六年级数与形教学反思(精选10篇)
1.六年级数与形教学反思 篇一
数与形教案
备课教师:潘兴旺 【教学内容】教科书第107-108页的例
1、例2,以及相应的练习题。【教学目标】 知识与技能:
1.重视“数”“形”之间的联系,找到解题规律。
2.引导学生探究算式左边的加数与大正方形右上角的小正方形和其他“L”形图形所包含的小正方形个数的关系,发现“数”“形”之间的联系,找到其中的规律,使学生在体验用形表示数的直观性的同时,学会应用规律解决问题。过程与方法:
1.借助“数”“形”之间的关系,解决相关问题。
2.使学生在初步了解、运用“数形结合”思想方法的同时,体验到数学的极限思想。情感态度价值观:
在巩固练习时,充分利用教材习题,引导学生在解决问题时能举一反三地运用所学,使学生的解题能力得到培养。【教学重难点】
重点:借助“数”“形”之间的关系,解决相关问题。难点:体验到数学的极限思想。【教具准备】 教具:PPT课件
教案设计: 一.激趣引入课题。
1.师:最近刘老师学了一项神奇的本领。同学们想知道是什么神奇本领吗?生:(想)。
2.师:它就是:你只要从1开始的连续的奇数相加,比如1+3.在比如1+3+5.像这样的算是,老师就能很快说出答案,同学们相信吗?(不相信)。那谁愿意与老师PK一下?谁愿意出题?同学们一起来验证。
1学生人出题。师生比赛计算速度。
师:怎么样.老师厉害吧!(厉害).给点掌声鼓励鼓励呗。想知道老师的独门秘诀吗?其实老师是借助图形来发现。结果出这个秘诀的。(板书"形“).今天,我们就一起来研究数与形。研究之后。你也会拥有和老师一样神奇的本领了。2.看到课题你想探索那些问题(学生说问题)
二.以数促形.探索从1开始的连续奇数之和与正方形数之间的联系。
师:要解决这些问题.我们从简单的数开始研究.①.快速口答: 1+3=4(太快)1+3+5=9(好快)1+3+5+7=16(有点慢)
1+3+5+7+9…+19=100(学生需要计算)师:数越来越多.算的速度也越来越快慢哦,如果有秘诀该多好哇,同学们想不想研究这些算式的规律并找出速算的秘诀呀。那可需要同学们认真观察.思考才能发现哦.观察算式:有什么规律?
生:从1开始的连续奇数相加(表扬)师:这些算式和图形会有什么关系呢?
出示课件:填写 1=1² 1+3=2² 1+3+5=3² 讨论:上面的图和下面的算是有什么关系?你有什么发现呢?(算式左边的加数是大正方形右上角的小正方形和其他”L”形图形所包含的小正方形个数之和正好是每行或每列小正方形个数的平方)放课件:让学生带着发现再次试验.能发现这类算式快速计算的秘诀吗?把你的秘诀和同学分享一下吧.谁能来记报一下…从1开始…连续奇数相加的和就等于加数个数的平方.(咱们把这个发现叫做——发现吧).掌声送给他。师:掌握了秘诀,你敢试一试吗? 出手:利用规律直接写一写
学生很快算出,并总结规律,再次使用规律练习。
师问:是不是所有的加法算式都可以用这样的规律来计算呢?(不是)
师: 对,这个特殊的规律只能用在特殊的算式中,这个特殊算式必须是从一开始的连续奇数相加。出子例2: 1+3+5+7+5+3+1= 师:和原来的算式特征一样吗?(不一样)对题变了这又该怎样解决呢?
学生讨论:可能会出现:1+3+5+7+5+3+1=7² 用加法验证:不对。
师:观察算式:这个算是和原来的算式特征一样么?
特征不一样。该怎么办?能不能分成两部分呢? 试算:发现结果一样。
再次观察算式:老师是从哪儿把这个算式分开的? 生:从一到最大数时一段,另外一部分一段。师:哦,原来是这样的,你能再说一遍吗?
生:会
师:请看题,让学生口答,并说出方法,会使用秘诀吗? 咱们来赛一赛,一学生出题,全班学生答。
师:老师发现,同学们的计算速度越来越快了。因为..... 生:掌握了秘诀。
师总结:数与形有千丝万缕的关于。图形不仅开以帮助我们直观的分折问题。解决问题还能让同学们在图形中发现规律。运用规律,在以后的学习中。只要我们能认真观察。善于思考。一定会发现数与形之间的更多奥秘的。
2.《数与形》教学反思 篇二
课堂教学是否做到关注每一位学生?是否关注让现实的教育资源成为我们优质的教学素材?是否将问题情境镶嵌在学生主动学习、积极探索当中,而催生对学生终生发展、更有价值的新思维、新思路?是否关注每节课的生命课堂与教学效果?这就是我对这节课深刻体会与反思。
1.先“数”后“形”,培养学生的逻辑能力
小学六年级的学生已具备初步的逻辑思维能力,但仍以形象思维为主,教材在小学中年级的数学教学中,已经逐渐借助推理与知识迁移来完成,并结合教材挖掘、创造条件开始渗透数形结合思想。进入中高年级后,学生逻辑思维能力已有一定发展,为了使学生更直观的理解知识,同时又满足学生逻辑思维能力的发展,因此本节教材在编排上体现了先“数”后“形”的顺序,把形象真正放在“支撑”地位,从而为培养学生的逻辑能力而服务。
2.引导学生数形结合,相互印证。
形的问题中包含数的规律,数的问题也可以用形来帮助解决,教学时,要让学生通过解决问题体会到数与形的这种完美结合。既可以从数的角度出发,让学生看看可以怎样用图形来表示数的规律,也可以让学生寻找图形中所包含的数的规律。通过数与形的对应关系,互相印证结果、感受数学的魅力。例如,在例1中可以先让学生计算1+3+5+„的得数,使学生发现得到的和都是“平方数”,再通过图形的规律理解“三角形数”和“正方形数”的含义。
3.通过举一反三,培养数学能力。
在巩固练习时,充分利用教材习题,引导学生在解决问题时能举一反三地运用所学,使学生的解题能力得到培养。
4.重视利用图形来分析题意,理清思路,提高解决问题的能力。在本课的配套的练习中,题目中蕴含的信息量较大,直接让学生来读懂题意有一定的难度。因此在教学中,我试图引导学生通过结合图形来分析题目意思,理清数量之间的关系,提高解决问题的能力。
3.六年级数与形教学反思 篇三
共12分)1.(2分)小明妈妈从家出发到超市,购物若干时间后再回到家。下面比较准确地描述了这件事的图是(),A.B.C.D.2.(2分)星期六小明和家人从家中出发,乘车0.5小时后,来到离家10千米远的植物园,游览1小时后,走出植物园,休息1小时,然后乘车0.5小时返回家中。下面的折线统计图中,()描述了这一活动的过程。
A.B.C.3.(2分)下图的阶梯有三级,是由6个长方体砖组成的,若组成类似的八级台阶,需要()个长方体。
A.8 B.14 C.36 D.64 4.(2分)甲、乙、丙住同一个单元,甲家在一楼,乙家在三楼,丙住五楼。昨天下午,甲先到乙家,等乙扫完地后,他们去找丙;
刚上五楼就遇到抱着篮球的丙,于是三人立即一起下楼去玩。下面()比较准确地描述了甲的活动。
A.B.C.D.5.(2分)找规律 A.B.C.D.6.(2分)找规律。
(),括号里应该填()。
A.B.C.二、填空题(共10题;
共17分)7.(1分)如图中每一个图形都是由一些小△组成的,从第一个图形开始,小△的个数分别是1,4,9…,那么第八个图形的小△个数共_______个。
8.(2分)观察点阵的规律,下一个点阵的点数是_______。
9.(2分)找出下面各数排列规律,并在方框内填上适当的数.(从上到下,从左到右填写)_______ 10.(1分)仔细观察下面的点子图,根据每个图中点子的排列规律,想一想,可以怎样计算每个图中点子的总个数?请你把下表填写完整. 序号 1 2 3 4 … 表示点子数的算式 1 1+4 … 点子的总个数 1 … 观察表中数据,如果用A表示第n个图形中点子的个数,A和n之间的关系可以表示成:
A=_______. 11.(1分)计算有多少个正方形,可观察下面的图形. 根据这一规律,图中正方形的个数是_______. 12.(2分),按这个规律,第6个图形共有_______个小圆点,第n个图形共有_______个小圆点。
13.(2分)将一些半径相同的小圆按如图所示的規律摆放:第1个图形中有6个小圆,第2个形中有10个小圆,第3个图形中有16个小圆,第4个图形中有24个小圆,…依此律,第6个图形有_______个小圆. 14.(2分)如下图所示,姗姗用小棒搭房子,她搭3间房子用13根小棒。
(1)照这样,搭10间房子要多少根小棒?(2)搭n间房子要用多少根小棒? 15.(2分)观察算式与图形之间的联系,找规律填空。
(1)从1起,连续20个奇数的和是_______。
(2)从1起,连续n个奇数的和是_______。
16.(2分)下图是8路公共汽车从学校到图书馆的行驶情况。
(1)汽车的最高速度是_______千米/时,保持了_______分。
(2)从学校到图书馆共用了_______分。
三、解答题(共1题;
共7分)17.(7分)想一想有什么规律,再填数。
(1)(2)参考答案 一、选择题(共6题;
共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题(共10题;
共17分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、14-2、15-1、15-2、16-1、16-2、三、解答题(共1题;
4.《数与形》教学设计 篇四
课标分析:
数形结合是一种非常重要的数学思想,把数与形结合起来解决问题,可把复杂的问题变得更简单,使抽象的问题变得更直观。数学思想的形成需要在过程中实现,只有经历问题解决过程,才能体会到数学思想的作用,才能理解数学思想的精髓,才能进行知识的有效迁移。让学生通过观察、分析、归纳、概括等过程,获得对问题的认识、理解和解决的同时,也获得对数学思想方法的认识和感悟,教学设计要以学生的数学思想形成为目标。教材分析:
数形结合思想在之前的数学学习中多次用到,但系统地出现在教材中还是第一次,数形结合思想的形成会对学生将来的学习产生深远影响,所以本课教学我们要做到以下几点:
1.引导学生数形结合,相互印证。形的问题中包含着数的规律,数的问题也可以用形来帮助解决,教学时要让学生体会数与形的完美结合。2.使学生感受用形来解决数的有关问题的直观性与简洁性。化数为形往往能够达到以简驭繁的目的;及其抽象的极限问题用图形来解决会变得十分直观和简捷。学生分析:
在之前的学习中,学生曾经接触过一些有关数与形的练习,如用线段图解决分数乘除法的问题、用长方形模型理解分数乘法的意义,学生有了用“形”来解决“数”的问题的基础。但纵观教材并没有系统的教学数与形结合的内容,所涉及的练习也比较分散,所以学生还没有掌握用这一思想解决问题的基本方法。不过本单元的练习较其他版块内容来说具趣味性、挑战性,学生会乐于探索。
教学内容:教材107页例1,108页做一做,练习二十二第2题。教学目标:
1、使学生通过自主探究发现图形中隐藏着的数的规律,并 会应用所发现的规律;认识平方数(正方形数)。
2、使学生在解决数学问题的过程中,体会和掌握数形结合、归纳推理等基本的数学思想。
3、让学生通过解决问题体会到数与形的完美结合,感受数学的魅力。教学重点:
使学生通过自主探究发现图形中隐藏的数的规律,并会应用规律。教学难点:
运用数形结合思想探索规律。教学策略:
学生主动探索和教师引导发现相结合。教学用具:
教师准备课件,将学生优中差搭配分组。教学过程:
一、回顾旧知,感知数形结合在数学学习中的应用
1、师生围绕什么是数学谈话,引入主题。
2、回顾以前学习中数形结合的例子。
3、总结:数与形密不可分,可用“数”来解决“形”的问题,也可用“形”来解决“数”的问题,今天我们来深入研究“数”与“形”(板书)
二、探究新知
1、初步感知规律
(1)课件出示例1,观察三幅图,数出每幅图中的小正方形个数。(2)尝试用算式表示出每副个图中小正方形的个数。
预设一:1×1=1 2×2=4 3×3=9 预设二:1 1﹢3=4 1﹢3﹢5=9(3)交流汇报
认识正方形数
把列出的不同算式综合起来
(4)照样子用算式表示出图4中小正方形的个数,有困难的可以在草稿纸上画画图。
2、合作探究规律
(1)观察几组算式,独立思考:你有什么发现?(2)小组合作交流(3)学生汇报
预设:①左边加法算式里的加数都是连续奇数;
② 大正方形左下角的小正方形和其他“┓”形图形所包含的小正方形个数之和正好是每行小正方形的平方; ③ 有几个加数相加,和就是几的平方;
④第几个图形就有几个数相加,和就是几的平方。(师追问:第10 个图形中有多少个小正方形?第100个呢?)
3、师总结
同学们非常善于观察和思考,利用计算求出了图形中小正方形的个数,这就是数与形的完美结合。
三、应用规律(1)填一填
①1+3+5+7+9=()²=()②4²=1+3+()+()(2)算一算
①1+3+5+7+5+3+1=()
②1+3+5+7+9+11+13+11+9+7+5+3+1=()(3)变式练习①练习二十二第2题。②108页“做一做”第2题
四、全课总结 谈谈自己的收获。
五、课后作业 课后练习第1题。教学后记:
“数形结合”是经典数学思想方法之一,在整个数学思想体系中占有重要地位。从儿童思维特点来看,小学生的思维是从具体形象思维为主要形式逐步向抽象逻辑思维过渡,但这时的逻辑思维是初步的,且在很大程度上仍具有具体形象性。因此,培养学生的形象思维能力,既是儿童本身的需要,又是他们学习抽象数学思维的需要。“数形结合”是小学教育中运用得最多,也是最有效的一种数学思想。因此,在教学中我做到以下两点:
一、把数学直观化,帮助学生形成概念。
数与形的关系非常密切,在教学过程中,我注重运用了教学图形,巧妙地把数和形结合起来,把抽象的数学概念直观化,帮助学生形成概念。在教学中运用数形结合,把抽象的数学概念直观化,找到了概念的本质特征,激发了学生学习数学的兴趣,增强了学生求新、求异意识。
二、把算式形象化,帮助学生领悟算理。
小学数学内容中,有相当一部分内容是计算问题,计算教学要引导学生理解算理。算理就是计算方法的道理,学生不明白道理就不能很好的掌握计算方法。在教学时,应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,数形结合,帮助学生正确理解算理。把算式形象化,学生看到算式就联想到算式,更加有效理解了计算算理。
5.数与形的教学设计 篇五
《连续奇数数列之和与正方形的关系》教学设计
教学内容:人教版小学数学教材六年级上册第107页例1及相关练习。教学目标:
1.体会数与形的联系,进一步积累数形结合数学活动经验,培养学生数形结合的数学思想意识。
2.体验数形结合的数学思想方法价值,激发学生用数形结合思想方法解决问题的兴趣,感受数学的魅力。
3.在解决数学问题的过程中,体会和掌握数形结合、归纳推理等基本的数学思想。
教学重点、难点:积累数形结合数学活动经验,体验数学思想方法的价值,激发兴趣。
教学准备:课件,不同颜色的小正方形。
学具准备:不同颜色的小正方形,吸铁板,作业纸。
教学过程:
一、谈话导入,出示课题
教师:最近老师发现,我有一项非常神奇的本领。什么本领呢?我发现只要从1开始的连续奇数相加,比如,1+3,1+3+5„„像这样的算式,我都算得特别快。你们信吗?
教师:不信也没关系,我们现场来比一比。
师生比赛,看谁算得快。
教师:这个方法快吗?你们想不想也像老师一样算得快呢?
教师:老师给你们一点点提示,我是借助图形发现这个方法的,今天这节课我们就来研究──数与形(板书)。
【设计意图】从谈话导入,通过设置悬念,激发学生学习兴趣,从而顺理成章地引出课题。
二、动手实践,以形解数
1.教师:我先根据算式中的加数拿出若干个图形。比如,1+3,我就先拿一个小正方形,再拿三个小正方形(贴在黑板上),我发现这些数量的小正方形刚好可以拼成一个大正方形,那我就把它们拼成一个大的正方形。
教师:接着,我观察图形和算式之间的关系,就发现了可以快速算得结果的方法,你们想不想自己试试看?
教师:先来两个加数的,再来三个加数的。请同学们在小组内先完成第一步,再完成第二步,看看哪个小组最先发现老师的方法。
2.小组动手操作,教师巡视。
3.学生汇报,全班交流分析。
先讨论1+3,再讨论1+3+5。
教师:根据同学们的汇报,大家认为1+3=2,1+3+5=3。除了这两组同学的汇报,你们还有其他发现吗?
学生:算式中加数的个数是几,和就等于几的平方。
教师:你们认同他的方法吗?能不能举个具体的例子来说一说?
学生1:1+3+5+7+9=5。
学生2:1+3+5+7+9+11=6。教师:那我们从头来看一看。请看屏幕:1+3+5+7+9=(5)。
教师:一个小正方形可以看成12,想要拼成一个更大的正方形,再增加1个是不够的,增加的个数要比前一个加数再多2(也就是3);想拼成更大的正方形,再增加3个是不够的,还要比3个再多2个(也就是5个),此时是1+3+5;再往下去,要加7才能拼成更大的正方形,依此类推,加到了9,就能排成每行、每列的个数是5的大正方形。
教师:那看来只要是1开始的,连续的奇数相加,就能排成每行、每列个数是几的大正方形,和也就是几的平方。
4.练习。
(1)1+3+5+7+9=()2;
1+3+5+7+9+11+13=()2;
____________________________=92。
教师请学生独立完成,然后全班核对答案。
(2)利用规律,算一算。
1+3+5+7+5+3+1=();
1+3+5+7+9+11+13+11+9+7+5+3+1=()。
全班交流,请学生说明计算结果和原因。
5.小结。
教师:我们同学都很细心,现在不但能很快算出从1开始的连续奇数的和,稍加一点变化,你们也照样算得很快。现在知道老师是用什么方法来快速计算这些题的吧?
教师:这么巧妙的方法,我们是借助什么发现的?(图形)。看来,有的计算问题借助图形解决会更容易。就像这个题一样,我们借助图形发现了更巧妙、更简便的方法。
【设计意图】充分让学生动手实践,感受如何将数和形结合,体会数和形之间的紧密联系,同时让学生感受到“形”可以展示“数”的特点,通过“形”使解决“数”的问题变得更加容易。
三、练习巩固
1.下面每个图中各有多少个红色小正方形和多少个蓝色小正方形?
学生回答,课件出示答案。
教师:请你认真思考、观察,上边的图形和对应的数之间有什么规律?四人小组交流。
教师:刚才有一个同学说,蓝色的小正方形顺次增加1个,红色的小正方形顺次增加2个。为什么蓝色的小正方形每次增加1个,而红色的小正方形每次增加2个呢?
教师:我们一起来看一看。第一个图形,若要增加1个蓝色小正方形,其上方、下方就要各增加1个红色小正方形;依此类推,第三个图形在第二个图形的基础上增加了1个蓝色小正方形,则红色小正方形就要增加几个?
教师:如果不让你看图,照这样画下去,第6个和第10个图形各有几个红色小正方形和蓝色小正方形呢?你能写出来吗?在草稿本上写一写。教师请学生介绍,说说是怎么算出来的。
教师:观察发现,图形中左右两侧的红色小正方形个数固定不变(为6个),在中间部分,蓝色小正方形的个数乘以2就是红色小正方形的个数。即使在蓝色小正方形个数较多的情况下,仍然可以算得很快,看来图形问题确实也蕴涵着数的规律。找到了其中的规律,解决问题就清晰、容易多了。2.课件出示教材第109页练习二十二第2题。
(1)教师:上方有图,下方有对应的数字,请你观察和思考,图和数之间有什么规律?小组交流一下。
全班交流。
学生:第2个图形中小圆的个数为1+2,第3个图形中小圆的个数为1+2+3,第4个图形中小圆的个数为1+2+3+4。
学生:是第几个图形,其中就有几行小圆。
教师:照这个规律往下画,你能画出来吗?图形下方的数字表示的是什么?第5个、第6个、第7个图形下方的数,你能不能很快写出来?
教师请学生独立完成在练习纸上。
教师请学生汇报,说说是怎么得到结果的。
教师:图形中的最后一行是第几行?含有几个小圆?
教师:现在如果老师不让你画图,你能不能想象一下第10个图形,它是什么样子的?一共有多少个小圆呢?现在我们就不画图,算一算,第10个图形下方的那个数是多少?能算出来吗?动笔试一试。展示学生作品,请学生介绍方法。
(2)教师介绍“三角形数”“正方形数”
教师:同学们发现没有,55个小圆能排成什么图形?(三角形)而且这个三角形的每一行的小圆的个数分别是从1到10。
教师:回过头来看看。3、6、10、15、21呢?它们是否也具有同样的特点?
教师:在数学上,我们把1、3、6、10、15、21、28这样的数称为“三角形数”。请同学们想一想,28后面的下一个三角形数是多少?(36)
教师:大家再看,一个图形,如果是4个小正方形可以拼成大正方形,如果是9个小正方形可以拼成大正方形,16个小正方形也可以拼成大正方形。像这样的数,我们称之为“正方形数”。
【设计意图】通过两个练习,让学生进一步体会数形结合的特点,感受用形来解决数的有关问题的直观性与简捷性。在练习中充分让学生动脑、动口、动手,在交流中发现特点,解决问题。
四、回顾反思
教师:今天这节课,我们一起学习了“数与形”,说说你有什么收获? 课后反思:
6.六年级数与形教学反思 篇六
“数形结合”对每一位数学老师都是使用频率比较高的词语,经常会听到或看到这一词,也会在课堂上尽量地渗透这一数学思想。新版课程标上的“四基”中包括数学基本思想,“数形结合”就是其中一种重要的数学思想,也是学生比较喜欢的教学手段,而且是解决数学问题的有效方法。经历这次继续教育后,我对“数形结合”有了更深入的认识。
帮助我解决了对“数形结合”的误解。“数”是指数字或代数式,“形”是指图形,所以我一直认为用直观的图来理解抽象的数学内容就算是渗透“数形结合”的思想,因为用到了“数”与“形”。例如:
1、在有余数的除法中,数学老师为了帮助学生理解,一般都会使用画简图的方法来进行教学(如下图)。
这样的教学活动在初学除法时就已经开展,能很好地帮助孩子理解算理,并理解算式中每一人数的意义,尤其是余数的意义,但实际上没有渗透“数形结合”的数学思想。虽然有图形,有算式,但该教学活动的设计目的不是在于这些图形的形状和特征,算式中的数并不是用来体现图形的特征,如长度、面积等,而只是表示图形的数量,图形的作用只不过是用来体现算式的一种学具,它可以用别的物品或图形所代替。“数形结合”中的“数”与“形”应该是相互配合的,借助“形”的直观来理解抽象的“数”,同时用“数”来表达“形”特征。
2、教学三年级上册“认识几分之一”时,因为这节课是分数的初步认识,所以我强调“数形结合”,通过简单明确的直观图形逐步帮助学生建立起分数的概念。我先用一个圆代表一个饼,当着学生的面把这个饼对折后剪开成两半,这半个饼不能用整数来表示。告诉学生:把一个饼平均分成两份,取其中的一份(半个),就是这个饼的二分之一,让学生初步感知二分之一。然后让学生动手操作,用自己喜欢的纸折出二分之一,涂上颜色,进一步理解。接着顺应学生好表现的特性,放手让学生动手操作,创造分数,互动交流。我有选择地把学生的作品贴在黑板上,然后有选择地让学生说说这些分数是怎样来的,既尊重了学生的个性,又使学生建构了丰富的分数表象。最后引导学生进行小结,指着左边的一组图问学生:这些图形的形状各不相同,为什么涂色部分都能用二分之一表示?然后指着四分之一的图再问:明明折法不同,每一份的形状也不同,为什么都可以用四分之一来表示呢?使学生明白两点:①不同的图形可以表示相同的分数,相同图形的不同分法也可以表示同一个分数;②把一个图形平均分成几份,每份就是几分之一。逐步去除分数的非本质属性,促进学生对分数本质含义的理解。
7.数与形教案公开课 篇七
【教学目标】
1、通过观察、操作,使学生认识图形和相应的数之间的联系。
2、引导学生探索规律、发现规律,运用规律提高计算技能。
3、让学生在经历猜想与验证的过程,培养学生认真观察、大胆猜想、细心验证、灵活运用的能力。
4、使学生在解决数学问题的过程中,体会和掌握数形结合、归纳推理等基本数学思想。【教学重点】
经历探索规律的过程,发现算式中蕴含的数学规律。【教学难点】
运用数形结合的思想,探索规律。【教学过程】
一、谈话导入,激发未知。
师:上课前我们先来看看一个人,我国的数学家华罗庚曾说过这样的话,投影出示,生齐读“数无形时少直觉,形无数时难入微。”。现在,我们就在带着华老先生的这句名言,一起走进奇妙无穷的数形世界。师:我们的数学是由数与形构成的。今天我们就来探索数与形的奥秘。(板书课题:数与形)
二、自主探索,获取新知
1、教学例1 出现1、3、5、7,问和是多少? 板书:1 师:这些数字有什么特点?
师:看到他们你想到了什么图形? 生:正方形
板书:1=12
4=22
9=32
16=42 师:从这些算式来看,你发现了什么特点?
生:从1开始,连续的奇数的和,就是这些加数个数的平方。
师总结:从1开始,连续的奇数的和,就是这些加数个数的平方。正方形数又叫平方数、完全平方数、四边形数。
三、巩固所学,深化提高
1.你能利用规律直接写一写吗? 1+3+5+7=
1+3+5+7+9+11+13 =
=92 2.请根据例1的结论算一算。1+3+5+7+5+3+1= 1+3+5+7+9+11+13+11+9+7+5+3+1=
3、按照规律,填一填。
4.利用摆一摆解决高斯公式。
【板书设计】
数 与 形
1= 12 = 1
数形结合
1+3= 22 = 4
8.数与代数六年级下册复习教案 篇八
数的认识(第一课时总课
时)
教学内容
数的意义、单位、读写、分类、基本性质(分数、小数)、互化、大小的比较、数的改写(近似值)、怎样判断一个分数能否化为有限小数。教学目标
1、使学生们进一步理解整数、分数、小数、百分数(折数、成数)的意义,沟通知识之间的联系和区别。
2、通过整理复习,使学生形成知识网络,掌握复习方法,提高综合运用能力。
3、结合教学,渗透人文主义教育和事物之间是互相联系的思想。教学重点
进一步理解整数、分数、小数、百分数的意义,沟通知识之间的联系和区别,形成知识网络,掌握复习方法,提高综合运用能力。教学过程
一、旧知回顾
同学们从今天开始,我们一起来对小学阶段所学过的数学知识进行一个系统的整理和复习。
说一说你都用过哪些数?举例说明。
二、复习整理
1、学生独立整理,构建网络。
2、交流汇报。
三、巩固训练 填空。
1、用三个8和三个0组成六位数中,一个零都不读的最小六位数是(),只读一个零的最大六位数是()。
2、我国14岁以上的青少年学生约为221950000人,读作(),用“万”作单位的数是(),改写成以“亿”为单位的近似数是()。
3、甲比乙少33.3,如果甲的小数点向右移动一位,就号乙相等,乙是()。4、23的分母加上9,要使分数的大小不变,分子应加上()。
5、一道数学题,全班35人做对,5人做错,正确率是()。
6、把12.07万改写成用“一”作单位的数是(),读作()
7、一根竹竿长7米,平均截成5段,每段是这根竹竿的(),每段长()米。
8、一个三位小数用“四舍五入”法取近似值是7.30,这个数最大是(),最小是()。
9、分母是12的所有最简真分数的和是()。
10、a3,当a为()时,a3为真分数,当a为()时,a3为假分数。
判断。
1、整数都是自然数。()2、14千克也可以写成25%千克。()
3、红红先做了100道题,正确率是98%,她又做对了2道题,这时他的正确率是100%。()4、0.8和0.80完全一样,没有任何不同。()5、0表示一个物体也没有,也表示起点,还用来占位以及表示分界。()
6、一个数如果不是正数就是负数。()
7、一个数的末尾添上一个0,这个数就扩大10倍。()8、75%和9、213575100写法不同,但意义相同。()
不能化为有限小数。()
10、分母是100的分数就叫百分数。()
9.六年级数与形教学反思 篇九
教学内容:义务教育课程标准实验教科书第12册84页“整理与反思”和“练习与实践”5-10
教学目标:
使学生通过复习,进一步掌握数的读写、改写和大小比较,进一步明确奇数与偶数、素数与合数、公因数与公倍数的联系与区别,加深整数及其性质的理解。
教学重点、难点:进一步掌握数的读写、改写和大小比较,进一步明确奇数与偶数、素数与合数、公因数与公倍数的联系与区别,加深整数及其性质的理解。
教学设计:
一 、复习多位数
1、复习数的读写:出示第84页上第6题,要求学生写出这些数。
补充:一个数由3个千万、4个百、5个一组成,这个数是( ),读作( )
2、复习数的改写
说明:一个比较大的数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数,请你将上面这些数分别用“万”和“亿”作单位进行改写。
学生独立改写,集体校对,回忆改写方法。
3、复习求一个数的近似数
(1)说明:有时根据需要,还可以省略某一位后面的尾数,求近似数。请你将上面这些数省略“万”后面的尾数,求近似数。
(2)练习:把199163000改写成用“亿”作单位的数是( ),精确到亿位是( ),省略“万”后面的尾数约是( )。
(3)第85页上的第9题:先读题,理解要求,再按要求完成,指名回答。
(4)第85页上的第8题:先读题,理解要求,思考怎样算每户的拥有量,再口算,并将结果按要求取近似值填入表中。指名回答。
二、复习奇数等概念。
1、将1、2、19、30、75、368、100按照不同的标准分类,可以怎样分?
引导学生复习认识:(1)将自然数按能否被2整除分为奇数和偶数两类;
(2)将自然数按因数的个数分成1、素数和合数三类。
2、口答:最小的素数是几?最小的合数是几?20以内的素数有哪些?合数呢?20以内既是偶数又是素数的有( ),既是奇数又是合数的有( )。
3、将24分解质因数( )
4、练习:第85页上第10题,学生先独立思考,再指名回答。
5、补充
(1)35和40的最小公倍数是( ),最大公因数是( )。
(2)A=3×5×7;B=2×3×7,那么A和B的最小公倍数是( ),最大公因数是( )。
(3)有一蓝苹果,如果2个2个数,还多1个,如果3个3个数,也多1个,这蓝苹果至少有几个?
(4)有3段钢材分别长30分米、35分米、50分米,要将它截成一小段一小段而没有多余,至少可以截成几小段?
课前思考:
在教材的总复习这一部分,提供的复习思路是清晰的,提供的复习题也是较为典型实用的,但由于第一大部分有关“数的认识”所涉及到的数的概念相当多,所以还需要我们联系学生学习情况,将所要复习的这些内容作适当分解和重组。高教导在前一课时中主要复习了自然数、整数、分数、小数、百分数的意义,在本课时中主要就数的改写及数的整除中涉及到的倍数、因数及偶数、奇数、合数、素数等内容进行复习。这里还需补充2、3、5的倍数的特征和短除法求最大公因数和最小公倍数的内容。
复习内容的学习难度比前一课时有所增加,所以除了讲清每一个概念外,更主要的是通过一些形式多样的练习来帮助学生内化。针对复习难点,我补充以下练习:
1.一个三位数2□□,是5的倍数,又是3的倍数,这个三位数的末两位可以是哪些数?
2.某市汽车站1路公交车每隔6分钟发一次车,3路车每隔10分钟发一次车。早晨6时,1路、3路公交车同时发车,问经过多长时间1路、3路公交车又同时发车?
3.王老师的小灵通号码是一个八位数,如果从左往右数,第三位上的数是最大的一位数,第四位上的数是最小的合数,第六位上的数既不是素数也不是合数,其余各位上的数都是偶素数。你知道这个电话号码吗?
4.把一张长20厘米、宽12厘米的长方形纸裁成同样大小、面积尽可能大的正方形,没有剩余,至少可以裁多少个?
5.求出各组数的最大公因数和最小公倍数。
18和24 30和45 21、28和42
课前思考:
每次看了孙老师发的帖子,就感觉学到了很多东西,作为一个新教师,我好象有点被动,懒于思考,也懒于探索,也没有想的那么深,钻研的那么透。事实上教学就应该结合学生的实际情况来进行。其实在六年级上学期我也帮学生整理归纳了素数和合数以及最大公因数和最小公倍数的一些内容,不知道学生还能否有些印象,但从学生之前学的效果来看,最大公因数和最小公倍数这部分内容学生掌握得不错,我将它分为3种情况:一种是倍数关系,一种是互质关系,一种是一般关系(提倡用短除法来做)。但是在运用这一知识解决实际问题的过程中,学生还是会存在一定的困难,仍然需要加强练习。
课前思考:
“数的认识”第二课时,主要是读数与写数和小数的一些性质与规律的内容,教学中学生可能会对一些结论(比如读写数的方法的描述)的完整概括有些困难,对于教材中的练习题,由于难度不大,学生的`练习效果应该不会糟糕,教学时重点关注学困生的掌握情况。高教导和孙老师增加的补充题,适当增加了点练习难度,让课堂多一些味道。
课后反思:
从学生课堂上的学习情况来看,单单求一个数的最小公倍数和最大公因数,学生经过复习都能掌握,但是在求实际问题时,不少学生就遇到了困难。其次,把奇数、偶数、素数、合数这些内容综合起来,学生的判断就有错误了。书上的内容确实很简单,对学生来说基本没问题,但在做补充习题第4小题时,要求用下列所有卡片组成符合条件的小数时,两个班都有一部分学生犯了同样的错误:没有把所给的卡片全部用上,尤其是在填写最小的两位数时,不少学生写了0.25。仔细回想一下,在五年级也遇到过类似的题目,学生也犯了同样的错误,没有想象中的那么容易,复习课反而让我感到比上新课来的困难些,仍然需要和学生一起努力。
课后反思:
这节课的读数与写数和小数的一些性质与规律学生掌握的还行,主要问题出在 “倍数、因数”方面的知识,这个地方的概念比较多,虽然布置学生复习了,但是实际教学时学生还是有些生疏,新教材中就没有用“整除”这一概念来说明“倍数与因数”的意思。看来,抽空一定要把前面的教材翻开来看一看。
课后反思:
10.《数学广角—数与形》教学设计 篇十
教学目标:
知识与技能目标:发现“数”“形”之间的联系,找到其中的规律,使学生在体验用形表示数的直观性的同时,学会应用规律解决问题。
过程与方法目标:从观察抽象的算式特点开始,先通过简单的计算找到得数规律,再借助多种几何图形直观验证计算过程及结果,使学生在初步了解、运用“数形结合”思想方法的同时,体验到数学的极限思想。
情感态度与价值观目标:解决问题时能举一反三地运用所学,使学生的解题能力得到培养。
教学重难点:借助“数”“形”之间的关系,解决相关问题。教学过程
一、问题导入。1.课件出示问题。
小兰和爸爸、妈妈一起步行到离家800 m远的公园健身中心,用
时20钟。妈妈到了健身中心后直接返回家里,还是用了20分钟。小兰和爸爸一起在健身中心锻炼了10分钟。然后,小兰跑步回到家中,用了5分钟,而爸爸走回家中,用了15分钟。上面几幅图哪幅是描述妈妈离家的时间和离家距离的关系?哪幅是描述爸爸的?哪幅是描述小兰的?
2.学生讨论、回答。
(图2是描述妈妈的,因为妈妈在健身中心没停留;图1是描述小兰的,因为她回家路上用了5分钟;图3是描述爸爸的)3.揭示课题。
借助图形不但能帮我们直观了解小兰离家时间与离家距离的关系,还可以帮我们解决复杂的代数问题,这节课我们就来研究“数与形”。
设计意图:通过解决与图形有关的数学问题,使学生关注图形与数学的关系,在调动学生学习的积极性的同时,为新知的学习作铺垫。
二、探究新知 1.教学例1。(1)课件出示例题。看图,把算式补充完整。
1=()
1+3=()
1+3+5=()
222(2)看图与算式,总结发现。①观察、讨论。
仔细观察,看一看上面的图形和算式左边有什么关系? ②汇报发现。
发现一:算式左边的加数的个数与对应的大正方形中每行(或每列)的小正方形的个数相同;
发现二:算式左边的加数是大正方形右上角的小正方形和其他“L”形图形所包含的小正方形个数之和。
发现三:算式左边的加数和正好等于大正方形中每行(或每列)的小正方形个数的平方。
[算式左边的加数是大正方形右上角的小正方形和其他“L”形图形所包含的小正方形个数之和,正好是每行(或每列)小正方形个数的平方](3)运用规律解决问题。(可借助学具摆一摆)①1+3+5+7=()(1+3+5+7=4)②1+3+5+7+9+11+13=()(1+3+5+7+9+11+13=7)③____________________=9(1+3+5+7+9+11+13+15+17=9)2.教学例2。(1)课件出示例题。
222
22(2)观察、试算、发现规律。
①观察算式中加数的特点,你有什么发现?(从第二个数开始,每个数是前一个数的)②分步算一算,你有什么发现?
(发现加下去,等号右边的分数越来越接近1)(3)数形结合,验证规律。
①引导验证:你发现的规律成立吗?请结合图示进行验证。②汇报、交流。
a.结合圆的面积验证:用一个圆的面积表示单位“1”,则原算式可表示为:
b.结合线段图验证:用一条线段表示单位“1”,则原算式可表示为:
(4)明确结论。
(5)交流对用“数形结合”的方法解决问题的感悟。
(数形结合的方法把抽象的代数问题形象化,使其直观、简洁、易懂)设计意图:教学时,观察、讨论相结合,引导学生借助不同的几何图形解决例题中的代数问题,使学生在理解、掌握例题中数与形关系的基础上,充分体会用数形结合方法解决问题的直观性,感悟数学的极限思想。
三、巩固练习
1.完成教材108页1题。(让学生独立读题、分析、解答,鼓励用不同的方法解答)2.完成教材108页2题。
[第6个图形:红色6 个,蓝色18个; 第10个图形:红色10个,蓝色26个。根据图示可知:红色小正方形的个数与图形的序数(第几个)相同,蓝色小正方形的个数=(图形的序数+2)×3-图形的序数或蓝色小正方形的个数=(图形的序数+2)×2-2] 3.完成教材110页4题。
[因为小狗和小亮的行走时间相同,所以不必考虑小狗的行走路线。由“小亮走到这条马路一半的时候,小狗已经到达马路的终点”可知:小狗的速度是小亮的2倍,所以小亮走200 m时,小狗走了200×2=400(m)]
四、课堂总结
通过本节课的学习,你学会了哪些解决问题的方法?
五、布置作业 1.教材109页1题。2.教材110页3题。
【六年级数与形教学反思】推荐阅读:
数与形教学设计改09-19
近似数与有效数字教学反思08-06
六年级教学反思 坚守快乐07-07
小学六年级数学总复习教学反思06-17
六年级unit3教学反思06-23
《詹天佑》教学反思 (六年级上册)07-06
六年级数学《圆的周长》教学反思07-20
六年级数学《比例尺》教学反思09-03
六年级数学《正比例》教学反思10-31