幂函数单调性和奇偶性

2024-08-25

幂函数单调性和奇偶性(共9篇)

1.幂函数单调性和奇偶性 篇一

函数的单调性,函数的奇偶性,反函数

[本周教学重点] 掌握函数单调性的定义,会用定义法证明函数的单调性及其步骤。

(1)设x1,x2是定义域上的任意两个值,且x1

(2)作差f(x1)-f(x2)并将其变形为可判断符号的形式;

(3)判断f(x1)-f(x2)的正、负;

(4)结论

理解函数奇偶性的定义及奇、偶函数定理,能判断、证明一些简单函数的奇偶性,会利用函数奇偶性求解有关函数问题。

(1)函数的定义域在数轴上关于原点对称,是函数具有奇偶性的必要条件。

(2)f(-x)=-f(x)f(-x)+f(x)=0f(x)是奇函数。

f(x)=f(-x)f(-x)-f(x)=0f(x)是偶函数。

由f(-x)=-f(x)或f(-x)=f(x)是侧重于函数解析式的变形去证明f(x)的奇偶性;而f(-x)+f(x)=0或f(-x)-f(x)=0是通过运算去证明f(x)的奇偶性,两种定义形式各具不同优势。

(3)若f(x)是奇函数且允许x=0,则f(0)=0,即f(x)的图象过原点。

(4)若f(x)既是奇函数,又是偶函数,则f(x)=0。

(5)同为奇函数,同为偶函数的两个函数之积是偶函数;一奇一偶两个函数之积是奇函数。

(6)定义在R上的任意一个函数f(x)都可表示为一个奇函数g(x)与一个偶函数h(x)的和。

即f(x)=g(x)+h(x),其中g(x)=[f(x)-f(-x)],h(x)=

[f(x)+f(-x)]。

理解反函数的概念,掌握求反函数的方法步骤。

(1)由原函数y=f(x)求出它的值域;

(2)由原函数y=f(x)反解出x=f-

1(y);

(3)交换x,y改写成y=f-1(x);

(4)用f(x)的值域确定f-1(x)的定义域。

[例题分析]

例1.证明函数f(x)=

在定义域上的单调性。

[分析与解答] 函数的单调性必须在定义域内进行考查。由x2+x≥0得f(x)定义域为(-∞,-1][0,+∞)。

函数定义域不是一个连续的区间,应分别考查在每一个区间上的单调性,用定义法证明时,只需任取x1

任取x1

==

当-∞0。

∴ f(x1)-f(x2)>0,∴ f(x)是(-∞,-1]上的单调递减函数。

当0≤x10。

>0。

∴ f(x1)-f(x2)<0,∴ f(x)是[0,+∞)上的单调递增函数。

例2.函数f(x)是[0,+∞)上的单调递减函数,f(x)≠0且f(2)=1,证明函数F(x)=f(x)+在[0,2]上的单调性。

[分析与解答]函数f(x)没有给出解析式,因此对F(x)的函数值作差后,需由f(x)的单调性,确定作差后的符号。任取0≤x1

由F(x1)-F(x2)=f(x1)+-f(x2)-=f(x1)-f(x2)+

=[f(x1)-f(x2)]·[1-]

∵ 0≤x1f(x2)≥f(2)=1。

∴ f(x1)-f(x2)>0,f(x1)·f(x2)>1,<1,1->0,∴ F(x1)-F(x2)>0,F(x)是[0,2]上的单调递减函数。

例3.证明函数f(x)=的奇偶性。

[分析与解答] 函数的奇偶性必须在其定义域内考查。

由 函数f(x)定义域为[-1,0)(0,1]。

∴ |x+3|-3=x+3-3=x。即f(x)=,由f(-x)=

=-f(x),∴ f(x)是奇函数。

例4.设f(x)是定义在R上的函数,对任意x1,x2∈R,恒有f(x1+x2)=f(x1)+f(x2),且f(x)不恒为0,证明

f(x)的奇偶性。

[分析与解答] 函数f(x)没有给出解析式,这就必须从定义域,法则,及f(x)不恒为0去分析,完成奇偶性的证明。由f(x)定义域为R,显然允许x=0,所以f(0)=0是f(x)的奇函数的必要条件。

令x1=x2=0,由f(x1+x2)=f(x1)+f(x2)得f(0+0)=f(0)+f(0),整理得f(0)=0,对任意x∈R,由f(x1+x2)=f(x1)+f(x2)知f(-x)+f(x)=f(-x+x)=f(0)=0,∴ f(-x)=-f(x),∵ f(x)不恒为0,∴f(x)不可能既是奇函数又是偶函数,所以f(x)是R上的奇函数。

例5.已知函数f(x)=(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3。

(1)求a,b,c的值;(2)用定义法证明f(x)在(0,1)上的单调性。

[分析与解答](1)∵ f(x)是奇函数,∴f(-x)=-f(x),即

=-,解出c=0,∴ f(x)=,∵ f(1)=2,∴ =2,∴ 2b=a+1。

∵ f(2)<3,∴<3。将2b=a+1代入,∴ <3,解出-1

(2)f(x)==x+。任取0

f(x1)-f(x2)=x1+-x2-=(x1-x2)+=(x1-x2)(1-)

∵ 01,1-<0,∴ f(x1)-f(x2)>0,f(x)是(0,1)上的单调递减函数。

例6.证明函数f(x)=

(x≠)的图象关于直线y=x对称。

[分析与解答] 由反函数定理可知,当两个函数互为反函数时,它们的图象关于直线y=x对称,所以要证明 f(x)=(x≠)的图象关于直线y=x对称,只需证明f(x)的反函数是其自身即可。

∴ f(x)的值域为{y|y≠,y∈R}。

由y=,∴ ayx-y=x-1,(ay-1)x=y-1。

∵ y≠,∴ ay-1≠0,x=,即f-1(x)=

(x≠),显然f(x)与f-1(x)是同一函数,所求f(x)的图象关于直线y=x对称。

[参考练习]

1.设f(x)是定义在R上的任意一个增函数,F(x)=f(x)-f(-x)必是()。

A、增函数且是奇函数

B、增函数且是偶函数

C、减函数且是奇函数

D、减函数且是偶函数

2.已知y=f(x)是R上的奇函数,当x≥0时,f(x)=x2-2x,则f(x)在R上的表达式是()。

A、y=x(x-2)B、y=x(|x|-1)C、y=|x|·(x-2)D、y=x(|x|-2)

3.若点(1,2)在函数y=的图象上,又在它的反函数的图象上,则()。

A、a=3,b=-7 B、a=3,b=7 C、a=-3,b=-7 D、a=-3,b=7

4.函数f(x)是定义在[-6,6]上的偶函数,且在[-6,0]上是减函数,则()。

A、f(3)+f(4)>0 B、f(-3)-f(2)<0 C、f(-2)+f(-5)<0 D、f(4)-f(-1)>0

5.设f(x)是定义在(-1,1)上的奇函数且是单调减函数,求解关于x的不等式f(1-x)+f(1-x2)<0的解集。

[参考答案]:

1.A 2.D 3.D 4.D

5.由f(1-x)+f(1-x2)<0,∴ f(1-x)<-f(1-x2),∵ f(x)是(-1,1)上的奇函数,∴ f(1-x)

{x|0

2.幂函数单调性和奇偶性 篇二

提出了多项式光滑的支持向量机[5]。2007年,熊金志等人用插值函数和积分的方法,提出了一类新的光滑函数[6]。2008年,熊金志等人用多项式光滑函数,提出多项式光滑的支持向量机的一般模型[7],还解决了该研究方向上若干个理论问题[8,9,10]。然而,他们都未对该四次多项式函数的单调性和光滑性进行详细分析。为进一步完善光滑支持向量机理论,本文对该多项式函数进行研究,专门分析它的单调性和光滑性问题。

1 性能分析

逼近正号函数的四次多项式函数p2(x,k)为[6]:

定理1光滑函数p2(x,k)定义如式(1),则该函数是单调增函数。

证明:

1)在区间以外,定理显然成立。

2)在区间,对p2(x,k)求关于x的一阶导,可得

因在该区间-10,所以p2(x,k)单调增。

综合1)和2)知,p2(x,k)在整个x轴上单调增。证毕。

定理2光滑函数p2(x,k)定义如式(1),则该函数具有二阶光滑性。

证明分别对

求关于x的一至三阶导,可得:

一阶导

二阶导

三阶导

p2(x,k)的三阶导(x,k)在节点和上存在,但(x,k)在处的左极限

在处的右极限

可见(x,k)在处不连续。同理可知(x,k)在处也不连续。所以p2(x,k)不具有三阶光滑性,但具有二阶光滑性。证毕。

显然,该四次多项式函数p2(x,k)是一个分段函数,有了以上两个定理,我们就可以分析它是如何逼近正号函数的:

1)在对称区间,k>0,用四次多项式函数

代替x+;

综合上述四点知,四次多项式函数p2(x,k)在整个x轴上皆以二阶光滑和单调增的性质逼近正号函数,即

如图1所示。

2 结论

袁玉波等人用一个四次的多项式光滑函数,提出了多项式光滑的支持向量机;熊金志等人也对光滑支持向量机理论做了一些有益的研究工作,但他们都未对该四次多项式函数的光滑性和单调性进行详细分析。鉴于光滑函数在光滑支持向量机理论中的重要性,我们对该四次多项式函数的性能进行了分析。结果表明,该多项式函数具有二阶光滑和单调增的良好性能,为研究光滑支持向量机提供了一些理论依据。

参考文献

[1] Chen Chunhui,Mangasarian O L.A class of smoothing functions for nonlinear and mixed complementarity problems.Computational Optimization and Application,1996;5(1):97-138

[2] Chen Chunhui,Mangasarian O L.Smoothing methods for convex inequalities and linear complementarity problems.Mathematical Programming, 1995;71(1):51-69

[3] Mangasarian O L.Mathematical programming in neural networks. ORSA Journal on Computing,1993;5(4):349-360

[4] Lee Yuhjye,Mangasarian O L.SSVM:a smooth support vector machine for classification.Computational Optimization and Applications, 2001;22(1):5-21

[5]袁玉波,严杰,徐成贤.多项式光滑的支撑向量机,计算机学报,2005;28(1):9-17

[6]熊金志,胡金莲,袁华强,等.一类光滑支持向量机新函数的研究,电子学报,2007;35(2):366-370

[7]熊金志,袁华强,彭宏.多项式光滑的支持向量机一般模型研究,计算机研究与发展,2008;45(8):1346-1373

[8]熊金志,胡金莲,袁华强,等.支持向量回归机的光滑函数研究,模式识别与人工智能,2008;21(3):366-370

[9]熊金志,胡金莲,袁华强.光滑支持向量机的原理与进展,计算机工程,2008;43(10):76-78

3.函数奇偶性教案 篇三

廖登玲

一、教学目标:

1、知识与技能 :

理解奇函数、偶函数的概念,掌握判断函数奇偶性的方法;

2、过程与方法:

通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶

性概念解决简单的问题,领会数形结合的数学思想方法;培养发现问题、分析问题、解决问题的能力.

二、教学重难点:

教学重点:函数奇偶性概念及其判断方法。

教学难点:对函数奇偶性的概念的理解及如何判定函数奇偶性。

三、教学方法:

通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.在鼓励学生主体参与的同时,教会学生清晰的思维、严谨的推理,并顺利地完成书面过程

四、教学过程:

1、创设情境,引入课题:

让学生自己列举出生活中对称的实例,师:我们知道,“对称”是大自然的一种美,在我们的生活中,有许多的对称美:如美丽的蝴蝶、古建筑等等。这种对称美在数学中也有大量的反应,这节课我们就来一起发现数学中的对称美。

2、观察归纳,形成概念:

(1)请同学们利用描点法做出函数f(x)=x/3 与函数g(x)=x^3 的图像,观察这两个函数图像具有怎样的对称性并思考和讨论以下的问题?

①这两个函数的图像有什么共同的特征?②从图像看函数的定义域有什么特点? 生:函数y=x/3的图像是定义域为R的直线,函数y=x^3的图像是定义域为R的曲线,它们都关于原点对称,且当x属于函数定义域时,它的相反数-x也在定义域内。

(2)让学生注意到x=-

3、-

2、-1、0、1、2、3 时两个函数的函数值,可以发现两个函数的对称性反应到函数上具有的特性:关于原点对称,进而提出在定义域内是否对所有的x,都有类似的情况?借助课件演示,让学生通过运算发现函数的对称性实质:当自变量互为相反数时,函数值互为相反数。然后通过解析式给出简单证明:f(-x)=(-x)/3=-(x/3)=-f(x);g(-x)=(-x)^3=-(x^3)=-g(x),进一步说明这个特性对定义域内的任意一个x都成立。

(3)师:具有此种特征的函数还有很多,我们能不能用数学语言对这类函数的特征进行描述?

(板书):如果对于函数定义域内的任意一个x,都有f(x)=-f(-x),那么函数叫做奇函数。

3、设疑答问,深化概念

教师设计下列问题并组织学生讨论思考回答:

问题1:奇函数定义中有“任意”二字,说明函数的奇偶性是怎样的一个性质?与单调性有何区别?

答:在奇函数的定义中“如果对于函数f(x)的定义域内任意一个x”这句话它表示函数奇偶性针对的是函数的整个定义域,它表示函数的奇偶性是函数在定义域上的一个整体性

质,它不同于单调性,单调性它针对的是定义域中的某个区间,是一个局部性质。问题2:-x与x在几何上有何关系?具有奇偶性的函数的定义域有何特征?

答:二者在几何上关于原点对称,函数的定义域关于原点对称是一个函数为奇函数或偶函数的首要条件。

问题3:(1)对于任意一个奇函数f(x),图像上的点f(x)关于原点的对称点f(-x)的坐标是什么?点(-x,-f(x))是否也在函数f(x)的图像上?由此可得到怎样的结论?(2)如果一个函数是奇函数,定义域中的x可以等于0.那么f(0)的值等于多少?

引导学生通过回答问题3把奇函数图像的性质总结出来,即:①函数f(x)是奇函数,则其图像关于原点对称,②对于奇函数f(x),若f(0)有定义,则f(0)=0.然后教师利用多媒体演示两幅关于y轴对称的函数图像,让学生仿照奇函数,观察图像,给出偶函数的定义:如果对于函数定义域内的任意一个x,都有f(x)=f(-x),那么函数叫做偶函数。并让学生自己研究一下偶函数图像的性质,即函数f(x)是偶函数,则其图像关于y轴对称。

4、知识应用,巩固提高 例

1、判断下列函数的奇偶性:

(1)f(x)=1/x(奇函数)

(2)f(x)=-(x^2)+1(偶函数)

(3)f(x)=x+1(非奇非偶)

(4)f(x)=0(既奇又偶)

选例1的第(1)小题板书来示范解题的步骤:对于函数f(x)=1/x,其定义域为(-∞,+∞).因为对定义域内的每一个x,有-x∈(-∞,+∞),且f(-x)=-1/x=-f(x),(f(x)+f(-x)=0), 所以,函数为奇函数。

其他例题让几个学生板演,其余学生在下面自己完成,针对板演的同学所出现的步骤上的问题进行及时纠正,教师要适时引导学生做好总结归纳。(1)通过例1总结判断函数奇偶性的步骤:

①求出函数的定义域I,并判断若x∈I,是否有-x∈I

②验证f(-x)=f(x)或f(-x)=-f(x)(f(x)-f(-x)=0 或f(x)+f(-x)=0)③得出结论

(2)通过讲解板演同学的解题,得出函数奇偶性的相关性质:

① 对于一个函数来说,它的奇偶性有四种可能:是奇函数但不是偶函数,是偶函数但不是奇函数,既是奇函数又是偶函数,既不是奇函数也不是偶函数。

②存在既是奇函数,又是偶函数的函数:f(x)=0

五、总结反思:

从知识、方法两个方面来对本节课的内容进行归纳总结,让学生谈本节课的收获,并进行反思。从而关注学生的自主体验,反思和发表本堂课的体验和收获。

六、任务后延,兴趣研究:

1、思考:如果改变奇函数的定义域,它还是奇函数吗?如:y = x3(x≠0),y = x3(x≠1),y = x3(x≥0),y=x3(-1≤x≤1),试判断它们是奇函数吗?

4.函数奇偶性教学反思 篇四

一、反思效果

基本达到教学的目标,从数与形两方面引导,使学生从文字、图形、符号三种数学语言理解了奇偶性的概念,并会利用定义判断简单函数的奇偶性。在奇偶性概念形成过程中,培养了学生的观察、类比、归纳问题能力,同时渗透数形结合思想、运用符号及变元表示的思想、以及从特殊到一般的数学思想方法。设计情境,让学生感受数学美,同时激发他们学习的兴趣,培养学生乐于探索的精神。本节课突出了教学重点:函数奇偶性概念的形成及其几何意义。利用多种手段,有效的突破了教学难点:理解函数奇偶性的概念,和判断函数的奇偶性的方法与步骤。

二、反思成功

在教学中,自己对几个地方的处理还是比较满意的。

1.创设情境,激发学生学习的兴趣

在现实的教学中,学生普遍对数学课缺乏兴趣,感到数学课枯燥、乏味、抽象,只是与数字、字母、公式打交道的学科。如何挖掘教材的兴奋点、好奇点,以问题为教学出发点,激发学生的好奇心和学习兴趣呢?我想起初中课本在讲解对称的有关知识时,列举了大量的生活中的图片,这是可以借鉴的。用多媒体展示生活中的图片,使学生感受到生活中的对称美,通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。2.重视让学生经历奇偶性概念的形成过程

新课程实施要求教师改变传统教学形态,强调教学要师生共同探讨,教师要关注教学和学生学习的过程。认知活动要从重视教学结果向重视教学过程转变,而所谓重过程就是教师在教学中把教学的重点放在教学过程,放在揭示知识形成的规律上,让学生在感知、概括、应用的思维过程中去发现真理,掌握规律。

在函数的奇偶性概念的学习中,最让学生感到困惑的是:如何突破常量到变量的转化,从而达到由直观到抽象。最容易让学生忽略的是:定义中“任意”一词使用的重要性。教学中,如何突破这一教学难点,让学生经历概念的形成过程呢?我主要采用多媒体图形动态优势,利用图象动态变化更直观的

来判定图象关于y轴对称及关于原点对称,并从数值角度研究图象的这种特征,体现在自变量与函数值之间有何规律,处理方法是:先给出特殊函数的图象,让学生通过图象直观获得函数奇偶性的认识,然后利用表格探究数量变化特征,通过代数运算,验证发现的数量特征对定义域中的“任意”值都成立,最后在这个基础上建立概念。

三、反思不足

上完了课,再仔细回味,发现有些地方确实不太满意。首先,在教学过程中学生的参与有所不足:我们的教学要“以学定教”,要保证学生在课堂上有充分的时间参与训练,尽可能的参与教学活动。我也尽可能的朝着这方面努力,现在看来,对于这节课,我觉得学生的参与可以再多些。比如:奇函数概念的形成,可以在教师的指导下由学生类比偶函数概念的推导过程,得出奇函数的概念,这样更能亲身体会出概念的形成过程;还有学生做的练习也可以由他们自己亲自到前面用投影给大家展示并讲解,这样更能增加他们的成就感,从而调动他们学习的积极性。

另外,对教学中师生的互动有所不足:在讲课过程中,让学生讨论得出定义时,有些着急。在新课讲授完毕,我请学生对本节课所讲内容总结概括,请学生归纳时,应多请几名同学们分享,而我归纳总结的过多,也没有请学生说说对于这节课的困惑。我本想借此达到两个目的:一个是想了解一下教学的效果,一个是促进师生之间的交流,但结果达不到预期的效果。为什么会这样呢?我所期待的那种师生间的对知识的充分交流的情况并没有出现。我想,这个问题的解决还需要长时间的探索。

5.函数奇偶性练习题 篇五

1.判断下列函数的奇偶性

2x2x1(1)f(x)xsinx(2)g(x)ln(3)h(x)x 2x21

(4)ylg(x21x)(5)y

2.已知f(x)x(1(6)yx1x sinx111)x212

(1)判断f(x)的奇偶性;(2)证明f(x)0.3.求下列实数a的值

a2xa2(1)已知函数f(x)(aR)是R上的奇函数,求a的值.x21

(2)若函数g(x)sin(2xa)是R上的偶函数,求实数a的值.4.已知函数f(x)x22|x|.(Ⅰ)判断并证明函数的奇偶性;

(Ⅱ)判断函数f(x)在(1,0)上的单调性并加以证明.

5.求下列x的取值范围.(Ⅰ)已知函数f(x)是定义R上的奇函数,且当x(0,)时,f(x)lgx.若f(2x1)0,求x的取值范围.(Ⅱ)已知函数f(x)是定义R上的偶函数,且在(0,)上单调递增,f(1)0.若f(2x1)0,求x的取值范围.6.求下列函数f(x)的解析式

(1)已知函数f(x)为偶函数,且当x0时,f(x)x23x,求f(x)的解析式;

(2)若函数f(x)是R上的奇函数,且当x0时,f(x)xlg(2x),求f(x)的解析式.exa是R上的偶函数.7.已知a0,函数f(x)aex

(1)求a的值;

(2)求证:f(x)在(0,)上是增函数.8.已知函数f(x)exex(其中e为自然对数的底数).(1)判断函数f(x)的奇偶性与单调性;

(2)是否存在实数t,使得不等式f(xt)f(x2t2)0对一切xR都成立? 若存在,求出t的值;若不存在,请说明理由.9.已知f(x)是定义在[1,1]上的奇函数,当a,b[1,1],且ab0时有

(1)判断函数f(x)的单调性,并给予证明;

6.函数的奇偶性说课稿 - 篇六

各位评委老师好:

我今天说课的题目是《函数的奇偶性》接下来我从以下几个环节进行说课。教材分析、学情分析、目标分析、教学目标、教学方法、教学设计、板书设计。一.教材分析

《函数奇偶性》是选自人教版中等职业教育课程改革国家规划新教材,数学基础模块上册第三章第四节的内容。它的主要内容是函数奇偶性的概念,判断函数奇偶性的方法与步骤。在此之前,学生已经学习了函数的概念、函数的表示方法、函数的单调性,为这一节的学习起到了铺垫作用,同时又是后面学习具体函数的基础。《函数的奇偶性》是高中数学的一个重要内容,它不仅与现实生活中对称性密切相关联,而且是历年高考的热点,重点和必考点,它是函数概念的深化,学习函数奇偶性,能使学生再次体会数型结合思想,初步学会用数学的眼光去看待事物,感受数学的对称美。二.学情分析

认知水平与能力:高一学生具备了一定的观察、类比、分析、归纳能力,已初步具有数形结合思维能力,能在教师的引导下解决问题。

任教班级特点:这个班是医护班,学生数学基础较薄弱,上课注意力不够集中,理解能力不够强,可利用数形结合解决简单问题,但归纳转化的能力与观察讨论能力有待加强。

改进与提高:让学生利用图形直观感受;让学生“归纳、总结、运用”,重视学生的主动参与,注重信息反馈,通过引导学生多思多说多练,使认识得到深化。

三、教学目标

根据对教学大纲、教材内容的分析,结合学生已有的认识能力,心理特征及知识水平,我制定教学目标如下。

知识和技能:使学生从形与数两方面理解函数奇偶性的定义,初步掌握利用函数图象和奇偶性定义判断函数奇偶性的方法。

过程与方法:通过对函数奇偶性定义的探究,渗透数形结合思想方法,培养学生的直观想象素养与数学抽象素养;提高学生的逻辑推理素养与运算素养。情感、态度、价值观:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯;让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.

重点与难点

重点:函数奇偶性的概念及判断。虽然函数的奇偶性知识点并不是很难理解,但知识掌握不全面的同学,往往会忽略定义域的问题。因此在介绍奇偶函数的概念时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。难点:函数奇偶性定义的理解与形成过程。此阶段的学生看侍问题仍在较大程度上是静止的片面的,抽象概念能力仍不强,对构建奇偶性的概念造成一定的困难。

四、教学方法

教法:本节课采用了引导发现法、直观演示法、类比法,教学中,精心设计了一个又一个带有启发性和思考性的问题,创设情景,诱导学生学会思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

学法:让学生在“观察—归纳—检验—应用”的学习过程中,自主参与知识的发生—发展—形成的过程,从而使学生掌握知识。

五、教学过程

(一)创设情境:

多媒体展示一组图片,使学生感受到生活中的对称美,通过展示图片,让学生在欣赏的同时,观察图片的对称关系。

设计意图:激发学习兴趣,调动学习的积极性便于思维定向

(二)激情导入

多媒体呈现两个特殊函数的图像yx3,yx2,开启新的学习。让学生观察图像的特征,这时学生能发现图像对称关系。数学家华罗更说“数缺形时少直观,形缺数时难入微”。要揭示概念的本质特征,就要完成从形到数,从直观到抽象的提炼与上升。

(三)自主学习、研讨展示、形成概念

1.我利用学生熟知的图像yx,yx3及其图像,让学生求对应的函数值,把学生的数据呈现在表中,以多媒体的形式呈现在大家眼前,鲜明又直观的数据,让学生自然而然的意识到这类函数在数据上也具有对称性。此时作为课堂主导的教师设问给学生:这种对称是特殊的?还是具有一般性的呢?这时学生满是好奇心,学习的积极性高涨。然后教师运用多媒体动画展示学生不难发现,图象都是以坐标原点为对称中心的中心对称图形,进而给出函数的图像上这样两点,这两个点满足横坐标相反,纵坐标页相反的特点。从而得出这种对称是一般的。既对定义域内任意的x,都有f(-x)=-f(x)最后得出奇函数严格的定义。

设计意图:定义中定义域对应的区间关于坐标原点对称是学生思维的难点,在这个过程中学生把对图形规模的感性认识,转化成数量的理性认识,切实经历了一次从特殊归纳出一般的体验。发挥学生自主性

2.紧接着用多媒体展示奇函数的图像特征。并指出如果一个函数是奇函数,则它的图象关于原点对称。反过来,如果一个函数的图象关于原点对称,则这个函数为奇函数。

设计意图:提高学生的读图能力,渗透 数形结合的数学思想

3.教师要不断设疑,挖掘奇函数概念,学习中的疑点。接着呈现的是刚才那个三次函数yx3的一部分,改变奇函数的定义域,这时教师可以设问:它还是奇函数吗?学生能答出不是。教师则追问:同样的函数解析式为什么会出现不同的答案?追根求源:是定义域出现了问题。函数能成为奇函数定义域对称是通行证。突破定义中的难点!

设计意图:完备概念,突破本节课的难点。4.设置两道口答练习,设计意图:有效地促进学生深化理解定义中隐含的对定义域的要求,对奇函数的概念及易错点定义域问题进行回炉及二度清晰,对偶函数的类比迁移做了最充足的准备。

5.设置一道例题,有3个小题,用奇函数定义判断函数是不是奇函数。设计意图:例题根据各种不同情况进行设计,符合学生认知心理,突出重点突破难点,为学生更好的掌握奇函数定义奠定基础,6.紧接着设置一组练习题题,有3个小题,用奇函数定义判断函数是不是奇函数。

设计意图:通过练习,进一步加深对定义的理解 偶函数从内容上、从知识结构上,研究思路和表现手法上和奇函数都有着不尽的相同之处。所以对偶函数的学习可以让学生进行自主及类比学习。

设计意图:通过类比、自学,培养学生的理性思维,提高学生的学习能力,加强学生间的合作交流,放手让学生自己去进行偶函数的判断,提高学生举一反三解决问题的能力,增强学生学习数学的自信心。

1.在完成奇偶函数知识的学习后,教师设计了4道不同类型例题。是利用定义进行偶函数的判定。

设计意图:仿照例1解题过程,教师引导讲解紧跟相应练习,并规范解题步骤,让学生从本质上把握偶函数的概念,尤其是定义域的对称性,突出重点,突破难点。

2.紧接着设计了3道练习题。并叫同学在黑板上演练解题过程。设计意图:鼓励学生勇于表现,培养学生的自信心,通过当堂检测,进一步应用所学,使具体知识形成方法和技能。对于在应用知识的过程中出现的问题,及时指正,评价反馈,做到堂堂清。

3.通过上述例题和练习,师生共同总结函数奇偶性的整体性质,以及用定义判断函数奇偶性的步骤。

设计意图:体现知识连续性,激发思维积极性,活动中自主学习,树立学生自信心。

4.紧接着例3是利用奇偶性补出图形。

设计意图:一是培养学生的动手能力;二是让学生进行知识的二次应用。从而使学生形成善于综合的意识,提高知识的应用能力。课堂小节

教师提出问题,明确本节重点难点。⑴函数奇偶性定义?

⑵奇偶函数的图象有什么特征? ⑶如何利用定义证明函数的奇偶性?

采取方法:师生共同讨论、交流、总结。师生,生生合作学习,让学生发表自己的意见,并就课堂出现的典型错误及造成错误的原因追根求源。

设计意图:通过对比,加深理解,强化记忆。梳理总结,并对学生薄弱或易错处强调总结。作业 :教材P73,练习A组第 1题(2)(4);第2题(2)(4)(必做)

第 6,7题(选做).

设计意图:面向全体学生,注重个体差异,加强作业针对性,进行分层作业,进一步达到不同的学生在数学上得到不同的发展。

六、板书设计 板书分为三板

第一版是主板是概念显示区,强化掌握概念知识。

7.函数的单调性 篇七

(学生朗读.)

师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量x的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?

生:我认为是一致的.定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少.

师:说得非常正确.定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!

(通过教师的情绪感染学生,激发学生学习数学的兴趣.)

师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1(x)和y=f2(x)的图象,体会这种魅力.

(指图说明.)

师:图中y=f1(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f1(x1)<f1(x),因此y=f1(x)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1(x)的单调增区间;而图中y=f2(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f2(x1)>f2(x2),因此y=f2(x)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(x)的单调减区间.

(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)

师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应……

(不把话说完,指一名学生接着说完,让学生的思维始终跟着老师.)

生:较大的函数值的函数.

师:那么减函数呢?

生:减函数就其本质而言是在相应区间上较大的自变量对应较小的函数值的函数.

(学生可能回答得不完整,教师应指导他说完整.)

师:好.我们刚刚以增函数和减函数的定义作了初步的分析,通过阅读和分析你认为在定义中我们应该抓住哪些关键词语,才能更透彻地认识定义?

(学生思索.)

学生在高中阶段以至在以后的学习中经常会遇到一些概念(或定义),能否抓住定义中的关键词语,是能否正确地、深入地理解和掌握概念的重要条件,更是学好数学及其他各学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题,认识问题的能力.

(教师在学生思索过程中,再一次有感情地朗读定义,并注意在关键词语处适当加重语气.在学生感到无从下手时,给以适当的提示.)

生:我认为在定义中,有一个词“给定区间”是定义中的关键词语.

师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同.增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性.请大家思考一个问题,我们能否说一个函数在x=5时是递增或递减的?为什么?

生:不能.因为此时函数值是一个数.

师:对.函数在某一点,由于它的`函数值是唯一确定的常数(注意这四个字“唯一确定”),因而没有增减的变化.那么,我们能不能脱离区间泛泛谈论某一个函数是增函数或是减函数呢?你能否举一个我们学过的例子?

生:不能.比如二次函数y=x2,在y轴左侧它是减函数,在y轴右侧它是增函数.因而我们不能说y=x2是增函数或是减函数.

(在学生回答问题时,教师板演函数y=x2的图像,从“形”上感知.)

师:好.他(她)举了一个例子来帮助我们理解定义中的词语“给定区间”.这说明函数的单调性是函数在某一个区间上的性质,但这不排斥有些函数在其定义域内都是增函数或减函数.因此,今后我们在谈论函数的增减性时必须指明相应的区间.

师:还有没有其他的关键词语?

生:还有定义中的“属于这个区间的任意两个”和“都有”也是关键词语.

师:你答的很对.能解释一下为什么吗?

(学生不一定能答全,教师应给予必要的提示.)

师:“属于”是什么意思?

生:就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取.

师:如果是闭区间的话,能否取自区间端点?

生:可以.

师:那么“任意”和“都有”又如何理解?

生:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2).

师:能不能构造一个反例来说明“任意”呢?

(让学生思考片刻.)

生:可以构造一个反例.考察函数y=x2,在区间[-2,2]上,如果取两个特定的值x1=-2,x2=1,显然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的减函数,那就错了.

师:那么如何来说明“都有”呢?

生:y=x2在[-2,2]上,当x1=-2,x2=-1时,有f(x1)>f(x2);当x1=1,x2=2时,有f(x1)<f(x2),这时就不能说y=x2,在[-2,2]上是增函数或减函数.

师:好极了!通过分析定义和举反例,我们知道要判断函数y=f(x)在某个区间内是增函数或减函数,不能由特定的两个点的情况来判断,而必须严格依照定义在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定函数的增减性.

(教师通过一系列的设问,使学生处于积极的思维状态,从抽象到具体,并通过反例的反衬,使学生加深对定义的理解.在概念教学中,反例常常帮助学生更深刻地理解概念,锻炼学生的发散思维能力.)

师:反过来,如果我们已知f(x)在某个区间上是增函数或是减函数,那么,我们就可以通过自变量的大小去判定函数值的大小,也可以由函数值的大小去判定自变量的大小.即一般成立则特殊成立,反之,特殊成立,一般不一定成立.这恰是辩证法中一般和特殊的关系.

(用辩证法的原理来解释数学知识,同时用数学知识去理解辩证法的原理,这样的分析,有助于深入地理解和掌握概念,分清概念的内涵和外延,培养学生学习的能力.)

三、概念的应用

例1图4所示的是定义在闭区间[-5,5]上的函数f(x)的图象,根据图象说出f(x)的单调区间,并回答:在每一个单调区间上,f(x)是增函数还是减函数?

(用投影幻灯给出图象.)

生甲:函数y=f(x)在区间[-5,-2],[1,3]上是减函数,因此[-5,-2],[1,3]是函数y=f(x)的单调减区间;在区间[-2,1],[3,5]上是增函数,因此[-2,1],[3,5]是函数y=f(x)的单调增区间.

生乙:我有一个问题,[-5,-2]是函数f(x)的单调减区间,那么,是否可认为(-5,-2)也是f(x)的单调减区间呢?

师:问得好.这说明你想的很仔细,思考问题很严谨.容易证明:若f(x)在[a,b]上单调(增或减),则f(x)在(a,b)上单调(增或减).反之不然,你能举出反例吗?一般来说.若f(x)在[a,

(增或减).反之不然.

例2证明函数f(x)=3x+2在(-∞,+∞)上是增函数.

师:从函数图象上观察函数的单调性固然形象,但在理论上不够严格,尤其是有些函数不易画出图象,因此必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径.

(指出用定义证明的必要性.)

师:怎样用定义证明呢?请同学们思考后在笔记本上写出证明过程.

(教师巡视,并指定一名中等水平的学生在黑板上板演.学生可能会对如何比较f(x1)和f(x2)的大小关系感到无从入手,教师应给以启发.)

师:对于f(x1)和f(x2)我们如何比较它们的大小呢?我们知道对两个实数a,b,如果a>b,那么它们的差a-b就大于零;如果a=b,那么它们的差a―b就等于零;如果a<b,那么它们的差a-b就小于零,反之也成立.因此我们可由差的符号来决定两个数的大小关系.

生:(板演)设x1,x2是(-∞,+∞)上任意两个自变量,当x1<x2时,

f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,

所以f(x)是增函数.

师:他的证明思路是清楚的.一开始设x1,x2是(-∞,+∞)内任意两个自变量,并设x1<x2(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看f(x1)-f(x2),这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注”②→作差,变形”).但美中不足的是他没能说明为什么f(x1)-f(x2)<0,没有用到开始的假设“x1<x2”,不要以为其显而易见,在这里一定要对变形后的式子说明其符号.应写明“因为x1<x2,所以x1-x2<0,从而f(x1)-f(x2)<0,即f(x1)<f(x2).”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”).最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”).

这就是我们用定义证明函数增减性的四个步骤,请同学们记住.需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以

小.

(对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势.在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的.)

调函数吗?并用定义证明你的结论.

师:你的结论是什么呢?

上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数.

生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2显然成立,而f(x1)<0,f(x2)>0,显然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定义域内的减函数.

生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数.

域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)每一个单调区间内都是减函数.因此在函数的几个单调增(减)区间之间不要用符号“∪”连接.另外,x=0不是定义域中的元素,此时不要写成闭区间.

上是减函数.

(教师巡视.对学生证明中出现的问题给予点拔.可依据学生的问题,给出下面的提示:

(1)分式问题化简方法一般是通分.

(2)要说明三个代数式的符号:k,x1・x2,x2-x1.

要注意在不等式两边同乘以一个负数的时候,不等号方向要改变.

对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视.)

四、课堂小结

师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?

(请一个思路清晰,善于表达的学生口述,教师可从中给予提示.)

生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明函数的单调性时,应该注意证明的四个步骤.

五、作业

1.课本P53练习第1,2,3,4题.

数.

=a(x1-x2)(x1+x2)+b(x1-x2)

=(x1-x2)[a(x1+x2)+b].(*)

+b>0.由此可知(*)式小于0,即f(x1)<f(x2).

课堂教学设计说明

函数的单调性是函数的一个重要性质,是研究函数时经常要注意的一个性质.并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用.对学生来说,函数的单调性早已有所知,然而没有给出过定义,只是从直观上接触过这一性质.学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味.因此,在设计教案时,加强了对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中甚至包含着辩证法的原理.

另外,对概念的分析是在引进一个新概念时必须要做的,对概念的深入的正确的理解往往是学生认知过程中的难点.因此在本教案的设计过程中突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用.

还有,使用函数单调性定义证明是一个难点,学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助.另外,这也是以后要学习的不等式证明方法中的比较化的基本思路,现在提出要求,对今后的教学作一定的铺垫.

8.函数的单调性证明 篇八

一.解答题(共40小题)

1.证明:函数f(x)=在(﹣∞,0)上是减函数.

2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增.

3.证明f(x)=

在定义域为[0,+∞)内是增函数.

4.应用函数单调性定义证明:函数f(x)=x+在区间(0,2)上是减函数.

第1页(共23页)

5.证明函数f(x)=2x﹣在(﹣∞,0)上是增函数.

6.证明:函数f(x)=x2+3在[0,+∞)上的单调性.

7.证明:函数y=

在(﹣1,+∞)上是单调增函数.

8.求证:f(x)=

在(﹣∞,0)上递增,在(0,+∞)上递增.

9.用函数单调性的定义证明函数y=

在区间(0,+∞)上为减函数.

第2页(共23页)

10.已知函数f(x)=x+.

(Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数;(Ⅱ)若

>0对任意x∈[4,5]恒成立,求实数a的取值范围.

11.证明:函数f(x)=

在x∈(1,+∞)单调递减.

12.求证f(x)=x+的(0,1)上是减函数,在[1,+∞]上是增函数.

13.判断并证明f(x)=

在(﹣1,+∞)上的单调性.

14.判断并证明函数f(x)=x+在区间(0,2)上的单调性.

第3页(共23页)

15.求函数f(x)=的单调增区间.

16.求证:函数f(x)=﹣

﹣1在区间(﹣∞,0)上是单调增函数.

17.求函数的定义域.

18.求函数的定义域.

19.根据下列条件分别求出函数f(x)的解析式(1)f(x+)=x2+

(2)f(x)+2f()=3x.

20.若3f(x)+2f(﹣x)=2x+2,求f(x).

第4页(共23页)

21.求下列函数的解析式

(1)已知f(x+1)=x2求f(x)

(2)已知f()=x,求f(x)

(3)已知函数f(x)为一次函数,使f[f(x)]=9x+1,求f(x)

(4)已知3f(x)﹣f()=x2,求f(x)

22.已知函数y=f(x),满足2f(x)+f()=2x,x∈R且x≠0,求f(x).

第5页(共23页)

23.已知3f(x)+2f()=x(x≠0),求f(x).

24.已知函数f(x+)=x2+()2(x>0),求函数f(x).

25.已知2f(﹣x)+f(x)=3x﹣1,求f(x).

26.若2f(x)+f(﹣x)=3x+1,则求f(x)的解析式.

27.已知4f(x)﹣5f()=2x,求f(x).

28.已知函数f(+2)=x2+1,求f(x)的解析式.

第6页(共23页)

29.若f(x)满足3f(x)+2f(﹣x)=4x,求f(x)的解析式.

30.已知f(x)=ax+b且af(x)+b=9x+8,求f(x)

31.求下列函数的解析式:

(1)已知f(2x+1)=x2+1,求f(x);

(2)已知f()=,求f(x).

32.已知二次函数满足f(2x+1)=4x2﹣6x+5,求f(x)的解析式.

33.已知f(2x)=x2﹣x﹣1,求f(x).

34.已知一次函数f(x)满足f(f(f(x)))=2x﹣3,求函数f(x)的解析式.

第7页(共23页)

35.已知f(x+2)=x2﹣3x+5,求f(x)的解析式.

36.已知函数f(x﹣2)=2x2﹣3x+4,求函数f(x)的解析式.

37.若3f(x)+2f(﹣x)=2x,求f(x)

38.f(+1)=x2+2,求f(x)的解析式.

39.若函数f()=+1,求函数f(x)的解析式.

40.已知f(x﹣1)=x2﹣4x.(1)求f(x)的解析式;(2)解方程f(x+1)=0.

第8页(共23页)

第9页(共23页)

函数的单调性证明

参考答案与试题解析

一.解答题(共40小题)

1.证明:函数f(x)=在(﹣∞,0)上是减函数. 【解答】证明:设x1<x2<0,则:

∵x1<x2<0;

∴x2﹣x1>0,x1x2>0; ∴f(x1)>f(x2);

∴f(x)在(﹣∞,0)上是减函数.

2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增. 【解答】证明:设0<x1<x2<,则f(x1)﹣f(x2)=(4x1+)﹣(4x2+)=4(x1﹣x2)+

=(x1﹣x2)(),又由0<x1<x2<,则(x1﹣x2)<0,(4x1x2﹣9)<0,(x1x2)>0,则f(x1)﹣f(x2)>0,则函数f(x)在(0,)上递减,设≤x3<x4,同理可得:f(x3)﹣f(x4)=(x3﹣x4)(又由≤x3<x4,第10页(共23页)),则(x3﹣x4)<0,(4x3x4﹣9)>0,(x1x2)>0,则f(x3)﹣f(x4)<0,则函数f(x)在[,+∞)上递增.

3.证明f(x)=在定义域为[0,+∞)内是增函数.

【解答】证明:设x1,x2∈[0,+∞),且x1<x2,则:

=∵x1,x2∈[0,+∞),且x1<x2; ∴∴f(x1)<f(x2);

∴f(x)在定义域[0,+∞)上是增函数.

4.应用函数单调性定义证明:函数f(x)=x+在区间(0,2)上是减函数. 【解答】证明:任取x1,x2∈(0,2),且x1<x2,则f(x1)﹣f(x2)=

﹣(=

因为0<x1<x2<2,所以x1﹣x2<0,x1x2<4,所以f(x1)﹣f(x2)>0,即f(x1)>f(x2),所以f(x)=x+在(0,2)上为减函数.

5.证明函数f(x)=2x﹣在(﹣∞,0)上是增函数. 【解答】解:设x1<x2<0,∴f(x1)﹣f(x2)=2x1﹣﹣2x2+

=(x1﹣x2)(2+∵x1<x2<0,),第11页(共23页)

∴x1﹣x2<0,2+

>0,∴f(x1)﹣f(x2)<0,即:f(x1)<f(x2),∴函数f(x)=2x﹣在(﹣∞,0)上是增函数.

6.证明:函数f(x)=x2+3在[0,+∞)上的单调性. 【解答】解:任取0≤x1<x2,则f(x1)﹣f(x2)==(x1+x2)(x1﹣x2)

因为0≤x1<x2,所以x1+x2>0,x1﹣x2<0,故原式f(x1)﹣f(x2)<0,即f(x1)<f(x2),所以原函数在[0,+∞)是单调递增函数.

7.证明:函数y=

在(﹣1,+∞)上是单调增函数.

=1﹣

在在区间(﹣1,+∞),【解答】解:∵函数f(x)=可以设﹣1<x1<x2,可得f(x1)﹣f(x2)=1﹣∵﹣1<x1<x2<0,﹣1+=

∴x1+1>0,1+x2>0,x1﹣x2<0,∴<0

∴f(x1)<f(x2),∴f(x)在区间(﹣∞,0)上为增函数;

8.求证:f(x)=在(﹣∞,0)上递增,在(0,+∞)上递增.

第12页(共23页)

【解答】证明:设x1<x2,则f(x1)﹣f(x2)=﹣∵x1<x2,∴x1﹣x2<0,﹣(﹣)=﹣=,∴若x1<x2<0,则x1x2>0,此时f(x1)﹣f(x2)<0,即f(x1)<f(x2),此时函数单调递增.

若0<x1<x2,则x1x2>0,此时f(x1)﹣f(x2)<0,即f(x1)<f(x2),此时函数单调递增. 即f(x)=

9.用函数单调性的定义证明函数y=【解答】解:∵函数y=可以设0<x1<x2,可得f(x1)﹣f(x2)=∴f(x1)>f(x2),∴f(x)在区间(﹣∞,0)上为减函数;

10.已知函数f(x)=x+.

(Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数;(Ⅱ)若>0对任意x∈[4,5]恒成立,求实数a的取值范围.

=

>0,在区间(0,+∞)上为减函数. 在(﹣∞,0)上递增,在(0,+∞)上递增.

在区间(0,+∞),【解答】(Ⅰ)证明:任取x1,x2∈[2,+∞),且x1<x2,则f(x1)﹣f(x2)=(x1+)﹣(x2+)=,∵2≤x1<x2,所以x1﹣x2<0,x1x2>4,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴f(x)=x+在[2,+∞)上为增函数;(Ⅱ)解:∵>0对任意x∈[4,5]恒成立,第13页(共23页)

∴x﹣a>0对任意x∈[4,5]恒成立,∴a<x对任意x∈[4,5]恒成立,∴a<4.

11.证明:函数f(x)=

在x∈(1,+∞)单调递减.

【解答】证明:设x1>x2>1,则:

∵x1>x2>1;

∴x2﹣x1<0,x1﹣1>0,x2﹣1>0; ∴即f(x1)<f(x2);

∴f(x)在x∈(1,+∞)单调递减.

12.求证f(x)=x+的(0,1)上是减函数,在[1,+∞]上是增函数. 【解答】证明:①在(0,1)内任取x1,x2,令x1<x2,则f(x1)﹣f(x2)=(=(x1﹣x2)+=(x1﹣x2)(1﹣

;)﹣()),∵x1,x2∈(0,1),x1<x2,∴x1﹣x2<0,1﹣

<0,∴f(x1)﹣f(x2)>0,∴f(x)=x+在(0,1)上是减函数. ②在[1,+∞)内任取x1,x2,令x1<x2,则f(x1)﹣f(x2)=()﹣()

第14页(共23页)

=(x1﹣x2)+=(x1﹣x2)(1﹣),∵x1,x2∈[1,+∞),x1<x2,∴x1﹣x2<0,1﹣

>0,∴f(x1)﹣f(x2)<0,∴f(x)=x+在[1,+∞]上是增函数.

13.判断并证明f(x)=【解答】解:f(x)=证明如下:

在(﹣1,+∞)上任取x1,x2,令x1<x2,f(x1)﹣f(x2)=

=,在(﹣1,+∞)上的单调性. 在(﹣1,+∞)上的单调递减.

∵x1,x2∈(﹣1+∞),x1<x2,∴x2﹣x1>0,x1+1>0,x2+1>0,∴f(x1)﹣f(x2)>0,∴f(x)=

14.判断并证明函数f(x)=x+在区间(0,2)上的单调性. 【解答】解:任意取x1,x2∈(0,2)且0<x1<x2<2 f(x1)﹣f(x2)=x1+∵0<x1<x2<2

∴x1﹣x2<0,0<x1x2<4,即x1x2﹣4<0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2).

第15页(共23页)

在(﹣1,+∞)上的单调递减.

﹣x2﹣=(x1﹣x2)+

=(x1﹣x2),所以f(x)在(0,2)上是单调减函数.

15.求函数f(x)=的单调增区间.

=1﹣的单调递增区间为【解答】解:根据反比例函数的性质可知,f(x)=(﹣∞,0),(0,+∞)

故答案为:(﹣∞,0),(0,+∞)

16.求证:函数f(x)=﹣

﹣1在区间(﹣∞,0)上是单调增函数.

【解答】证明:设x1<x2<0,则:

∵x1<x2<0;

∴x1﹣x2<0,x1x2>0; ∴;

∴f(x1)<f(x2);

∴f(x)在区间(﹣∞,0)上是单调增函数.

17.求函数的定义域.

【解答】解:根据题意,得,解可得,故函数的定义域为2≤x<3和3<x<5.

18.求函数的定义域.

第16页(共23页)

【解答】解:由故函数定义域为{x|x<}

19.根据下列条件分别求出函数f(x)的解析式(1)f(x+)=x2+

(2)f(x)+2f()=3x. 【解答】解:(1)f(x+)=x2+

=(x+)2﹣2,即f(x)=x2﹣2,(x>2或x<﹣2)(2)∵f(x)+2f()=3x,∴f()+2f(x)=,消去f()得f(x)=﹣x.

20.若3f(x)+2f(﹣x)=2x+2,求f(x). 【解答】解:∵3f(x)+2f(﹣x)=2x+2…①,用﹣x代替x,得:

3f(﹣x)+2f(x)=﹣2x+2…②; ①×3﹣②×2得:

5f(x)=(6x+6)﹣(﹣4x+4)=10x+2,∴f(x)=2x+.

21.求下列函数的解析式(1)已知f(x+1)=x2求f(x)(2)已知f()=x,求f(x)

(3)已知函数f(x)为一次函数,使f[f(x)]=9x+1,求f(x)(4)已知3f(x)﹣f()=x2,求f(x)

【解答】解:(1)∵已知f(x+1)=x2,令x+1=t,可得x=t﹣1,∴f(t)=(t﹣

第17页(共23页)

1)2,∴f(x)=(x﹣1)2.(2)∵已知f()=x,令

=t,求得 x=,∴f(t)=,∴f(x)=

(3)已知函数f(x)为一次函数,设f(x)=kx+b,k≠0,∵f[f(x)]=kf(x)+b=k(kx+b)+b=9x+1,∴k=3,b=,或k=﹣3,b=﹣,求 ∴f(x)=3x+,或f(x)=﹣3x﹣.

(4)∵已知3f(x)﹣f()=x2①,∴用代替x,可得3f()﹣f(x)=由①②求得f(x)=x2+

22.已知函数y=f(x),满足2f(x)+f()=2x,x∈R且x≠0,求f(x). 【解答】解:∵2f(x)+f()=2x① 令x=,则2f()+f(x)=②,①×2﹣②得: 3f(x)=4x﹣,∴f(x)=x﹣

23.已知3f(x)+2f()=x(x≠0),求f(x). 【解答】解:∵3f(x)+2f()=x,① 等号两边同时以代x,得:3f()+2f(x)=,② 由①×3﹣2×②,解得 5f(x)=3x﹣,∴函数f(x)的解析式:f(x)=x﹣

24.已知函数f(x+)=x2+()2(x>0),求函数f(x).

第18页(共23页)

②,.

(x≠0).

【解答】解:∵x>0时,x+≥2且函数f(x+)=x2+()2=设t=x+,(t≥2); ∴f(t)=t2﹣2;

即函数f(x)=x2﹣2(其中x≥2).

=2,﹣2;

25.已知2f(﹣x)+f(x)=3x﹣1,求f(x). 【解答】解:∵2f(﹣x)+f(x)=3x﹣1,∴2f(x)+f(﹣x)=﹣3x﹣1,联立消去f(﹣x),可得f(x)=﹣3x﹣.

26.若2f(x)+f(﹣x)=3x+1,则求f(x)的解析式. 【解答】解:∵2f(x)+f(﹣x)=3x+1…①,用﹣x代替x,得:

2f(﹣x)+f(x)=﹣3x+1…②; ①×2﹣②得:

3f(x)=(6x+2)﹣(﹣3x+1)=9x+1,∴f(x)=3x+.

27.已知4f(x)﹣5f()=2x,求f(x). 【解答】解:∵4f(x)﹣5f()=2x…①,∴4f()﹣5f(x)=…②,①×4+②×5,得:﹣9f(x)=8x+∴f(x)=﹣x﹣

第19页(共23页),.

28.已知函数f(【解答】解:令t=则由f(+2)=x2+1,求f(x)的解析式. +2,(t≥2),x=(t﹣2)2.

+2)=x2+1,得f(t)=(t﹣2)4+1.

∴f(x)=(x﹣2)4+1(x≥2).

29.若f(x)满足3f(x)+2f(﹣x)=4x,求f(x)的解析式. 【解答】解:f(x)满足3f(x)+2f(﹣x)=4x,…①,可得3f(﹣x)+2f(x)=﹣4x…②,①×3﹣②×2可得:5f(x)=20x. ∴f(x)=4x.

f(x)的解析式:f(x)=4x.

30.已知f(x)=ax+b且af(x)+b=9x+8,求f(x)【解答】解:∵f(x)=ax+b且af(x)+b=9x+8,∴a(ax+b)+b=9x+8,即a2x+ab+b=9x+8,即,解得a=3或a=﹣3,若a=3,则4b=8,解得b=2,此时f(x)=3x+2,若a=﹣3,则﹣2b=8,解得b=﹣4,此时f(x)=3x﹣4.

31.求下列函数的解析式:

(1)已知f(2x+1)=x2+1,求f(x);(2)已知f()=,求f(x).

【解答】解:(1)令2x+1=t,则x=(t﹣1),∴f(t)=(t﹣1)2+1,第20页(共23页)

∴f(x)=(x﹣1)2+1;(2)令m=(m≠0),则x=,∴f(m)==,∴f(x)=(x≠0).

32.已知二次函数满足f(2x+1)=4x2﹣6x+5,求f(x)的解析式. 【解答】解:(1)令2x+1=t,则x=则f(t)=4()2﹣6•

+5=t2﹣5t+9,故f(x)=x2﹣5x+9.

33.已知f(2x)=x2﹣x﹣1,求f(x). 【解答】解:令t=2x,则x=t,∴f(t)=t2﹣t﹣1,∴f(x)=x2﹣x﹣1.

34.已知一次函数f(x)满足f(f(f(x)))=2x﹣3,求函数f(x)的解析式. 【解答】解:设f(x)=ax+b,∴f(f(x)=a(ax+b)+b,∴f(f(f(x))))=a[a(ax+b)+b]+b=2x﹣3,∴,解得:,∴f(x)= x﹣.

第21页(共23页)

35.已知f(x+2)=x2﹣3x+5,求f(x)的解析式. 【解答】解:f(x+2)=x2﹣3x+5,设x+2=t,则x=t﹣2,∴f(t)=(t﹣2)2﹣3(t﹣2)+5=t2﹣7t+15,∴f(x)=x2﹣7x+15.

36.已知函数f(x﹣2)=2x2﹣3x+4,求函数f(x)的解析式. 【解答】解:令x﹣2=t,则x=t+2,代入原函数得 f(t)=2(t+2)2﹣3(t+2)+4=2t2+5t+6 则函数f(x)的解析式为f(x)=2x2+5x+6

37.若3f(x)+2f(﹣x)=2x,求f(x)【解答】解:∵3f(x)+2f(﹣x)=2x…①,用﹣x代替x,得:

3f(﹣x)+2f(x)=﹣2x…②; ①×3﹣②×2得:

5f(x)=6x﹣(﹣4x)=10x,∴f(x)=2x.

38.f(+1)=x2+2,求f(x)的解析式.

【解答】解:设∴x=(t﹣1)2; ∵f(+1)=x2+2+1=t,则t≥1,∴f(t)=(t﹣1)4+2(t﹣1),∴f(x)=(x﹣1)4+2(x﹣1),x∈[1,+∞).

39.若函数f(【解答】解:令)=

+1,求函数f(x)的解析式.

=t(t≠1),则=t﹣1,第22页(共23页)

∴f(t)=2+(t﹣1)2=t2﹣2t+3,∴f(x)=x2﹣2x+3(x≠1).

40.已知f(x﹣1)=x2﹣4x.(1)求f(x)的解析式;(2)解方程f(x+1)=0.

【解答】解:(1)变形可得f(x﹣1)=(x﹣1)2﹣2(x﹣1)﹣∴f(x)的解析式为f(x)=x2﹣2x﹣3;

(2)方程f(x+1)=0可化为(x+1)2﹣2(x+1)﹣3=0,化简可得x2﹣4=0,解得x=2或x=﹣2

第23页(共23页)

9.《函数的奇偶性》说课稿 篇九

1.使学生理解奇函数、偶函数的概念;

2.使学生掌握判断某些函数奇偶性的方法;

3.培养学生判断、推理的能力、加强化归转化能力的训练;

教学重点

函数奇偶性的概念

教学难点

函数奇偶性的判断

教学方法

讲授法

教具装备

幻灯片3张

第一张:上节课幻灯片A。

第二张:课本P58图2—8(记作B)。

第三张:本课时作业中的预习内容及提纲。

教学过程

(I)复习回顾

师:上节课我们学习了函数单调性的概念,请同学们回忆一下:增函数、减函数的定义,并复述证明函数单调性的步骤。

生:(略)

师:这节课我们来研究函数的另外一个性质——奇偶性(导入课题,板书课题)。

(II)讲授新课

(打出幻灯片A)

师:请同学们观察图形,说出函数y=x2的图象有怎样的对称性?

生:(关于y轴对称)。

师:从函数y=f(x)=x2本身来说,其特点是什么?

生:(当自变量取一对相反数时,函数y取同一值)。

师:(举例),例如:

f(-2)=4, f(2)=4,即f(-2)= f(-2);

f(-1)=1,f(1)=1,即f(-1)= f(1);

……

由于(-x)2=x2 ∴f(-x)= f(x).

以上情况反映在图象上就是:如果点(x,y)是函数y=x2的图象上的任一点,那么,与它关于y轴的对称点(-x,y)也在函数y=x2的图象上,这时,我们说函数y=x2是偶函数。

一般地,(板书)如果对于函数f(x)的定义域内任意一个x,都有f(-x)= f(x),那么函数f(x)就叫做偶函数。

例如:函数f(x)=x2+1, f(x)=x4-2等都是偶函数。

(打出幻灯片B)

师:观察函数y=x3的图象,当自变量取一对相反数时,它们对应的函数值有什么关系?

生:(也是一对相反数)

师:这个事实反映在图象上,说明函数的图象有怎样的对称性呢?

生:(函数的图象关于原点对称)。

师:也就是说,如果点(x,y)是函数y=x3的图象上任一点,那么与它关于原点对称的点(-x,-y)也在函数y=x3的图象上,这时,我们说函数y=x3是奇函数。

一般地,(板书)如果对于函数f(x)的定义域内任意一个x,都有f(-x) =-f(x),那么函数f(x)就叫做奇函数。

例如:函数f(x)=x,f(x) =都是奇函数。

如果函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性。

注意:从函数奇偶性的定义可以看出,具有奇偶性的函数:

(1)其定义域关于原点对称;

(2)f(-x)= f(x)或f(-x)=- f(x)必有一成立。因此,判断某一函数的奇偶性时。

首先看其定义域是否关于原点对称,若对称,再计算f(-x),看是等于f(x)还是等于- f(x),然后下结论;若定义域关于原点不对称,则函数没有奇偶性。

(III)例题分析

课本P61例4,让学生自看去领悟注意的问题并判断的方法。

注意:函数中有奇函数,也有偶函数,但是还有些函数既不是奇函数也不是偶函数,唯有f(x)=0(x∈R或x∈(-a,a).a>0)既是奇函数又是偶函数。

(IV)课堂练习:课本P63练习1。

(V)课时小结

本节课我们学习了函数奇偶性的定义及判断函数奇偶性的方法。特别要注意判断函数奇偶性时,一定要首先看其定义域是否关于原点对称,否则将会导致结论错误或做无用功。

(VI)课后作业

一、课本p65习题2.3 7。

二、预习:课本P62例5、例6。预习提纲:

1.请自己理一下例5的证题思路。

2.奇偶函数的图角各有什么特征?

板书设计

课题

奇偶函数的定义

注意:

判断函数奇偶性的方法步骤。

小结:

上一篇:小学生学习的常规要求下一篇:2024年度一通三防工作计划