需要用到计算器,过于繁杂.而本节课的核心是发现定理、定理的证明方法探究和定理的应用,所以把例题作了一些改变,从而也减少学生对计算器的依赖,提高学生的计算能力.

2.北师大版高中数学必修5余弦定理 篇二

52.1.2《余弦定理》教学设计

一、教学目标

认知目标:引导学生发现余弦定理,掌握余弦定理的证明,会运用余弦定解三角形中的两类

基本问题。

能力目标:创设情境,构筑问题串,在引导学生发现并探究余弦定理过程中,培养学生观察、类比、联想、迁移、归纳等能力;在证明定理过程中,体会向量的思想方法;在解决实际问题过程中,逐步培养学生的创新意识和实践能力。

情感目标:通过自主探究、合作交流,使学生体会到“发现”和“创造”的乐趣,培养学生

学习数学兴趣和热爱科学、勇于创新的精神。

二、教学重难点

重点:探究和证明余弦定理;初步掌握余弦定理的应用。

难点:探究余弦定理,利用向量法证明余弦定理。

三、学情分析和教法设计:

本节课的重点和难点是余弦定理的发现和证明,教学中,我采取“情境—问题”教学法,从情境中提出数学问题,以“问题”为主线组织教学,从特殊到一般,引导学生在解决问题串的过程中,既归纳出余弦定理,又完成了用几何法对余弦定理的证明,以分散难点;用向量证明余弦定理时,我首先引导学生利用向量证明勾股定,让学生体会向量解题基本思路、感受到向量方法的便捷,然后鼓励学生证明余弦定理,最后通过二组例题加深学生对余弦定理的理解,体会余弦定理的实际应用。

四、教学过程

环节一 【创设情境】

1、复习引入

让学生回答正弦定理的内容和能用这个定理解决哪些类型的问题。

2、情景引入

浙江杭州淳安千岛湖(图片来自于http://image.baidu.com),A、B、C三岛位置如图所示,根据图中所给的数据,你能求出A、B两岛之间的距离吗?

启发学生积极思考,尝试转化为直角三角形,利用已学知识解决问题解决问题。在三角形ABC中,作AD⊥BC,交BC延长线于D,由∠ACB=120o,则∠ACD=60o,在RtΔADC中,∠CAD=30o,AC=6则CD=3,AD=3.在RtΔADB中,由勾股定理得:

AB2=AD2+BD2,AB2=67.96AB≈8.24km

答:岛屿A与岛屿B的距离为8.24 km

探究2:若把上面这个问题变为:

在△ABC中,BC=a,AC=b,AB=c,已知a,b,∠C(∠C为钝角)求 c.在探究1的解法基础上,把具体数字用字母替换,结合三角函数知识,不难得出 c2= a2+b2-2abcosC.

探究3:若把上面这个问题变为:

在△ABC中,BC=a,AC=b,AB=c,已知a,b,∠C(∠C为锐角)求 c.如右图,当∠C为锐角时,作AD⊥BC于D,BD把△ABC分成两个直角三角形: A 在Rt△ABD中,AB2=AD2+BD2;

在Rt△ADC中,AD=AC·sinC=bsinC,DC=AC·cosC=bcosC.

容易求得:c2=a2+b2-2abcosC.

探究4: :若把上面这个问题变为: C

B

在△ABC中,BC=a,AC=b,AB=c,已知a,b,∠C(∠C为直角)求 c.结合前面的探究,你有新的发现吗?

222此时,△ABC为直角三角形,由勾股定理得c=a+b;也可以写成c2=a2+b2-2abcos900

环节三【总结规律,发现新知】

探究1:总结规律。

结合前面的探究,我们容易发现,在△ABC中,无论∠C是锐角、直角还是钝角,都有

c2=a2+b2-2abcosC

同理可以得到a2=b2+c2-2bccosA.

b2=c2+a2-2accosB.

这就是余弦定理:三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余

弦的积的两倍。

探究2:余弦定理的证明:

余弦定理是三角学中一个重要的定理,上一环节中的探究2—探究4是该定理的一种传统的方法——几何证法,历史上有很多人对余弦定理的证明方法进行研究,建议同学们登陆,在百度文库中查阅有关三角学的历史,了解余弦定理证明的一些经典方法,如爱因斯坦的证法、坐标法、用物理的方法以及张景中的《绕来绕去的向量法》和《仁者无敌面积法》等等。其中向量法是最简洁、最明了的方法之一。

问题①:用向量的方法能证明勾股定理吗?

222在△ABC中已知∠A=900,BC=a,AB=c,CA=b, 求证:a=b+c B 证明:如右图,在△ABC中,设ACb,ABc,CBa.由向量的减法运算法则可得,ABACCB,即cba

A

222 等式两边平方得,cb2cba,2202222由向量的运算性质得cb2cbCos90a即cba

所以a2=b2+c

2问题②:如何用向量的方法证明余弦定理?

0把问题①的证明中Cos90换为CosA即可。

教师点评:利用向量来证明勾股定理,让学生体会向量解题基本思路、感受到向量方法的便捷,激发学生兴趣,在此基础上,可以很简单的证明余弦定理,让学生切身体会到向量作为一种工具在证明一些数学问题中的作用。

探究3:余弦定理的分析

问题①:在△ABC中,当∠C=90°时,有c2=a2+b2.若a,b边的长度不变,变换∠C的大小时,c2与a2+b2有什么大小关系呢?请同学们思考。

首先,可借助于多媒体动画演示,让学生直观感受,a,b边的长度不变时,∠C越小,AB的长度越短,∠C越大,AB的长度越长

222其后,引导学生,由余弦定理分析: c=a+b-2abcosC。

当∠C=90°时,cosC=0,则有c2=a2+b2,这是勾股定理,它是余弦定理的特例。当∠C为锐角时,cosC>0,则有c2

2当∠C为钝角时,cosC<0,则有c2>a2+b2

问题②余弦定理作用?

从以上的公式中解出cosA,cosB,cosC,则可以得到余弦定理的另外一种形式: b2c2a2

cosA2bca2c2b2cosB2aca2b2c2cosC2ab

即已知三角形的两边和它们的夹角,可求另一边;

知三求一已知三角形的三条边,求角。

已知三角形的两边和其中一边的对角,可求另一边;(方程的思想)环节四【及时练习,巩固提高】

下面,请同学们根据余弦定理的这两种应用,来解决以下例题。O例1①在△ABC中,已知a=5,b=4,∠C=120,求c.②在△ABC中,已知a=3,b=2,c=,求此三角形三个内角的大小及其

面积。Q 环节五【应用拓展,提高能力】

例2:如图所示,有两条直线AB和CD相交成800角,交点是O,甲、乙两人同是从点O分别沿OA,OC方向出发,速度分别是4km/h、4.5km/h,B O P 3小时后两个相距多远(结果精确到0.1km)? 分析:经过3时,甲到达点P,OP=43=12(12km)乙到达点Q,OQ=4.53=13.5(km).问题转化为在△OPQ,已知OP=12km.,OQ=13.5km,∠POQ=800,求PQ的长。

例3 下图是公元前约400 ┅的图形(可登陆http://math.100xuexi.com 查阅详细资料),试计算图中线

段BD的长度及∠DAB的大小.1B A 环节六 【课堂反思总结】 通过以上的研究过程,同学们主要学到了那些知识和方法?你对此

有何体会?(先由学生回答总结,教师适时的补充完善)

1、余弦定理的发现从直角三角形入手,分别讨论了锐角三角形和钝角的三角形情况,体现了由特殊到一般的认识过程,运用了分类讨

论的数学思想; D C2、用向量证明了余弦定理,体现了数学知识的应用以及数形结合数

学思想的应用;

3、余弦定理表述了三角形的边与对角的关系,勾股定理是它的一种特例。用这个定理可以解决已知三角形的两边及夹角求第三边和已知三角形的三边求内角的两类问题。环节七 【布置课后作业】

1、若三角形ABC的三条边长分别为a2,b3,c4,则2bccosA2cacosB2abcosC。

2、在△ABC中,若a=7,b=8,cosC13,则最大内角的余弦值为 143、已知△ABC中,acosB=bcos A,请判断三角形的形状(用两种不同的方法)。

4、p52教材习题2-1第6,7题。

五、教学反思

1、余弦定理是解三角形的重要依据。本节内容安排两节课适宜。第一节,余弦定理的引出、证明和简单应用;第二节复习定理内容,加强定理的应用。

2、当已知两边及一边对角需要求第三边时,可利用方程的思想,引出含第三边为未知量的方程,间接利用余弦定理解决问题,此时应注意解的不唯一性。但是这个问题在本节课讲给学生,学生不易理解,可以放在第二课时处理。

3、本节课的重点首先是定理的发现和证明,教学中,我采取“情境—问题”教学模式,沿着“设置情境—提出问题—解决问题—总结规律---应用规律”这条主线,从情境中提出数学问题,以“问题”为主线组织教学,形成以提出问题与解决问题携手并进的“情境—问题”学习链,目的使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识,发展能力,体验数学的过程.5、合理的应用多媒体教学,起到画龙点睛。

3.余弦定理教案 篇三

天印高级中学张梅

一、教材分析及设计思路

1、教材分析

“余弦定理”是全日制普通高级中学教科书(数学必修5)第一章第一节的主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是“正弦定理、余弦定理”教学的第二节课,其主要任务是引入并证明余弦定理,在课型上属于“定理教学课”。布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。教师的作用是创设学生能够独立探究的情境,引导学生去思考,参与知识获得的过程。因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。

2、设计思路

根据“情境--问题”教学模式,沿着“设置情境--提出问题--解决问题--反思应用”这条主线,把从情境中探索和提出数学问题作为教学的出发点,以“问题”为红线组织教学,形成以提出问题与解决问题相互引发携手并进的“情境--问题”学习链,使学生真正成为提出问题和解决问题的主体,成为知识的“发现者”和“创造者”,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。根据上述精神,做出了如下设计:

(1)创设一个现实问题情境作为提出问题的背景

(2)启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决问题时需要使用余弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,引伸成一般的数学问题:已知三角形的两条边和他们的夹角,求第三边

(3)为了解决提出的问题,引导学生从原有的知识经验中“生长”出新的知识经验,通过作边BC的垂线得到两个直角三角形,然后利用勾股定理和锐角三角函数得出余弦定理的表达式,进而引导学生进行严格的逻辑证明。证明时,关键在于启发、引导学生如何将向量关系转化成数量关系

(4)由学生独立使用已证明的结论去解决中所提出的问题

教学目标:

1、掌握余弦定理及其证明方法;

2、会运用余弦定理解三角形;

能力目标:

培养学生推理探索数学规律和归纳总结的思维能力,以及观察、分析、类比、计算能力;

德育目标:

通过知识间的联系,体现事物的普遍联系与辩证统一;

教学重难点:

余弦定理的推导、证明及应用;

教法学法:

教师的“引导式教学”和学生的“研究性学习”相结合二、教学过程

Ⅰ、设置情境

自动卸货汽车的车箱采用液压机构。设计时需要计算油泵顶杆 BC的长度(如下图),已知车箱的最大仰角为60°,油泵顶点B与车箱支点A之间的距离为

1.95m,AB与水平线之间的夹角为6°20′,AC的长为1.40m,计算BC的长(保留三个有效数字)。

Ⅱ、提出问题

师:大家想一想,能否把这个实际问题抽象为数学问题?(数学建模)

能,在三角形 ABC,已知AB=1.95m,AC=1.40m,∠BAC=60°+6°20′=66°20′,求BC的长。

师:能用正弦定理求解吗?为什么?

不能。正弦定理主要解决:已知三角形的两边与一边的对角,求另一边的对角;已知三角形的两角与一边,求角的对边。

师:这个问题的实质是什么?

在三角形中,已知两边和它们的夹角,求第三边。(一般化)三角形 ABC,知AC=b,BC=a,角C,求AB。

III、解决问题

师:请同学们想一想,我们以前遇到这种一般问题时,是怎样处理的? 先从特殊图形入手,寻求答案或发现解法。(特殊化)

可以先在直角三角形中试探一下。

直角三角形中 c 2 =a 2 +b 2(勾股定理角C为直角)斜三角形ABC中(如图

3),过A作BC边上的高AD,将斜三角形转化为直角三角形。(联想构造)师:垂足 D一定在边BC上吗?

不一定,当角 C为钝角时,点D在BC的延长线上。

(分类讨论,培养学生从不同的角度研究问题)

在锐角三角形 ABC中,过A作AD垂直BC交BC于D,在直角三角形ADB中,AB 2 =AD 2 +BD 2,在直角三角形ADC中,AD=ACsinC, CD=ACcosC 即AD=bsinC, CD=bcosC

又 BD=BC-CD,即BD=a-bcosC

∴ c 2 =(bsinC)2 +(a-bcosC)

2=b 2 sin 2 C+a 2-2abcosC+b 2 cos 2 C

=a 2 +b 2-2abcosC

同理 a 2 =b 2 +c 2-2bccosA

b 2 =a 2 +c 2-2accosB

在钝角三角形 ABC中,不妨设角C为钝角,过A作AD垂直BC交BC的延长线于D,在直角三角形 ADB中,AB 2 =AD 2 +BD 2,在直角三角形ADC中,AD=ACsin(π-C),CD=ACcos(π-C),即AD=bsinC, CD=-bcos C,又BD=BC+CD,即BD=a-bcosC

∴ c 2 =(bsinC)2 +(a-bcosC)2

=b 2 sin 2 C+a 2-2abcosC+b 2 cos 2 C

=a 2 +b 2-2abcosC

同理 a 2 =b 2 +c 2-2bccosA

b 2 =a 2 +c 2-2accosB

同理可证 a 2 =b 2 +c 2-2bccosA

b 2 =a 2 +c 2-2accosB

师:大家回想一下,在证明过程易出错的地方是什么?

IV、反思应用

师:同学们通过自己的努力,发现并证明了余弦定理。余弦定理揭示了三角形中任意两边与夹角的关系,请大家考虑一下,余弦定理能够解决哪些问题?

知三求一,即已知三角形的两边和它们的夹角,可求另一边;已知三角形的三条边,求角。

余弦定理三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

师:请同学们用余弦定理解决本节课开始时的问题。

(请一位同学将他的解题过程写在黑板上)

解:由余弦定理,得BC≈1.89(m)

答:顶杆BC约长1.89m。

师:大家回想一想,三角形中有六个元素,三条边及三个角,知道其中任意三个元素,是否能求出另外的三个元素?

不能,已知的三个元素中,至少要有一个边。

师:解三角形时,何时用正弦定理?何时用余弦定理?

已知三角形的两边与一边的对角或两角与一角的对边,解三角形时,利用正弦定理;已知三角形的两边和它们的夹角或三条边,解三角形时,利用余弦定理。巩固练习:课本第 9页练习2、3、4三、教学反思

4.2022高中数学教案 1.1.2 余弦定理 篇四

§5.5 正弦定理、余弦定理的应用

基础自测

1.在某次测量中,在A处测得同一半平面方向的B点的仰角是60°,C点的俯角为70°,则∠BAC=.答案 130°

2.从A处望B处的仰角为,从B处望A处的俯角为,则、的大小关系为.答案 =

3.在△ABC中,若(a+b+c)(a+b-c)=3ab,且sinC=2sinAcosB,则△ABC是 三角形.答案 等边

4.已知A、B两地的距离为10 km,B、C两地的距离为20 km,现测得∠ABC=120°,则A、C两地的距离为 km.答案 107

5.线段AB外有一点C,∠ABC=60°,AB=200 km,汽车以80 km/h的速度由A向B行驶,同时摩托车以 50 km/h的速度由B向C行驶,则运动开始 h后,两车的距离最小.答案 70 43例题精讲

例1 要测量对岸A、B两点之间的距离,选取相距3 km的C、D两点,并测得∠ACB=75°,∠BCD= 45°,∠ADC=30°,∠ADB=45°,求A、B之间的距离.解 如图所示,在△ACD中,∠ACD=120°,∠CAD=∠ADC=30°,∴AC=CD=3 km.在△BCD中,∠BCD=45°,∠BDC=75°,∠CBD=60°.∴BC=2AB=(3)+(3sin7562=.△ABC中,由余弦定理,得

sin602262262)-2×3××cos75°=3+2+3-3=5,22∴AB=5(km).∴A、B之间的距离为5 km.159 例2.沿一条小路前进,从A到B,方位角(从正北方向顺时针转到AB方向所成的角)是50°,距离是3 km,从B到C方位角是110°,距离是3 km,从C到D,方位角是140°,距离是(9+33)km.试画出示意图,并计算出从A到D的方位角和距离(结果保留根号).解 示意图如图所示,连接AC,在△ABC中,∠ABC=50°+(180°-110°)=120°,又AB=BC=3,∴∠BAC=∠BCA=30°.由余弦定理可得

1AC=AB2BC22ABBCcos120= 99233()

2=27=33(km),在△ACD中,∠ACD=360°-140°-(70°+30°)=120°, CD=33+9.1由余弦定理得AD=AC2CD22ACCDcos120= 27(339)2233(339)()

2=9(26)(km)2CDsinACD=AD(339)由正弦定理得sin∠CAD=

32=2.292962∴∠CAD=45°,于是AD的方位角为50°+30°+45°=125°, 所以,从A到D的方位角是125°,距离为

9(26)km.2例3 如图所示,已知半圆的直径AB=2,点C在AB 的延长线上,BC=1,点P为半圆上的一个动点,以 DC为边作等边△PCD,且点D与圆心O分别在PC 的两侧,求四边形OPDC面积的最大值.解 设∠POB=,四边形面积为y,则在△POC中,由余弦定理得

160 PC=OP+OC-2OP·OCcos=5-4cos.∴y=S△OPC+S△PCD=∴当-1353×1×2sin+(5-4cos)=2sin(-)+.3244222553=,即=时,ymax=2+.326453.4所以四边形OPDC面积的最大值为2+巩固练习

1.某观测站C在A城的南偏西20°的方向.由A城出发的一条公路,走向是南偏东40°,在C处测得公路上B处有一人距C为31千米正沿公路向A城走去,走了20千米后到达D处,此时CD间的距离为21千米,问这人还要走多少千米才能到达A城? 解 设∠ACD=,∠CDB=.在△BCD中,由余弦定理得 cos=

143BD2CD2CB2202212312==-,则sin=,72BDCD220217而sin=sin(-60°)=sincos60°-cossin60° =1153433×+×=, 27142721AD21sin=,∴AD==sin60sinsin6021在△ACD中,由正弦定理得

5314=15(千米).32答 这个人再走15千米就可到达A城.2.如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得 ∠BCD=,∠BDC=,CD=s,并在点C测得塔顶A的仰角为,求塔高AB.解 在△BCD中,∠CBD=--,由正弦定理得所以BC=CDsinBDCssin=

sinCBDsin()BCCD=,sinBDCsinCBD在Rt△ABC中,AB=BCtan∠ACB=

stansin.sin()3.为了竖一块广告牌,要制造三角形支架.三角形支架如图

161 所示,要求∠ACB=60°,BC的长度大于1米,且AC比 AB长0.5米.为了使广告牌稳固,要求AC的长度越短越 好,求AC最短为多少米?且当AC最短时,BC长度为多 少米?

解 设BC=a(a>1),AB=c,AC=b,b-c=

12221122

2.c=a+b-2abcos60°,将c=b-代入得(b-)=a+b-ab, 222化简得b(a-1)=a-21.由a>1,知a-1>0.b=4a231(a1)22a234=(a-1)+4= 4(a1)a1a1+23+2, 当且仅当a-1=33时,取“=”号,即a=1+时,b有最小值2+3.4(a1)2答 AC最短为(2+3)米,此时,BC长为(1+

3)米.2回顾总结 知识 方法 思想

课后作业

一、填空题

1.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成 75°视角,则B、C的距离是 海里.答案 56

2.为测量某塔AB的高度,在一幢与塔AB相距20 m的楼顶处测得塔顶A的仰角为30°,测得塔基B的俯角为45°,那么塔AB的高度是 m.答案 20(1+3)33.如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于a km, 162 灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为 km.答案 3a

4.一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为 海里/小时.答案 176 25.如图所示,在河岸AC测量河的宽度BC,图中所标的数据a,b,c,,是可供测量的数据.下面给出的四组数据中,对测量河宽较适宜 的是(填序号).①c和②c和b③c和④b和 答案 ④

6.如图,一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S相 距20海里,随后货轮按北偏西30°的方向航行30分钟后,又测得灯塔在 货轮的东北方向,则货轮的速度为 海里/小时.答案 20(6-2)7.在△ABC中,若∠C=60°,则答案 1 8.(2008·苏州模拟)在△ABC中,边a,b,c所对角分别为A,B,C,且答案

nisaAab+=.bcca=

cosBcosC

=,则∠A=.cb

2二、解答题

9.在△ABC中,a,b,c分别为角A、B、C的对边,设f(x)=ax-(a-b)x-4c.(1)f(1)=0且B-C=

2,求角C的大小;(2)若f(2)=0,求角C的取值范围.3222

2解(1)∵f(1)=0,∴a-(a-b)-4c=0,∴b=4c,∴b=2c,∴sinB=2sinC,163 又B-C=.∴sin(C+)=2sinC,∴sinC·cos+cosC·sin=2sinC,3333∴353sinC-cosC=0,∴sin(C-)=0,又∵-<C-<,∴C=.6666622222

2(2)若f(2)=0,则4a-2(a-b)-4c=0,∴a+b=2c,∴cosC=又2c=a+b≥2ab,∴ab≤c,∴cosC≥2222

a2b2c2c2=,2ab2ab1,又∵C∈(0,),∴0<C≤.323.410.(2008·泰安模拟)在△ABC中,a,b,c分别为角A,B,C的对边.已知a=1,b=2,cosC=(1)求边c的值;(2)求sin(C-A)的值.解(1)c=a+b-2abcosC=1+2-2×1×2×22222

3=2,∴c=2.4(2)∵cosC=3ac17,∴sinC=.在△ABC中,=,即=

sinAsinCsinA44274.∴sinA==

5214,∵a<b,∴A为锐角,cosA=.∴sin(C-A)=sinCcosA-cosCsinA

8852371414×-×=.48481611.如图所示,扇形AOB,圆心角AOB等于60°,半径为2,在弧

AB上有一动点P,过P引平行于OB的直线和OA交于点C,设∠AOP=,求△POC面积的最大值及此时的值.解 ∵CP∥OB,∴∠CPO=∠POB=60°-,∠OCP=120°.在△POC中,由正弦定理得又OPCP2CP4=,∴=,∴CP=sin.sinPCOsinsin120sin32OC4=,∴OC=sin(60°-).因此△POC的面积为

sin(60)sin1203S()==11443CP·OCsin120°=·sin(60°-)× sin·2223343sinsin(60°-)=43sin(1232

cos-sin)=2sin·cos-sin

223=sin2+

332333cos2-=sin(2+)-.∴=时,S()取得最大值为.6633333164 12.在海岸A处,发现北偏东45°方向,距离A(3-1)n mile的B处 有一艘走私船,在A处北偏西75°的方向,距离A 2 n mile的C处的

缉私船奉命以103 n mile/h的速度追截走私船.此时,走私船正以 10 n mile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方 向能最快追上走私船?

解 如图所示,注意到最快追上走私船且两船所用时间相等,若在D处相遇,则可先在△ABC中求出BC,再在△BCD中求∠BCD.设缉私船用t h在D处追上走私船,则有CD=103t,BD=10t.在△ABC中,222∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC=AB+AC-2AB·AC·cos∠BAC

5.2022高中数学教案 1.1.2 余弦定理 篇五

您身边的志愿填报指导专家

第 5 课时:§1.3 正弦定理、余弦定理的应用(1)

【三维目标】:

一、知识与技能

1.能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题;

2.体会数学建摸的基本思想,应用解三角形知识解决实际问题的解题一般步骤:①根据题意作出示意图;②确定所涉及的三角形,搞清已知和未知;③选用合适的定理进行求解;④给出答案。

3.了解常用的测量相关术语(如:仰角、俯角、方位角、视角及坡度、经纬度等有关名词和术语的确切含义);综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题;

4.能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力

5.规范学生的演算过程:逻辑严谨,表述准确,算法简练,书写工整,示意图清晰。

二、过程与方法

通过复习、小结,使学生牢固掌握两个定理,熟练运用。

三、情感、态度与价值观

激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 【教学重点与难点】:

重点:(1)综合运用正弦定理、余弦定理等知识和方法解决一些实际问题;

(2)掌握求解实际问题的一般步骤. 难点:根据题意建立数学模型,画出示意图 【学法与教学用具】:

1.学法:让学生回忆正弦定理、余弦定理以及它们可以解决哪些类型的三角形,让学生尝试绘制知识纲目图。生活中错综复杂的问题本源仍然是我们学过的定理,因此系统掌握前一节内容是学好本节课的基础。解有关三角形的应用题有固定的解题思路,引导学生寻求实际问题的本质和规律,从一般规律到生活的具体运用,这方面需要多琢磨和多体会。【授课类型】:新授课 【课时安排】:1课时 【教学思路】:

一、创设情景,揭示课题

总结解斜三角形的要求和常用方法

(1)利用正弦定理和三角形内角和定理,可以解决以下两类解斜三角形问题: ①已知两角和任一边,求其它两边和一角;

②已知两边和其中一边的对角,求另一边的对角,从而进一步求其它的边和角(2)应用余弦定理解以下两类三角形问题: ①已知三边求三内角;

②已知两边和它们的夹角,求第三边和其它两个内角

二、研探新知,质疑答辩,排难解惑,发展思维

例1(教材P18例1)如图1-3-1,为了测量河对岸两点A,B之间的距离,在河岸这边取点C,D,测

第 1 页

版权所有@中国高考志愿填报门户



您身边的志愿填报指导专家

得ADC85,BDC60,ACD47,BCD72,CD100m.设A,B,C,D在同一平面内,试求A,B之间的距离(精确到1m).解:在ADC中,ADC85,ACD47,则DAC48.又DC100,由正弦定理,得

DCsinADC100sin85AC134.05m.sinDACsin48在BDC中,BDC60,BCD72,则DBC48.又DC100,由正弦定理,得 DCsinBDC100sin60BC116.54m.sinDBCsin48在ABC中,由余弦定理,得

图AB2AC2BC22ACBCcosACB134.052116.5422134.05116.54cos7247

3233.95,所以 AB57m 答A,B两点之间的距离约为57m.本例中AB看成ABC或ABD的一边,为此需求出AC,BC或AD,BD,所以可考察ADC和BDC,根据已知条件和正弦定理来求AC,BC,再由余弦定理求AB.例2(教材P18例2)如图1-3-2,某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A处获悉后,测出该渔轮在方位角为45,距离为10nmile的C处,并测得渔轮正沿方位角为105的方向,以

9nmile/h的速度向小岛靠拢,我海军舰艇立即以21nmile/h的速度前去营救.求舰艇的航向和靠近渔轮所需的时间(角度精确到0.1,时间精确到1min).解:设舰艇收到信号后xh在B处靠拢渔轮,则AB21x,BC9x,又AC10,ACB45180105120.由余弦定理,得ABACBC2ACBCcosACB,2即21x109x2109xcos120.222222化简,得36x9x100,解得xh40min(负值舍去).32图1-3-2

BCsinACB9xsin12033由正弦定理,得sinBAC,所以BAC21.8,方位角为

AB21x1

4第 2 页

版权所有@中国高考志愿填报门户

您身边的志愿填报指导专家

4521.866.8.答:舰艇应沿着方向角66.8的方向航行,经过40min就可靠近渔轮.本例是正弦定理、余弦定理在航海问题中的综合应用.因为舰艇从A到B与渔轮从C到B的时间相同,所以根据余弦定理可求出该时间,从而求出AB和BC;再根据正弦定理求出BAC.例3 如图,要测底部不能到达的烟囱的高AB,从与烟囱底部在同一水平直线上的C,D两处,测得烟囱的仰角分别为3512和4928,CD间的距离是11.12m,已知测角仪高1.52m,求烟囱的高。

四、巩固深化,反馈矫正

1.在四边形ABCD中,已知ADCD,AD10,AB14,BDA600,BCD1350,求BC的长 2.在四边形ABCD中,ABBC,CD33,ACB300,BCD750,BDC450,求AB的长 3.四边形ABCD中,ABBC,ADDC,且EAF600,BC5,CD2,求AC

4.我炮兵阵地位于A处,两观察所分别设于C、D,已知ACD为边长等于a的正三角形。当目标出现于B,测得CDB450,ACD750(A、B在CD两侧),试求炮击目标的距离AB。

5.把一根长为30CM的木条锯成两段,分别作钝角三角形ABC的两边AB和BC,且ABC120,如何锯断木条,才能使第三边AC最短?

0

五、归纳整理,整体认识

1.解斜三角形应用题的一般步骤:

(1)分析:理解题意,分清已知与未知,画出示意图

(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型

(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解

2.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题.3.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.六、承上启下,留下悬念

七、板书设计(略)

八、课后记:

第 3 页

6.2022高中数学教案 1.1.2 余弦定理 篇六

1.“粗盐提纯”实验中,下列操作正确的是()A.过滤时用玻璃棒搅拌漏斗内的液体,以加速过滤 B.蒸发到析出晶体时才需要用玻璃棒搅拌 C.待溶液蒸干后即停止加热

D.当蒸发皿中出现较多量晶体时就应停止加热

解析:“粗盐提纯”实验中,过滤时不能用玻璃棒搅拌漏斗内的液体,否则易将滤纸捅破;蒸发溶液的过程中要用玻璃棒不断搅拌,目的是防止滤液局部温度过高而发生飞溅;当蒸发皿中出现较多量晶体时,即停止加热,利用蒸发皿的余热将滤液蒸干。

答案:D 2.进行过滤操作应选用的一组仪器是()A.滤纸、烧杯、试管夹、漏斗、玻璃棒 B.烧杯、酒精灯、试管、漏斗

C.铁架台(附铁圈)、烧杯、漏斗、玻璃棒、滤纸 D.铁架台(附铁圈)、烧杯、漏斗、玻璃棒

解析:按照过滤装置从下而上进行记忆。铁架台(附铁圈)、烧杯、漏斗、玻璃棒,注意滤纸是实验用品不属于实验仪器。

答案:D 3.下列叙述中,错误的是()A.沙里淘金是利用金与沙的密度相差较大而将沙淘走,使金留下

B.化学上所指的杂质,有的本来无害且很有价值,即使有害无价值的也应设法变废为宝

C.检验某溶液时,将检测试剂一次加入全部溶液里 D.蒸发时加热到蒸发皿出现较多固体时即可

解析:在检验配好的溶液中是否含有某种离子时,应取少量溶液进行检验,绝对不能将试剂直接加到全部待检溶液中,故选C。

答案:C 4.下列有关过滤和蒸发的操作中,正确的是()A.过滤时,漏斗的下端管口紧靠烧杯内壁

B.为了加快过滤速度,可用玻璃棒搅动过滤器中的液体 C.当蒸发皿中的固体完全蒸干后,再停止加热 D.实验完毕后,用手直接取走蒸发皿

解析:过滤时不可搅动过滤器中的液体,B错误;蒸发时,当蒸发皿中出现大量固体时停止加热,用余热蒸干,C错误;实验结束后应使用坩埚钳夹持蒸发皿,D错误。

答案: A 5.通过溶解、过滤、蒸发等操作,可将下列各组混合物分离的是()A.硝酸钠、氢氧化钠

C.氯化钾、二氧化锰

B.氧化铜、二氧化锰 D.硫酸铜、氢氧化钙

解析:A项,NaNO3和NaOH都溶于水,无法用过滤法分离;B项,CuO和MnO2都不溶于水;D项CuSO4、Ca(OH)2溶于水后两者会发生反应;而KCl和MnO2可用过滤法分离,然后蒸发滤液即可得到KCl。

答案:C 6.某溶液中可能含有SO4、CO3、Cl。为了检验其中是否含有SO4,除BaCl2溶液外,还需要的溶液是()A.H2SO4 C.NaOH 答案:B 7.某溶液中含有较大量的Cl、CO3、OH等3种阴离子,如果只取一次该溶液就能够分别将3种阴离子依次检验出来,下列实验操作顺序正确的是()①滴加Mg(NO3)2溶液 ②过滤 ③滴加AgNO3溶液 ④滴加Ba(NO3)2溶液 A.①②④②③ C.①②③②④

B.④②①②③ D.④②③②①

2-

2-

2-

2-

B.HCl D.NaNO3

解析:若第一步加的是Mg(NO3)2溶液,则会有Mg(OH)2和MgCO3两种沉淀,这样就无法判定该溶液中含有的是哪种离子,同理也可将③排除,则第一步加的必是④,生成沉淀的则必是CO3;将其过滤,滤液中还有Cl、OH,滴加Mg(NO3)2溶液即可将OH沉淀下来,再过滤,向滤液中滴加AgNO3溶液即可检验出Cl。

答案:B 8.向某溶液中滴入BaCl2溶液,产生白色沉淀,再滴入稀HNO3,沉淀不溶解,则该溶液中()A.一定有SO4 C.一定无Ag +2-

-2-

B.可能有SO4或Ag D.可能有CO3

2-

2-+解析:溶液中加入BaCl2,可产生BaSO4、AgCl等白色沉淀,再加稀HNO3,两者均不溶解,所以B正确。

上一篇:团支部推优报告下一篇:仓库搬迁计划书