高中数学 第二章《平面向量》复习课教案 新人教A版必修

2025-01-25

高中数学 第二章《平面向量》复习课教案 新人教A版必修(10篇)

1.高中数学 第二章《平面向量》复习课教案 新人教A版必修 篇一

2.3《平面向量的基本定理及坐标表示》教学设计

【教学目标】

1.了解平面向量基本定理;

2.理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;

3.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.【导入新课】 复习引入: 1. 实数与向量的积

实数λ与向量a的积是一个向量,记作:λa.(1)|λa|=|λ||a|;(2)λ>0时,λa与a方向相同;λ<0时,λa与a方向相反;λ=0时,λa=0.2.运算定律 aaaaaa结合律:λ(μ)=(λμ);分配律:(λ+μ)=λ+μ,λ(+b)=λa+λb.3.向量共线定理

向量b与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b=λa.新授课阶段

一、平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2.探究:

(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;

(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一.λ1,λ2是被a,e1,e2唯一确定的数量.二、平面向量的坐标表示

如图,在直角坐标系内,我们分别取与x轴、y轴方向相同的两个单位向量i、j作为 1

基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得 axiyj…………○1○我们把(x,y)叫做向量a的(直角)坐标,记作 2 a(x,y)…………○2○

2其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,○2○式叫做向量的坐标表示.与.a相等的向量的坐标也为..........(x,y).特别地,i(1,0),j(0,1),0(0,0).如图,在直角坐标平面内,以原点O为起点作OAa,则点A的位置由a唯一确定.设OAxiyj,则向量OA的坐标(x,y)就是点A的坐标;反过来,点A的坐标(x,y)也就是向量OA的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.三、平面向量的坐标运算

(1)若a(x1,y1),b(x2,y2),则ab(x1x2,y1y2),ab(x1x2,y1y2).两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i、j,则ab(x1iy1j)(x2iy2j)(x1x2)i(y1y2)j,即ab(x1x2,y1y2),同理可得ab(x1x2,y1y2).(2)若A(x1,y1),B(x2,y2),则ABx2x1,y2y1.一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB=OBOA=(x2,y2)-(x1,y1)=(x2 x1,y2 y1).(3)若a(x,y)和实数,则a(x,y).实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i、j,则a(xiyj)xiyj,即a(x,y).2

例1 已知A(x1,y1),B(x2,y2),求AB的坐标.例2 已知a=(2,1),b=(-3,4),求a+b,a-b,3a+4b的坐标.例3 已知平面上三点的坐标分别为A(2,1),B(1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD时,由ABDC,得D1=(2,2).当平行四边形为ACDB时,得D2=(4,6),当平行四边形为DACB时,得D3=(6,0).例4 已知三个力F1(3,4),F2(2,5),F3(x,y)的合力F1+F2+F3=0,求F3的坐标.解:由题设F1+F2+F3=0,得:(3,4)+(2,5)+(x,y)=(0,0),即:32x0,x5, ∴ ∴F3(5,1).45y0,y1.例5 已知a=(2,1), b=(-3,4),求a+b,a-b,3a+4b的坐标.解:a+b=(2,1)+(-3,4)=(-1,5),a-b=(2,1)-(-3,4)=(5,-3),3a+4b=3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).点评:利用平面向量的坐标运算法则直接求解.例6 已知平行四边形ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)(3,4),求顶点D的坐标.解:设点D的坐标为(x,y), AB(1,3)(2,1)(1,2),DC(3,4)(x,y)(3x,4y),且ABDC,(1,2)(3x,4 y).即 3-x=1,4-y=2.解得x=2,y=2.所以顶点D的坐标为(2,2).3

另解:由平行四边形法则可得

BDBABC

(2(1),13)(3(1),43)

(3,1), ODOBBD (1,3)(3,1)(2,2).例7 经过点M(2,3)的直线分别交x轴、y轴于点A,B,且|AB|3|AM|,求点A,B的坐标.解:由题设知,A,B,M三点共线,且|AB|3|AM|,设A(x,0),B(0,y),①点M在A,B之间,则有AB3AM,∴(x,y)3(2x,3).解之得:x3,y3,点A,B的坐标分别为(3,0),(0,3).②点M不在A,B之间,则有AB3AM,同理,可求得点A,B的坐标分别为(3,0),2(0,9).综上,点A,B的坐标分别为(3,0),(0,3)或(3,0),(0,9).2例8.已知三点A(2,3),B(5,4),C(7,10),若AMABAC,试求实数的取值范围,使M落在第四象限.解:设点M(x,y),由题设得(x2,y3)(3,)(5,7)(35,7),∴x33,y4,要使M落在第四象限,则x330,y40,解之得14.例8 已知向量a(8,2),b(3,3),c(6,12),p(6,4),问是否存在实数x,y,z同时满足两个条件:(1)pxaybzc;(2)xyz1?如果存在,求出x,y,z的值;如果不存在,请说明理由.4

1x,28x3y6z6,1解:假设满足条件的实数x,y,z存在,则有2x3y12z4,解之得:y,3xyz1.1z.6∴满足条件的实数x课堂小结

(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;

(3)会根据向量的坐标,判断向量是否共线.作业 见同步练习拓展提升

1.设e1,e2是同一平面内两个不共线的向量,不能以下各组向量中作为基底的是()A.e1,e2 B.e1+e2,e2 C.e1,2e2 D.e1,e1+e2 2.设e1,e2是同一平面内所有向量的一组基底,则以下各组向量中,不能作为基底的是()

A.e1+e2和e1-e2 B.3e1-2e2和4e1-6e2 C.e1+2e2和2e1+e2 D.e1+e2和e2

111,y,z.2363.已知e1,e2不共线,a =1e1+e2,b=4 e1+2e2,并且a,b共线,则下列各式正确的是()

A.1=1,B.1=2,C.1=3,D.1=4 4.设AB=a+5b,BC=-2a+8b,CD=3a-3b,那么下列各组的点中三点一定共线的是()

A.A,B,C B.A,C,D C.A,B,D D.B,C,D 5.下列说法中,正确的是()

①一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底;

②一个平面内有无数多对不共线的向量可作为表示该平面内所有向量的基底;

③零向量不可作为基底中的向量.A.①②

B.①③

C.②③

D①②③

6.已知e1,e2是同一平面内两个不共线的向量,那么下列两个结论中正确的是()①1e1+2e2(1,2为实数)可以表示该平面内所有向量;

②若有实数1,2使1e1+2e2=0,则1=2=0.A.①

B.②

C.①②

D.以上都不对

7.已知AM=△ABC的BC边上的中线,若AB=a,AC=b,则AM=()11aaA.(- b)

B. -(- b)2211C.-(a+b)

D.(a+b)

228.已知ABCDEF是正六边形,AB=a,AE=b,则BC=()11A.(a- b)

B. -(a- b)

2211C.a+b

D.(a+b)

229.如果3e1+4e2=a,2e1+3e2=b,其中a,b为已知向量,则e1=,e2=

.10.已知e1,e2是同一平面内两个不共线的向量,且AB=2e1+ke2,CB=e1+3e2,CD=2e1-e2,如果A,B,D三点共线,则k的值为

.11.当k为何值时,向量a=4e1+2e2,b=ke1+e2共线,其中e1、e2是同一平面内两个不共线的向量.12.已知:e1、e2是不共线的向量,当k为何值时,向量a=ke1+e2与b=e1+ke2共线?  6

参考答案

1.C 2.B 3.B 4.C 5.C 6.C 7.D 8.D 9.-2a3b,11.②③⑤ 12.k=2

79ab 10.-8 44 8

2.高中数学 第二章《平面向量》复习课教案 新人教A版必修 篇二

教学目标

(1)掌握直线方程的一般式AxByC0(A,B不同时为0)理解直线方程的一般式包含的两方面的含义:①直线的方程是都是关于x,y的二元一次方程;

②关于x,y的二元一次方程的图形是直线.

(2)掌握直线方程的各种形式之间的互相转化. 教学重点

各种形式之间的互相转化. 教学难点

理解直线方程的一般式的含义. 教学过程

一、问题情境

1.复习:直线方程的点斜式、斜截式、截距式、两点式方程. 2.问题:

(1)点斜式、斜截式、截距式、两点式方程是关于x,y的什么方程(二元一次方程)?(2)平面直角坐标系中的每一条直线都可以用关于x,y的二元一次方程表示吗?(3)关于x,y的二元一次方程是否一定表示一条直线?

二、建构数学 1.一般式

(1)直线的方程是都是关于x,y的二元一次方程:

在平面直角坐标系中,每一条直线都有倾斜角,在90和90两种情况下,直线方程可分别写成ykxb及xx1这两种形式,它们又都可变形为AxByC0的形式,且A,B不同时为0,即直线的方程都是关于x,y的二元一次方程.(2)关于x,y的二元一次方程的图形是直线:

因为关于x,y的二元一次方程的一般形式为AxByC0,其中A,B不同时为0.在B0和B0两种情况下,一次方程可分别化成yACCx和x,它们分别是直BBA线的斜截式方程和与y轴平行或重合的直线方程,即每一个二元一次方程的图形都是直线.

这样我们就建立了直线与关于x,y二元一次方程之间的对应关系.我们把AxByC0(其中A,B不同时为0)叫做直线方程的一般式.

一般地,需将所求的直线方程化为一般式.

三、数学运用 1.例题:

例1.已知直线过点A(6,4),斜率为解:经过点A(6,4)且斜率4,求该直线的点斜式和一般式方程及截距式方程. 344的直线方程的点斜式y4(x6),33用心

爱心

专心

化成一般式,得:4x3y120,化成截距式,得:

xy1. 34例2.求直线l:3x5y150的斜率及x轴,y轴上的截距,并作图. 解:直线l:3x5y150的方程可写成y∴直线l的斜率k3x3,533;y轴上的截距为3; 525当y0时,x5,∴ x轴上的截距为5.

例3.设直线l:(m2m3)x(2mm1)y2m60(m1),根据下列条件分别确定m的值:(1)直线l在 x轴上的截距为3;(2)直线l的斜率为1.

解:(1)令y0得 x22m62m65,由题知,解得. 3mm22m3m22m33m22m3m22m341(2)∵直线l的斜率为k,∴,解得. m222mm12mm133,且与两坐标轴围成的三角形的面积为6的直线方程. 434解:设直线方程为yxb,令y0,得xb,4314b∴|b()|6,∴b3,23例4.求斜率为所以,所求直线方程为3x4y120或3x4y120.

例5.直线l过点P(6,3),且它在x轴上的截距是它在y轴上的截距相等,求直线l的方程.

分析:由题意可知,本题宜用截距式来解,但当截距等于零时,也符合题意,此时不能用截距式,应用点斜式来解. 解:(1)当截距不为零时,由题意,设直线l的方程为∵直线l过点P(6,3),∴

xy1,bb631,∴b3,bb∴直线l的方程为xy30.

(2)当截距为零时,则直线l过原点,设其方程为ykx,1将x6,y3代入上式,得36k,所以k,21∴直线l的方程为yx,即x2y0,2用心

爱心

专心

综合(1)(2)得,所求直线l的方程为xy30或x2y0.

2.练习:课本第79页练习第1、2、4题.

四、回顾小结:

1.什么是直线的一般式?直线方程的各种形式之间的如何互相转化?

五、课外作业:

课本第79练习页第3题、第80页第10题、第117页第3、4、5、6题.

用心爱心

3.高中数学 第二章《平面向量》复习课教案 新人教A版必修 篇三

1、集合元素的三个特征:确定性、互异性、无序性。

2、元素与集合的关系:、

3、数集的符号:自然数集;正整数集N*或N;整数集;有理数

集Q;实数集R.4、集合与集合的关系:、、= 

5、若集合中有n个元素,则它的子集个数为2;真子集个数为21;非空子集个数为

nn2n1;非空真子集个数为2n2.6、空集是任何集合的子集,是任何非空集合的真子集.7、子集的性质:

(1)(即任何一个集合是它本身的子集);(2)若AB,BC,则AC;(3)若AB,BC,则AC.

8、集合的基本运算(1)并集:(2)交集:(3)补集:(4)性质:①③,9、函数的三要素:定义域、值域和对应法则.10、(一)求函数定义域的原则: xx或x

xx且x,, ,;,=

,;②,,(1)若(2)若(3)若fx为整式,则其定义域是R;

fx为分式,则其定义域是使分母不为0的实数集合;

fx是二次根式(偶次根式),则其定义域是使根号内的式子不小于0的实数集0合;

(4)若fxx,则其定义域是

xx0;

(二)求函数值域的方法以及分段函数求值

(三)求函数的解析式

11、函数的单调性:(1)增函数:设x1,x2(2)减函数:设x1,x2强调四点:

①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②有的函数在整个定义域内单调(如一次函数),有的函数只在定义域内的某些区间单调(如二次函数),有的函数根本没有单调区间(如常函数).

③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在AB上是增(或减)函数.

④定义的变形应用:如果证得对任意的x1,x2(a,b),且x1x2有(fx的定义域),当x1x2时,有f(x1)f(x2).(fx的定义域),当x1x2时,有f(x1)f(x2).f(x2)f(x1)0或

x2x1者(f(x2)f(x1))(x2x1)0,能断定函数f(x)在区间(a,b)上是增函数;如果证得对任意的x1,x2(a,b),且x1x2有

f(x2)f(x1)0或者(f(x2)f(x1))(x2x1)0,x2x1能断定函数f(x)在区间(a,b)上是减函数。

几点说明:函数是增函数还是减函数,是对定义域内某个区间而言的.有的函数在一些区 上是增函数,而在另一些区间上不是增函数;函数的单调区间是其定义域的子集;该区间内任意的两个实数,忽略任意取值这个条件,就不能保证函数是增函数(或减函数);讨论函数的单调性必须在定义域内进行,即函数的单调区间是其定义域的子集,因此讨论函数的单调性,必须先确定函数的定义域。(3)三类函数的单调性:

当k0时,函数fx在,a,a,上是减函数; fx在,a,a,上是增函数.当k0时,函数③二次函数fxax2bxc

bb,上是增函数,在,上是减函数;

2a2aa0时,函数fx在当a0时,函数

bbfx在,上是减函数,在,上是增函数.2a2a(4)证明函数单调性的方法步骤:(i)定义:设值、作差、变形、断号、定论. 即证明函数单调性的一般步骤是:⑴设x1,x2是给定区间内的任意两个值,且x1

4.高中数学 第二章《平面向量》复习课教案 新人教A版必修 篇四

教 案

获嘉县第一中学

肖玉

等比数列的前n项和

教学目的:

1.掌握等比数列的前n项和公式及公式证明思路.

2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题 教学重点:等比数列的前n项和公式推导 教学难点:灵活应用公式解决有关问题 授课类型:新授课 课时安排:1课时

教 具:多媒体、实物投影仪

教材分析:

本节是对公式的教学,要充分揭示公式之间的内在联系,掌握与理解公式的来龙去脉,掌握公式的导出方法,理解公式的成立条件.也就是让学生对本课要学习的新知识有一个清晰的、完整的认识、忽视公式的推导和条件,直接记忆公式的结论是降低教学要求,违背教学规律的做法 教学过程:

一、复习引入:

首先回忆一下前两节课所学主要内容:

1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公

比;公比通常用字母q表示(q≠0),即:2.等比数列的通项公式:

an=q(q≠0)an1ana1qn1(a1q0),anamqnm(a1q0)

3.{an}成等比数列an1=q(nN,q≠0)an “an≠0”是数列{an}成等比数列的必要非充分条件 4.既是等差又是等比数列的数列:非零常数列. 5.等比中项:G为a与b的等比中项.即G=±6.性质:若m+n=p+q,amanapaq

7.判断等比数列的方法:定义法,中项法,通项公式法

8.等比数列的增减性:当q>1, a1>0或01, a1<0,或00时, {an}是递减数列;当q=1时, {an}是常数列;当q<0时, {an}是摆动数列;

二、讲授新课 一:求和公式: G.Pan的首项为a1,公比为q,前n项和Sn.则Sna1a2又ana1qn1

an

ab(a,b同号).Sna1a1qa1q2a1qn1(1)

在(1)式的两边同时乘以q得: qSna1qa1q2a1qn1a1qn(2)

将上面两式相减,即(1)-(2)得:(1q)Sna1a1qn

接下来对q进行分类讨论

1当q1时,Sna1a1a1na1

2当q1时,S11qna1anqna1q1q na1S q=1na1(1qn)q1q1 另外:当q1时,Sa1a1qnn1q =a11qa11qqnAAqn 其中Aa11q

三、例题讲解: 例1:求等比数列1,1,1248, 的前8项和.解:由题知:a1112,q2

11 S212812558 1112562562例2:已知等比数列an中, Sn23na,求首项 解: Sn是等比数列得前n项和.a2

Sn23n2

a1S12324

例3:求和:2232522n3

a1。4

解:此式为首项为2,公比为4的等比数 列的前n+2项的和.S214n2n21234n241 或者:3S222n4n2142322n41

课堂练习: 求和:1qq2qn1

提示:对q进行分类讨论

解:(1)当q0时,S1;(2)当q1时,Sn;

(3)当q0且q1时,S1qn1q;综上: 1qnS1q,q1或S1,q1

四、课后小结: 本节课重点掌握等比数列的前n项和公式: Sa11qnn1a1anqq1q(q1)

及推导方法:错位相减法

5.高中数学 第二章《平面向量》复习课教案 新人教A版必修 篇五

◆ 知识与技能目标

了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2)通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义.

◆ 过程与方法目标

(1)复习与引入过程

引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过P56的思考问题,探究双曲线的扁平程度量椭圆的离心率.〖板书〗§2.2.2双曲线的简单几何性质.

(2)新课讲授过程

(i)通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质. 提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?

通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.(ii)双曲线的简单几何性质

①范围:由双曲线的标准方程得,yb22xa2210,进一步得:xa,或xa.这说明双曲线在不等式xa,或xa所表示的区域;

②对称性:由以x代x,以y代y和x代x,且以y代y这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以x轴和y轴为对称轴,原点为对称中心;

③顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴,焦点不在的对称轴叫做虚轴;

④渐近线:直线ybax叫做双曲线

xa22yb221的渐近线;

⑤离心率: 双曲线的焦距与实轴长的比e(iii)例题讲解与引申、扩展

ca叫做双曲线的离心率(e1). 例3 求双曲线9y216x2144的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.

分析:由双曲线的方程化为标准方程,容易求出a,b,c.引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在y轴上的渐近线是y扩展:求与双曲线离心率.

解法剖析:双曲线22abx.

2x16y291共渐近线,且经过A23,3点的双曲线的标准方及

x216y22y291的渐近线方程为y34x.①焦点在x轴上时,设所求的双曲线为x16k9k1,∵A23,3点在双曲线上,∴k214,无解;②焦点在y轴上时,设所求的双曲线为x2216ky229k21,∵A23,3点在双曲线上,∴

k214,因此,所求双曲线的标准方程为

y94x241,离心率e53.这个要进行分类讨论,但只有一种情形有解,事实上,可直接设所求的双曲线的方程为x216y29mmR,m0.

例4 双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小半径为12m,上口半径为13m,下口半径为25m,高为55m.试选择适当的坐标系,求出双曲线的方程(各长度量精确到1m).

解法剖析:建立适当的直角坐标系,设双曲线的标准方程为xa22yb221,算出a,b,c的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于a,b,c的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.

引申:如图所示,在P处堆放着刚购买的草皮,现要把这些草皮沿着道路PA或PB送到呈矩形的足球场ABCD中去铺垫,已知AP150m,BP100m,BC60m,APB60.能否在足球场上画一条“等距离”线,在“等距离”线的两侧的区域应该选择怎样的线路?说明理由.

解题剖析:设M为“等距离”线上任意一点,则PAAMPBBM,即BMAMAPBP50(定值),∴“等距离”线是以A、B为焦点的双曲线的左支上的一部分,容易“等距离”线方程为x2625y23750135x25,0y60.理由略.

165例5 如图,设Mx,y与定点F5,0的距离和它到直线l:x数54的距离的比是常,求点M的轨迹方程.

2分析:若设点Mx,y,则MFx5y2,到直线l:x距离dx165165的,则容易得点M的轨迹方程.

引申:用《几何画板》探究点的轨迹:双曲线

若点Mx,y与定点Fc,0的距离和它到定直线l:xecaa2c的距离比是常数ca0,则点M的轨迹方程是双曲线.其中定点Fc,0是焦点,定直线l:2xac相应于F的准线;另一焦点Fc,0,相应于F的准线l:xa2c.

◆ 情感、态度与价值观目标

在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生创新.必须让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.

◆能力目标

(1)分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决问题的能力.

(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.

(3)实践能力:培养学生实际动手能力,综合利用已有的知识能力.

6.高中数学 第二章《平面向量》复习课教案 新人教A版必修 篇六

【教学目标】欣赏19世纪以来有代表性的美术作品;了解这些美术作品产生的时代背景及其艺术价值。【知识梳理】

知识点一 从新古典主义美术到浪漫主义美术 1.新古典主义美术(1)背景

①18世纪末19世纪初,法国处于 前后的剧烈动荡中。②资产阶级对古代 英雄主义精神的追求。(2)特点

①强调理性,以古代历史和现实 为题材。

②表现形式上,突出,注重画面的。(3)代表:

①法国画家 是杰出的新古典主义美术画家,代表作有《 》《拿破仑加冕》等。

②法国画家 的作品《泉》,充分展现了人体美与古典美的完满结合。2.浪漫主义美术

(1)背景:拿破仑统治结束后,人们对“ ”感到失望,寻求新的精神寄托。(2)特点

①注重表现,运用鲜明色彩和奔放笔法,强调 的完整和统一,但不拘泥于局部和细节的过分描绘和刻画。

②特别强调 的作用,使画面,辉煌瑰丽。

(3)代表:法国画家 的代表作《自由引导人民》,典型表现了这一画派的风格特征。

知识点二 现实主义美术和印象画派 1.现实主义美术(1)时间:19世纪中期。

(2)特点:注重表现。

(3)代表:①法国 的《播种者》《 》等。

②俄国列宾的《 》。

2.印象画派

(1)兴起①时间:19世纪后半期。

②背景:社会经济的发展和 的进步。

③特点:借助当时光学领域的新成就,醉心于 的研究,强调捕捉“ ”,表现微妙的色彩变化。④代表:法国莫奈的《 》。

(2)发展

①时间:19世纪末20世纪初。

②特点:强烈主张 的抒发,作品大多线条粗犷、、色彩明快,③代表a.荷兰凡高被称为“ ”,代表作《向日葵》。

b.法国 擅长画静物,色彩反差强烈,被称为 “现代绘画之父”。

【重点阐释】 关于印象画派

(1)产生原因:①19世纪后半期,一些画家随着科技手段的提高特别是当时光学研究的发展,主张提升绘画的社会表现功能。②他们对统治欧洲艺术的种种清规戒律表示不满,对光和色有着浓厚的兴趣,从室内走向大自然。

(2)基本特点

①注重时间性,强调是什么时候的景色。②注重主体的主观感受,忠于自己的眼睛。③大多用原色作画。

(3)后期发展

19世纪末20世纪初,产生了后期印象画派,他们反对印象画派对客观世界的描绘只是停留在表面现象上,主张艺术应区别于照相,要揭示主观世界重要的不在于写形而在于写意,重视自我的表现,强调变形和夸张。后期印象画派与印象画派名称相似,但应注意,后期印象派的画风开始向现代派演变。

(4)东西对比

①在中国画里,与印象画派相仿的画派是写意画派。②在表现手法上,印象画派是油画,中国画是水墨画。

知识点三

现代主义美术

1.背景(1)20世纪的,给人们的心灵造成巨大创伤。

(2)伴随 而来的快节奏加剧了人们的紧张感。(3)的发展拓宽了艺术家认识世界的视野。

2.特征 :反 和反,重视艺术家内心的“自我感受”

和“ ”,流露出艺术家愤怒、消极、等各式各样的复杂心理。

3.代表 :西班牙毕加索的作品《 》。4.发展

7.高中数学 第二章《平面向量》复习课教案 新人教A版必修 篇七

一.说教材

1. 地位及重要性

函数的单调性是高中数学必修1第一章的内容,在高考的重要考查范围之内。函数的单调性是函数的一个重要性质,也是在研究函数时经常要注意的一个性质,并且在比较几个数的大小、对函数的定性分析以及实际函数问题中变量变化趋势等问题上都有广泛的应用。通过对这一节课的学习,既可以让学生掌握函数单调性的概念和证明函数单调性的步骤,又可加深对函数的本质认识。也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。2. 教学目标

(1)知识与技能:理解函数的单调性的意义;了解能用文字语言和符号语言正确表述增 函数、减函数、单调性、单调区间的概念;明确掌握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简单函数的单调性。

(2)过程与方法:在研究函数的单调性时,以基本的函数图像为素材,逐步由形到数,由具体到抽象,引导学生发现函数图像在上升和下降时函数的变换规律,然后再推广到一般,得出函数单调性的定义,每一阶段的活动,都是学生认识上的升华。

(3)情态与价值:培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物的观点看问题。3. 教学重难点

重点是对函数单调性的有关概念的本质理解。

难点是利用函数单调性的概念证明或判断具体函数的单调性。二.说学情

学习函数单调性之前学生已经对集合的定义、函数的概念有了一定的认识,函数单调性的概念的理解也要与前面内容密切相关。由于学生观察能力、自主学习能力、抽象思维能力比较薄弱,学习过程中仍需一些直观感性的认识作为依托。

三.说教法

根据本节课的内容及学生的实际水平,我尝试运用“问题解决”与“多媒体辅助教学”的模式。力图通过提出问题、思考问题、解决问题的过程,让学生主动参与以达到对知识的“发现”与接受,进而完成对知识的内化,使书本知识成为自己知识;同时也培养学生的探索精神。

四.说学法

在教学过程中,教师设置问题情景并提出问题让学生参与讨论;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。然后通过对函数单调性的概念的学习理解,体会到单调性的实际意义。整个过程学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。五.说过程

通过设置问题情景、课堂导入、新课讲授、课堂练习、课堂小节的教学过程中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。

本节课的教学流程安排如下:

(一)设置问题情景

以多媒体形式给出一些函数图像,并设置问题:从这些图像我们会了解图像的哪些变化趋势?和数学问题有什么相关性?通过问题情景的设置主要是为了达到以下两个目的: ⑴为了复习回顾有关函数、函数的图像知识; ⑵通过身边的事例激发学生对探索研究、学习新知识的热情,为导入新课及顺利完成教学任务做了思想上的准备。

(二)揭示课题,导入新课

通过对某些实际问题的分析得知,在研究函数问题的过程中经常要考虑到事物的变化趋势,即函数值的增减变化。例如,一次函数中ykx,当k0时,y的值随x值的增大而增大,当k0时

y的值随x值的增大而减少。用多媒体给出一函数图像让学生思考

y随自变量x值的变化情况,交流,让学生利用初中所学的知识,结合图像观察说出函数值初步概括出增函数与减函数的概念。但仅从图像看显然不过严密,我们必须对它进行系统的、科学的研究。(板书课题)(三)讲授新课 1. 函数单调性的意义

(1)函数单调性的定义

在上述的基础上进一步启发学生,让学生用数学语言归纳出增函数、减函数的概念,教师进行补充,接着用多媒体显示增函数、减函数的定义。

紧接着引导学生结合教材中的图形(或用多媒体给出的屏幕)仔细体会定义中的两个简单不等关系“x1x2”和“f(x1)f(x2)或f(x1)f(x2)”,它刻画了函数递增或递减的性质。这就是数学魅力!

对定义作了初步分析以后,指导学生再次阅读和分析定义,同时教师提出以下问题:定义中的关键词语是哪些?(学生思索)教师在学生思索过程中进行一次有感情地朗读定义,并在关键词语处加重语气,学生感到困难时,给以适当的提示。(这一环节是学生正确地、深入地理解概念的关键,教师应该启发引导学生如何深入理解一个概念,以培养学生分析问题、认识问题的能力)

通过学生的分析讨论得出以下几个关键词语: ①“定义域内的一个子集A”(多媒体中对这几个字用红色显示)。这里包含两层意思:第一函数的单调性只能在定义域内讨论;第二函数的单调性是对定义域内的某个区间而言的,否则无法讨论其单调性。(教师举例说明)

②“任意两个”和“都有”。就是说这里的x1,x2在给定区间上具有任意性,不能用特殊值来判断函数的单调性(要特别强调),而且只要x1x2,则 f(x1)f(x2)(或f(x1)f(x2))恒成立。

以上两点让学生通过构造反例来进一步说明。

(通过学生的积极思维探索,从抽象到具体,并通过反例反衬,使学生对概念有了本质的认识,同时也锻炼了学生的逻辑思维能力)。

接着教师作以下阐述:反过来,如果我们已知f(x)在某个区间上是增函数或减函数,那么,我们就可以通过自变量的大小去判断函数值的大小,也可以有函数值的大小去判断自变量的大小,即一般成立则特殊成立,反之不然,这恰是辩证法中一般和特殊的关系。(用辩证法的原理来解释数学知识的同时,用数学知识去理解辩证法的原理,这样分析有助于深入地理解和掌握概念,培养学生自主学习的能力)。(2)函数单调性相关概念的理解

学生看书了解单调性、单调函数、单调区间的有关概念。2.函数单调性的证明

例1:(书P32例1多媒体给出)

借助函数的图像看单调性既形象又直观,是一个好办法,但是在理论上不够严密,尤其是不易画出图像的函数,因此我们还必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径。(指出用定义证明的必要性)

提问:怎样用定义来证明呢?

例2:(书P32例2多媒体给出)

学生思索并动笔,教师不断点拨启发,最后师生共同完成(教师认真规范地板书证明过程,以对学生起到示范作用)回顾解题过程达到以下要求:

① 总结归纳出用定义证明函数单调性的步骤(用多媒体给出)。

② 变式训练:讨论函数f(x)kxb(k,b为常数,且k0)。

通过变式训练使学生认识到一次函数的单调性决定于一次项系数k,同时训练了学生进行分类讨论的重要数学思想。

(四)课堂巩固练习

1.课堂练习,巩固概念,强化学生对这节课的掌握。练习为书本中P36页第1、2、3题。2.与学生一起解决第四题, 通过对本例的解答达到以下目的:

①会根据图像写单调区间;

②明确区间的端点值不影响函数在这一区间上的单调性。

经过以上两例使学生巩固定义,初步具备解决相关问题的能力。

(五)课堂小结

8.高中数学 第二章《平面向量》复习课教案 新人教A版必修 篇八

授课类型:新授课

(第2课时)

●三维目标

知识与技能:灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法

过程与方法:通过自主探究、合作交流获得对等比数列的性质的认识。

情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。●教学重点

等比中项的理解与应用 ●教学难点

灵活应用等比数列定义、通项公式、性质解决一些相关问题 ●教学过程 Ⅰ.课题导入

首先回忆一下上一节课所学主要内容:

1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q≠0),即:an=q(q≠0)an1n12.等比数列的通项公式: ana1q(a1q0),anamqnm(amq0)

an13.{an}成等比数列=q(nN,q≠0)

“an≠0”是数列{an}成等比数列

an的必要非充分条件

4.既是等差又是等比数列的数列:非零常数列 Ⅱ.讲授新课

1.等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G为a与b的等比中项.即G=±ab(a,b同号)

如果在a与b中间插入一个数G,使a,G,b成等比数列,则GbG2abGab,aG反之,若G=ab,则≠0)[范例讲解] 课本P58例4 证明:设数列an的首项是a1,公比为q1;bn的首项为b1,公比为q2,2Gb,即a,G,b成等比数列。∴a,G,b成等比数列G2=ab(a·baG

9.高中数学 第二章《平面向量》复习课教案 新人教A版必修 篇九

基于函数单调性概念是高中教材中形式化程度较强,学生较难理解以及要让学生充分了解概念后面所蕴涵的数学思想的主张,笔者以“数学本原性问题驱动”数学概念教学为指导理念,在对函数单调性概念在高中教材中的地位和作用进行详细分析的基础上进行了新的教学设计及课堂实录。

◆教材分析 教材的地位和作用

《函数的单调性》是《高中数学人教A版》(必修1)第一章1.31节的内容。它既是在学生学过函数概念等知识后的延续和拓展,又是后面研究指数函数、对数函数、三角函数等各类函数的单调性的基础,在整个高中数学中起着承上启下的作用。研究函数单调性的过程体现了数学的数形结合和归纳转化的思想方法,反映了从特殊到一般的数学归纳思维形式,这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大意义。函数的单调性是函数的四个基本性质之一,在比较几个数的大小、对函数作定性分析(求函数的值域、最值,求函数解析式的参数范围、绘函数图象)以及与不等式等其它知识的综合应用上都有广泛的应用;同时在这一节中利用函数图象来研究函数性质的数形结合的思想将贯穿于我们整个高中数学教学。

教材的重点与难点

教学重点:(1)领会函数单调性概念,体验函数单调性的形式化过程,深刻理解函数单调性的本质,并明确单调性是一个局部概念;(2)函数单调性概念的应用 教学难点:突破抽象,深刻理解函数单调性形式化的概念。◆教学目标分析

根据新课标的要求和教学内容的结构特征,依据学生学习认知的心理规律和素质教育的要求,结合学生的实际水平,本节课教学目标如下:

知识目标:(1)从本质上理解函数单调性概念;(2)运用形式化的函数单调性概念进行判断与应用。

能力目标:(1)培养学生的观察能力,分析归纳能力,领会归纳转化的思想方法。(2)使学生体验和理解从特殊到一般的数学归纳推理思维方式。(3)培养学生从具体到抽象的能力。

情感目标:(1)培养学生主动探索、不畏困难、敢于创新的意识和精神。(2)通过本课的学习,使学生能理性地思考生活中的增长、递减现象。

◆设计理念

本教学设计是基于用数学本原性问题来驱动数学概念的理念进行设计的。主要目的是为了突破函数单调性这个概念的抽象性,能让学生体验概念的形成过程,形成对概念的正确理解。因此教学设计在课堂教学中的概念引入的情景设计、概念形成的过程分析、概念运用的问题强化、原发性问题的价值挖掘这四方面应用了“用数学本原性问题驱动数学概念教学”这一理念,突破传统的教学设计,从一个新的角度对教学进行了设计:第一阶段函数单调性概念由实际背景转化为文字语言的叙述;第二阶段函数单调性概念由文字语言的叙述转化为数学叙述;第三阶段函数单调性概念由数学叙述转化为数学符号叙述;第四阶段函数单调性概念由数学符号叙述抽象到了形式化。这一设计符合新课程标准强调的加强对数学概念本质的认识,并且能适度地进行形式化的表达这一理念。

五、教学过程设计:

一、问题情境

1.如图为某市一天内的气温变化图:

(1)观察这个气温变化图,说出气温在这一天内的变化情况.

(2)怎样用数学语言刻画在这一天内“随着时间的增大,气温逐渐升高或下降”这一特征?

2.分别作出下列函数的图像:

(1)y=2x.

(2)y=-x+2.

(3)y=x.

根据三个函数图像,分别指出当x∈(-∞,+∞)时,图像的变化趋势?

二、建立模型

1.首先引导学生对问题2进行探讨———观察分析

观察函数y=2x,y=-x+2,y=x图像,可以发现:y=2x在(-∞,+∞)上、y2=x在(0,+∞)上的图像由左向右都是上升的;y=-x+2在(-∞,+∞)上、y=2x在(-∞,0)上的图像由左向右都是下降的.函数图像的“上升”或“下降”反映了函数的一个基本性质———单调性.那么,如何描述函数图像“上升”或“下降”这个图像特征呢?

22以函数y=x,x∈(-∞,0)为例,图像由左向右下降,意味着“随着x的增大,相应的函数值y=f(x)反而减小”,如何量化呢?取自变量的两个不同的值,如x1=-5,x2=-3,这时有x1<x2,f(x1)>f(x2),但是这种量化并不精确.因此,x1,x2应具有“任意性”.所以,在区间(-∞,0)上,任取两个x1,x2得到f(x1)=

2,f(x2)=.当x1<x2时,都有f(x1)>f(x2).这时,我们就说f(x)=x在区间(-∞,0)上是减函数.

注意:在这里,要提示学生如何由直观图像的变化规律,转化为数学语言,即自变量x变化时对函数值y的影响.必要时,对x,y可举出具体数值,进行引导、归纳和总结.这里的“都有”是对应于“任意”的.

2.在学生讨论归纳函数单调性定义的基础上,教师明晰———抽象概括 设函数f(x)的定义域为I:

如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么我们就说函数f(x)在区间D上是增函数[如图8-2(1)]. 如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么我们就说函数f(x)在区间D上是减函数[如图8-2(2)].

如果函数y=f(x)在区间D上是增函数或减函数,那么我们就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫作y=f(x)的单调区间.

3.提出问题,组织学生讨论

(1)定义在R上的函数f(x),满足f(2)>f(1),能否判断函数f(x)在R是增函数?

(2)定义在R上函数f(x)在区间(-∞,0]上是增函数,在区间(0,+∞)上也是增函数,判断函数f(s)在R上是否为增函数.

(3)观察问题情境1中气温变化图像,根据图像说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数. 强调:定义中x1,x2是区间D上的任意两个自变量;函数的单调性是相对于某一区间而言的.

三、例题解析 [例 题]

1.证明函数f(x)=2x+1,在(-∞,+∞)是增函数. 注:要规范解题格式.

2.证明函数f(x)=,在区间(-∞,0)和(0,+∞)上都是减函数.

思考:能否说,函数f(x)=在定义域(-∞,0)∪(0,+∞)上是减函数?

3.设函数y=f(x)在区间D上保号(恒正或恒负),且f(x)在区间D上为增函数,求证:f(x)=在区间D上为减函数.

证明:设x1,x2∈D,且x1<x2,∵f(x)在区间D上保号,∴f(x1)f(x2)>0.

又f(x)在区间D上为增函数,∴f(x1)-f(x2)<0,从而g(x1)-g(x2)>0,∴g(x)在D上为减函数.

[练习]

1.证明:(1)函数f(x)=在(0,+∞)上是增函数.

(2)函数f(x)=x-x在(-∞,2]上是减函数.

2.判断函数的单调性,并写出相应的单调区间.

3.如果函数y=f(x)是R上的增函数,判断g(x)=kf(x),(k≠0)在R上的单调性.

四、课后拓展

1.根据图像,简要说明近150年来人类消耗能源的结构变化情况,并对未来100年能源结构的变化趋势作出预测.

10.高中数学 第二章《平面向量》复习课教案 新人教A版必修 篇十

1教案 新人教A版必修1 三维目标定向 〖知识与技能〗

理解函数的最大(小)值及其几何意义,会用函数的单调性求一些函数的最大(小)值。〖过程与方法〗

借助具体函数,体验函数最值概念的形成过程,领会数形结合的数学思想。〖情感、态度与价值观〗

渗透特殊到一般,具体到抽象、形成辩证的思维观点。教学重难点

函数最值的意义及求函数的最值。教学过程设计

一、引例

画出下列函数的草图,并根据图象解答下列问题:

(1)f(x)2x3;

(2)

f(x)x22x1。1)说出yf(x)的单调区间,以及在各单调区间上的单调性; 2)指出图象的最高点或最低点,并说明它能体现函数的什么特征?

y y o x o x

二、核心内容整合

1、函数的最大(小)值的概念

设函数yf(x)的定义域为I,如果存在实数M满足:

(1)对于任意的xI,都有f(x)M;(2)存在x0I,使得f(x0)M。

那么称M是函数yf(x)的最大值。学生类比给出函数最小值的概念:

设函数yf(x)的定义域为I,如果存在实数M满足:

(1)对于任意的xI,都有f(x)M;(2)存在x0I,使得f(x0)M。那么称M是函数yf(x)的最小值。

注意:

(1)函数最大(小)值首先应该是某一个函数值,即存在x0I,使得f(x0)M;

(2)函数最大(小)值应该是所有函数值中最大(小)的,即对于任意的xI,都有f(x)M(f(x)M)。

2yaxbxc(a)的最值:

2、一元二次函数

b24acb2ya(x)2a4a;(1)配方:(2)图象:

(3)a > 0时,ymin4acb24acb2ymax4a。4a;a < 0时,二、例题分析示例

1、“菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂。如果烟花距地面的高度h m与时间t s之间的关系为h(t)4.9t14.7t18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1m)?

〖知识提炼〗函数的最值与单调性的关系:

(1)f(x)在[a , b]上为增函数,则f(a)为最小值,f(b)为最大值;(2)f(x)在[a , b]上为减函数,则f(a)为最大值,f(b)为最小值。

2y例

3、已知函数2(x[2,6])x1,求函数的最大值和最小值。

分析:证明函数在给定区间上为减函数。

三、学习水平反馈:P36,练习5。补充练习:

2f(x)x4ax2在区间(– ∞,6] 内递减,则a的取值范围是()

1、函数(A)a ≥ 3

(B)a ≤ 3

(C)a ≥ – 3

(D)a ≤ – 3

22、在已知函数f(x)4xmx1在(,2]上递减,在(2,]上递增,则f(x)在[1,2]上的值域是____________。四、三维体系构建

1、函数的最大(小)值的含义。

2、利用函数单调性判断函数的最大(小)值的方法:(1)利用二次函数的性质(配方法)求函数的最大(小)值;(2)利用图象求函数的最大(小)值;

(3)利用函数单调性的判断函数的最大(小)值。

如果函数yf(x)在区间[a,b]上单调递增,则函数yf(x)在x = a处有最小值f(a),在x = b处有最大值f(b);

如果函数yf(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增,则函数yf(x)在x = b处有最小值f(b);

上一篇:应急预案护理下一篇:我的中国梦演讲稿:前进!我的中国梦!