智能家居传感器的应用(共9篇)
1.智能家居传感器的应用 篇一
JN338智能数字式转矩转速传感器及其应用
摘要:介绍了JN338智能数字式转矩转速传感器的特性参数和工作原理,该传感器使用两组旋转变压器实现了电源及信号的非接触传递,同时其信号输出为频率量。文中给出了基于JN338的智能转矩转速测量仪的硬件电路结构框图,同时指出了JN338的应用注意事项。关键词:JN338;数字式;转矩转速传感器
1 概述
转矩传感器在电动机、发动机、发电机、风机、搅拌机、卷扬机、钻探机械等众多的旋转动力测试系统中及数控机械加工中心、自动机床等机电一体化设备中已获得广泛的应用。传统的转矩传感器通常采用电阻应变桥来检测转矩信号,并采用导电滑环来耦合电源输入及应变信号输出,由于导电滑环属于磨擦接触,因此不可避免地存在着磨损和发热,这样不但限制了旋转轴的转速及导电滑环的使用寿命,同时由于接触不可靠,也不可避免地会引起测量信号的波动及误差的增加。因此,如何在旋转轴上进行能源及信号的可靠耦合已成为转矩传感器最棘手的问题,而JN338数字式转矩转速传感器则巧妙地解决了这个问题。(本网网收集整理)
JN338是北京三晶创业集团公司的产品,该传感器采用两组特殊环形旋转变压器来实现能源的输入及转矩信号的输出,从而解决了旋转动力传递系统中能源及信号可靠地在旋转部分与静止部分之间的传递问题。该传感器还可同时实现旋转轴转速的测量,从而可方便地计算出轴输出功率,因此,利用该传感器可实现转矩、转速及轴功率的多参数输出。
2 主要特性及参数
2.1 JN338的主要特性
JN338的主要特性如下:
●检测手段为应变电测技术;
●测量精度高?信号检出、处理均用数字技术;
●抗干扰能力强,无需调零即可工作;
●可靠性高、信噪比高,工作寿命长;
●既可以测量静止扭矩,也可测量旋转转矩;
●能够测量稳态扭矩,也能测量过渡过程的动态转矩;
●无需反复调零即可连续测量正反转矩;
●无集流环、电刷等磨损件,可高速超长运行;
●转矩信号的传递与是否旋转、转速大小及旋转方向无关;
●测量弹性体强度大,可承受150%过载;
●体积小,重量轻,安装方便,有套装式、卡装式、联轴式等多种安装方式;
●输出信号以频率形式给出,便于和计算机进行接口。
2.2 传感器的主要技术参数
传感器的主要技术参数如表1所列,表2所列是该传感器产品的规格参数。
表1 JN338传感器主要技术参数
参 数指 标转矩准确度>0.5%过载能力150%F.S绝缘电阻≥200MΩ工作温度-20~60℃重复性≤0.5%F.S滞后≤0.5%F.S线性≤0.5%F.S相对湿度≤90%RH表2 传感器产品规格参考
规 格转矩测量范围(N.m)最高转速(Rpm)10010~10060000~300500050050~70040001000100~15003000200~300025005000500~500020002.3 插座引脚及功能
JN338转矩转速传感器采用一只5脚的航空插座做电源输入及转矩转速信号输出,插座外形及引脚排列如图1所示。各引脚功能说明如下:
1脚:接地端;
2脚:+15V电源端;
3脚:-15V电源端;
4脚:转速信号输出端;
5脚:转矩信号输出端。
3 工作原理
3.1 转矩测量原理
该转矩传感器的检测敏感元件是电阻应变桥。将专用的测扭应变片用应变胶粘贴在被测弹性轴上以组成应变电桥,只要向应变电桥提供电源即可测得该弹性轴受扭的电信号,然后将该应变信号放大,再经过压/频转换变成与扭应变成正比的频率信号。传感器的能源输入及信号输出是由两组带间隙的特殊环形旋转变压器承担的,因此可实现能源及信号的无接触传递。该应变传感器测量原理如图2所示。
在一段特制的弹性轴上粘贴专用的测扭应变片并组成电桥,以形成基础扭矩传感器,然后在轴上再固定能源环形旋转变压器的次级线圈、轴上印刷电路板和信号环旋转变压器的初级线圈。电路板上包含整流稳压电源、仪表放大电路及V/F变换电路。在传感器的外壳上固定着激磁电路、能源环形旋转变压器的初级线圈、信号环形变压器的次级线圈及信号处理电路。
传感器电路部分在工作时,由外部电源向传感器提供±15V电源,激磁电路中的晶体振荡器产生400Hz的方波,经过TDA2003功率放大即产生交流激磁功率电源,通过能源环形旋转变压器从静止的初级线圈T1传递至旋转的次级线圈T2,然后将得到的交流电源通过轴上的整流、滤波电路处理后变成±5V的直流电源。再将该电源作为运算放大器AD822的.工作电源,并由基准电源AD589与双运放AD822组成高精度稳压电源,以产生±4.5V的精密直流电源,该电源既可作为应变电桥电源,又可作为仪表放大器及V/F转换器的工作电源。当弹性轴受扭时,应变桥检测到的mV级应变信号通过仪表放大器AD620将其放大成1.5 V±1V的强信号,再通过V/F转换器LM331变换成频率信号,此信号通过信号环形旋转变压器,从旋转轴传递至静止的次级线圈,再经过传感器外壳上的信号处理电路滤波、整形即可得到与弹性轴承受的扭矩成正比的频率信号输出。
3.2 转速测量原理
转矩传感器在旋转轴上安装着60条齿缝的测速轮,在传感器外壳上安装的一只由发光二极管及光敏三极管组成的槽型光电开关架,测速轮的每一个齿将发光二极管的光线遮挡住时,光敏三极管就输出一个高电平,当光线通过齿缝射到光敏管的窗口时,光敏管就输出一个低电平,旋转轴每转一圈就可得到60个脉冲,因此,每秒钟检测到的脉冲数恰好等于每分钟的转速值。
3.3 轴输出功率
轴输出功率可由转矩传感器输出的转矩及转速值经运算后得到,计算公式为:
p=MN/9550
式中,P为轴输出功率(kW);M为转矩(N.M);
N为转速(r/min)。
3.4 转矩传感器信号输出
JN338转矩传感器信号输出形式如下:
●零转矩:10kHz±50Hz;
●正向旋转满量程:15kHz±50Hz;
●反向旋转满量程:5kHz±50Hz;
●信号幅值:0~8V;负载电流:40mA。
在有效的量程范围内,传感器的转矩频率输出与对应的转矩值基本上成线性关系,实际应用中,如果测量准确度要求不超过标称值,一般不需要通过逐段参数标定来完成计算。
●转矩输出
下面给出转矩测量计算公式:
正向转矩输出值为:Mp=N(f-f0)/(fp-f0)
反向转矩输出值为:Mr=N(f0-f)/(f0-fr)
上两式中:Mp:正向转矩;Mr:反向转矩;N:转矩满量程;fp:正向满量程输出频率值(kHz);fr:反向满量程输出频率值(kHz);f:实测转矩输出频率值。
●转速输出
该装置的转速输出值为:
N=60f/z
式中,N为转速(r/min);f为实测转速输出频率值(kHz);Z为传感器测速齿数,这里Z取60。
转矩值与输出频率值的对应曲线如图3所示。
4 具体应用
4.1 应用电路设计
由于JN338的输出为频率量的数字信号,故该传感器可方便地与计算机或单片机接口。与计算机进行接口需扩展一块基于ISA总线或PCI总线的多通道定时/计数器板卡,如“中泰” 光隔定时计数器板卡PC-6503、PC-6508等。图4给出了与单片机接口构成的智能转矩转速测量仪的硬件电路结构框图。图中,JN338转矩传感器输出的转矩及转速信号经光耦隔离后送入单片机的T0、T1计数器,然后由T0和T1完成测频计数功能,秒脉冲闸门由T2提供。这其中光耦的作用,一是电平转换,把转矩转速信号电平转换成TTL电平,二是提高单片机的抗干扰能力并保护单片机。
由单片机完成相应的转矩、转速值的运算后,即可将转矩、转速及轴功率等参数保存并显示输出。本系统以AT89C52单片机为核心?由IMP813L构成电源监控及看门狗电路以提高系统工作的可靠性,系统中扩展了一片I2C总线串行铁电存储器FM24256,它的主要作用是存储参数设定值及采集的转矩转速值。内含GB2312中文汉字库的图形点阵液晶显示模块OCMJ4X8C可用于构成中文人机显示界面,ICL232的作用是将单片机的TTL电平转换为RS-232电平,以便于和上位计算机进行通信。
4.2 安装使用注意事项
安装使用JN338传感器时?应注意以下几点?
(1)应使用两组联轴器将传感器安装在动力源和负载之间;
(2)建议使用挠性、弹性或方向联轴器,以保证同心度小于0.1;
(3)动力及负载必须固定牢靠以避免振动;
(4)应将传感器的基座与设备的基座固定牢靠,中心高度需调节合适,并应避免产生附加转矩。
5 结束语
JN338数字式转矩转速传感器是一种采用磁场耦合来传递能源及信号的新型转矩转速传感器,该传感器取消了传统转矩传感器滑环结构并采用数字式输出,因而具有体积小、重量轻、安装简单方便、微机化测量接口简单方便等特点,是一种具有广泛发展前景的转矩转速传感器。
2.智能家居传感器的应用 篇二
1 节能家居传感器研究的必要性
1.1 社会持续发展的需要
迄今为止, 石油、煤炭、天然气等为代表的一次化石能源由于持续消耗而趋于枯竭。据预测全球石油储量大约在2050年左右接近枯竭;全球天然气储备估计在2050年左右接近枯竭;全球煤的储量预计可以供应169年。因此, 能源问题成为阻碍社会发展发展和经济发展的一个根本问题。在所有的能耗种类中, 建筑能耗是能耗大户之一, 目前全国房屋数量有400亿㎡左右, 其中高能耗建筑占到房屋总量的99%。在近几年的新建建筑中, 高耗能建筑比例依然占到新建建筑总量的95%以上。
中国政府已做出到2020年单位国内生产总值产生的二氧化碳排放比2005年下降40%~45%的庄严承诺。我国《建筑业发展“十二五”规划》强调, “十二五”建筑业的发展要以建筑节能减排为重点, 坚持节能减排与科技创新相结合。
在建筑应用端节能, 可以减少生源的生产和输配, 可达到全生命周期节能的目标。节能、低碳、高效的智能家居应潮流而生, 支撑智能家居发展的智能及控制技术也必须相应的快速发展, 因而节能家居传感器研究有其必要性。
1.2 成本的需要
国际著名控制公司已经在节能控制领域进行了多种技术的推广, 其中家居节能相关的传感器也层出不穷。但国外公司所生产的传感器价格昂贵, 信息采集种类单一, 实现节能的智能家居综合成本很高, 成为智能家居发展的瓶颈之一。因此, 在国内研发低成本、高效能的节能家居传感器成为必然。
2 节能家居传感器方案设计
2.1 产品功能
节能家居传感器是一个可采集多参数的传感器, 其可采集环境温度信息、光度信息, 人体存在信息, 并通过信息加工处理后, 以MODBUS通讯写实形式传送给控制器, 以达到外界控制器对环境温度、光度、人体存在信息的采集, 是控制器节能控制信息来源。
2.2 产品的组成
节能家居传感器由传感器单元、电源管理单元、数据通讯接口和信息处理器组成。传感器单元由三类功能模块组成, 包括光度采样、温度采样、超声信息采样。如图1产品组成图所示。
光度采样模块和温度采集模块负责环境光度、温度信息的采集、并进行信息处理后输送给信息处理器。超声信息采样由超声波发射模块和超声波接收模块共同组成。电源管理单元负责对节能传感器进行供电, 输入为AC220V, 输出为DC5V。数据通讯接口为RS485, 支持MODBUS协议。信息处理器选用单片机。
3 产品设计
在组成系统模块中, 电源管理模块和数据通讯接口采用通用成熟设计, 对其不做介绍。传感器信息采集是设计的核心, 包括传感器模块和信息处理器, 其设计原理如图2信息采样设计框图。
3.1 光度采样设计
光度采样传感元件选用龙信达公司的亮度传感器LXD/GB5-A1C, R1与亮度传感器S组成串联分压电路, 使用+5V电源供电, R1可选用1K、1%电阻, 在不同亮度下, 亮度传感器阻值S阻值变化, A点电压随之变化, 信息处理器通过A/D1接口, 采集A点电压值并换算出亮度值。
3.2 温度采样设计
温度采样电路采用典型的惠更斯桥电路设计, 使用+5V电源供电, 温度采样传感元件Rt选用热敏电阻CWF2-10K±1%2M, 其余三个桥臂电阻R2、R3、R4均采用10K、1%电阻。信息处理器通过A/D对B点和C点的电压采样后, 计算出B点和C点的电势差, 并计算出Rt的阻值, 从而换算从温度。
3.3 人体存在采样设计
人体存在采样电路由3组超声波发射和接收电路组成, 其3个发射探头和3个接收探头的物理位置均匀分布在一个圆上, 每个接收探头可接受120度空间信息。
信息处理器自带的PWM模块作为超声波发生器, 产生的方波信号由超声功放电路功率放大后, 由超接收声波发射探头发射出去, 其返回波由超声波接收探头接收, 信号经调整电路后由信息处理器的DI口接收, 并由信息处理器计算出超声波的返回时间和返回频率。信息处理器每次只对一路超声波发生器发送信号, 三路信号轮询发送, 每路信号的频率固定但三路各不相同。当一路超声波发送模块信号发送后, 三路超声波模块进行接收。当反射波接收时间发生变化时, 说明有人体介入, 根据探头的接收区域, 为人体进行定位。
3.4 信息处理器
信息处理器选用单片机设计, 超声波信号发生器使用单片机内部的PWM模块, 超声波接收器使用单片具有中断功能的数字接口和单片机内部定时器组成。利用数字接口的中断计算超声频率, 利用定时器计算超声波的返回时间。
4 节能家居传感器应用方案设计
4.1 节能方案设计
根据家居的布局, 将家居分成多个区域, 每个区域布置一只节能家居传感器, 并配置可以控制的用能设备, 如空调、新风、电动窗帘、照明灯。在室外配置一只节能家居传感器。节能家居传感器和节能设备均由家居控制器统一管理, 如图3, 节能方案组成图。
4.2 节能功能实现
人是家居用能的主体, 当节能家居传感器监测到无人时, 家居控制器将用能设备功率调整至最低, 从设备上节能, 同时, 通过室内外温差与光照度差, 充分利用环境势能, 例如, 冬季, 阳光充足时, 自动打开窗帘, 让阳光为室内补暖;室外温度低、光线不足时, 自动关闭窗帘, 减少室内热能向室外辐射。
当家中有人时, 节能家居传感器监测到人活动区域, 打开用能设备, 打造冷暖舒适、光度适合的环境, 无人区域, 自动关闭用能设备。当室外光度充足时, 自动关闭照明, 打开窗帘, 减少照明用电。
5 结语
3.智能家居传感器的应用 篇三
关键词:智能电网 智能变电站 电子式互感器 有源式 无源式 发展趋势
中图分类号:TM76文献标识码:A文章编号:1674-098x(2012)04(a)-0087-02
Application of Electronic Transformer in Smart Substation
Feng Yi-Xin
(College of Electrical Engineering and Automation,Fuzhou University,Fuzhou 350108,China)
Abstract:Introduction is made to the concepts,classifications of electronic transformer,while analyse is made to the comparison between active type and passive type due to the classifications,axioms and the main problems.The development trend of electronic transformers in the future will play a vital part in the construction of smart substation,even in the Smart Grid.
Key words:Smart Grid;Smart Substation;Electronic Transformer;Development Trend
為保证电力系统的安全、经济运行,需要对电力系统及其电力设备的相关系数进行测量,以便对其进行必要的计量、监控和保护。互感器的作用便是将高电压或大电流按比例变换成标准低电压或标准小电流,供给测量仪器、仪表和继电保护控制装置。传统的互感器多为电磁式互感器,其由于自身存在绝缘性能差,动态范围小,易发生磁饱和等缺陷,而电子式互感器已然成为解决这些问题的“钥匙”。近年来,智能电网已逐步成为电力行业的发展趋势,其核心便是智能变电站。相比于常规变电站,智能变电站是数字化变电站的升级,而数字化变电站的特点是以电子式互感器取代传统的互感器,以数字信号取代传统的模拟电量采集,通过光纤、通信线组成数字化网络,实现精确地电压电流数据测量,以便于智能电网的控制、监控与保护。因此,电子式互感器在智能变电站中的应用将在未来智能电网建设中起到不可估量的作用。
1 电子式互感器的定义及分类
1.1 电子式互感器的定义
电子式互感器是具有模拟量电压输出或数字量输出,供频率15~100Hz的电气测量仪器和继电保护装置使用的电流/电压互感器。
顾名思义,电子式互感器分为电子式电流互感器和电子式电压互感器两种,其通用框图如:图1所示。
在图1中,一次传感器产生与一次端子通过电流或者电压相对应的信号,经过一次转换器传送给二次转换器,然后二次转换器将传输系统传来的信号转换为供给测量仪器、仪表和继电保护或控制装置的量。
1.2 电子式互感器的分类
图2中,若一次转换器是电子部件,需要一次电源供电,则称此类电子式互感器为有源电子式互感器;若一次传感器是光学原理的,光纤传输系统可以直接将光测量信号送出,无需一次转换器,当然也无需一次电源,则称此类电子式互感器为无源电子式互感器。
2 电子式电流互感器
2.1 无源式电子式电流互感器
无源式电子式电流互感器可分为全光纤式和磁光玻璃式,其主要原理是Faraday效应原理,亦称为磁致旋光效应。LED发出的光近起偏器后为一线偏振光,线偏振光在电流产生的磁场作用下通过磁光材料时,其偏振面将发生偏转,旋转角正比于磁场沿着线偏振光通过材料路径的线积分,即
若将光路设计成围绕电流道题绕圈得闭合回路,则上式是闭合环路的线积分,根据全电流定律可得
为Verde常数;为光路与电流交链的匝数;为导体中流过的电流。
由此可见,电流与角成正比,因此,测出偏振光旋转角即可测出电流。
由于无源式电子式电流互感器采用的是光学材料,环境因素对其性能的影响很大,主要表现在温度漂移和长期稳定性,所以其能否最终实用化推广的关键就是解决这两方面的问题。
2.2 有源式电子式电流互感器
基于Faraday电磁感应原理的有源式电子式电流互感器可分为Rogowski线圈型和低功率线圈型。低功率线圈型与传统电磁式互感器实现原理基本一致,而Rogowski线圈,亦称为空心线圈,是由漆包线均匀绕制在环形骨架上制成的,不会出现磁饱和及磁滞等问题。
载流导线从线圈中心穿过,当导线上有电流流过时,在线圈两端将会产生一个感应电势,它与一次电流的关系如下:
为空心线圈的互感系数;为真空磁导率;为线圈匝数;为每匝线圈的横截面积;为线圈中心和导电杆中心之间的距离。
可见,理想的Rogowski线圈对电流的测量依赖于一个稳定可靠的互感系数,将测得的感应电势进行积分处理,并结合该空心线圈的互感系数进行计算,即可得到被测电流的大小,图3。
因为Rogowski线圈型电子式电流互感器的基础是Faraday电磁感应定理,所以决定了其不能用于测量恒稳直流,对于变化比较缓慢的非周期分量的测量也有一定的局限性,即存在测量信号频带的限制。
3 电子式电压互感器
3.1 无源式电子式电压互感器
无源式电子式电压互感器分为Pockels效应型和逆压电效应型,由于基于逆压电效应的无源式电子式电压互感器需要特种光纤且信号解调较为复杂,现在研究的大多数为Pockels效应型。
根据Pockels效应,某些晶体在外电场作用下将导致其入射光折射率改变,这将使沿某一方向入射晶体偏振光产生电光相位延迟,且延迟量与外加电场成正比,因此,可将被测电压加在晶体上,测其入射晶体偏振光产生电光相位延迟(相位差),可得被测电压值,其公式如下:
为相位差;为晶体所处的外加电场强度;为晶体上外加电压的大小;为晶体的半波电压(即由Pockels效应引起的双折射两光束产生180°相差所需外加电压大小)。
Pockels效应型电子式电压互感器由于同样采用了光学材料,所以与基于Faraday效应原理的无源式电子式电流互感器存在着相同的有待解决的问题。
3.2 有源式电子式电压互感器
有源式电子式电压互感器主要采用阻容分压型,与上述几类互感器不同的是,阻容分压型互感器是最早的测量高电压方式。其中,电阻分压型电压互感器多用于10kV和35kV电压互感器,而电容分压多用于中高压电压互感器。其工作原理示意图(见:图4)与Rogowski线圈式互感器极为相似,区别在于在经过电阻电容分压后,需要经过信号预处理之后进入A/D转换。对于分压型互感器,对二次回路阻抗的要求十分苛刻,特别是母线电压互感器,如何将二次输出分给多个二次设备,而且保证信号传输的抗干扰性和可靠性,是亟需解决的一个技术难题。
4 在智能变电站中的应用
智能变电站是指采用先进、可靠、集成、低碳、环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求。自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能的变电站。
智能变电站自动化系统可以划分为站控层、间隔层和过程层三层。其中,过程层包括变压器、断路器、隔离开关、电流电压互感器等一次设备及其所属的智能组件以及独立的智能电子设备。
智能电网中的智能变电站主要是要实现测量数字化、控制网络化、状态可视化、功能一体化、信息互动化。而这些目标的基础全部基于对电压电流的精确测量。
电子式互感器是实现变电站运行实时信息数字化的主要设备之一,在电网动态观测、提高继电保护可靠性等方面具有重要作用,是提高电力系统运行控制得整体水平的基础。
一方面,电子式互感器信号采用数字输出、接口方便、通信能力强,其应用将直接改变变电站通讯系统的通信方式。采用电子式互感器输出的数字信号后,可以实现点对点/多个点对点或过程总线通信方式,完全取代二次电缆线,解决二次接线复杂的问题,同时能够大大简化测量或保护的系统结构,降低对绝缘水平的要求,从根本上减少误差源,简化了智能电子装置的结构,实现真正意义上的信息共享。
另一方面,电子式互感器的输出均采用电缆传输,光缆的数量很少,因此,相比于常规变电站的电缆,敷设工作量远远减少。传统电流/电压互感器每1~3个月例行检查一次,1~3年进行一次小修,30年寿命周期内大修两次。电子式互感器巨大的优势,使得其在全寿命周期内基本“免维护”。因此,其维护工作主要是对远端模块或电气单元中的电子器件进行维护或更换,一般每5年维护一次,相比较而言,运行维护工作量大为减少。
由此可见,电子式互感器应用在智能变电站中可以促进其智能化、自动化、精确化,将极大地促进智能电网输配电模块的建设和发展。
5 结语
电子式互感器的诞生是互感器传感准确化、传感光纤化和输出数字化发展趋势的必然结果。有源式电子式互感器技术已经趋于成熟,基本达到实用化要求,故目前国内大部分数字化变电站使用的均为有源式电子式互感器。但有源式电子式互感器存在着自身的缺陷和不足,无法完全满足智能电网中智能变电站的智能化要求,此时无源式电子式互感器投入使用即为最佳解决方案。无源式互感器由于利用光学原理克服了有源式互感器的一些缺点,但却存在温度影响以及稳定性运行问题,阻碍着无源式电子式互感器的实用化。
近年来,无源式电子式互感器的研究取得了较大的进展,特别是基于Faraday效应的全光纤电子式电流互感器的性能指标已接近实用化要求。由此可见,无源式电子式互感器才是未来电子式互感器的发展方向,其在智能变电站中的应用也将推动着智能电网的发展与建设。
参考文献
[1]刘延冰,李红斌,余春雨,叶国雄,王晓琪.电子式互感器原理、技术及应用[M].北京:科学出版社,2009.
[2]刘振亚.智能电网知识问答[M].北京:中国电力出版社,2010.
[3]许晓慧.智能电网导论[M].北京:中国电力出版社,2009.
[4]何光宇,孙英云.智能电网基础[M].北京:中国电力出版社,2010.
[5]王红星,張国庆,郭志忠,蔡兴国.电子式互感器及其在数字化变电站中应用[J].电力自动化设备,2009,29(09):115~120.
[6]王虎生,王文学.电子式互感器及其在数字化变电站中的应用[J].机电信息,2010,10(36):90~91.
[7]高鹏,马江泓,杨妮,高红杰.电子式互感器技术及其发展现状[J].南方电网技术,2009,3(09):39~42.
[8]许玉香,项力恒.电子式互感器的应用研究[J].电器制造,2011,8(08):48~51,53.
[9]陈文升,顾立新.电子式互感器的应用研究[J].华东电力,2009,25(08):1327~1330.
[10]郭志忠.电子式互感器评述[J].电力系统保护与控制,2008,36(15):1~5.
[11]徐大可,汤汉松,孙志杰.电子式互感器在数字化变电站中的应用[J].电世界,2008,62(09):14~16,17,18.
[12]吴明波,梁振飞.电子式互感器对电力系统的应用分析[J].2011,4(04)92~93.
4.智能家居传感器的应用 篇四
摘要:介绍一种以8051微控制器和82527独立CAN总线控制器为核心组成的CAN总线智能传感器节点的设计方法,并给出其硬件原理图和初始化程序。
关键词:CAN总线 82527 单片机 数据采集 智能节点
引言
CAN(Controller Area Network,控制局域网)属于工业现场总线,是德国Bosch公司20世纪80年代初作为解决现代汽车中众多的控制与测试仪器间的数据交换而开发的一种通信协议。1993年11月,ISO正式颁布了高速通信控制局域网(CAN)的国际标准(ISO11898)。CAN总线系统中现场数据的采集由传感器完成,目前,带有CAN总线接口的传感器种类还不多,价格也较贵。本文给出一种由8051单片机和82527独立CAN总线控制器为核心构成的智能节点电路,在普通传感器基础上形成可接收8路模拟量输入和智能传感器节点。
(本网网收集整理)
1 独立CAN总线控制器82527介绍
82527是Intel公司生产的独立CAN总线控制器,可通过并行总线与Intel和Motrorola的控制器接口;支持CAN规程2.0B标准,具有接收和发送功能并可完成报文滤波。82527采用CHMOS 5V工艺制造,44脚PLCC封装,使用温度为-44~+125℃,其引脚的排列和定义参见参考文献[1]。
(1)82527的时钟信号
82527的运行由2种时钟控制:系统时钟SCLK和寄存器时钟MCLK。SCLK由外部晶振获得,MCLK对SCLK分频获得。CAN总线的位定时依据SCLK的频率,而MCLK为寄存器操作提供时钟。SCLK频率可以等于外部晶振XTAL,也可以是其频率的1/2;MCLK的频率可以等于SCLK或是其频率的1/2。系统复位后的默认设置是SCLK=XTAL/2,MCLK=SCLK/2。
(2)82527的工作模式
82527有5种工作模式:Intel方式8位分时复用模式;Intel方式16位分时复用模式;串行接口模式;非Intel方式8位分时复用模式;8位非分时复用模式。本文应用Intel方式8位分时复用模式,此时82527的30和44脚接地。
(3)82527的寄存器结构[2]
82527的寄存器地址为00~FFH.下面根据需要对寄存器给予介绍。
①控制寄存器(00H):
765432100CCE00EIESIEIEINIT
CCE――改变配置允许位,高电平有效。该位有效时允许CPU对配置寄存器1FH、2FH、3FH、4FH、9FH、AFH写操作。
EIE――错误中断允许位,高电平有效。该位一般置1,当总线上产生异常数量的错误时中断CPU。
SIE――状态改变中断允许位,高电平有效。该位一般置0。
IE――中断允许位,高电平有效。
INIT――软件初始化允许位,高电平有效。该位有效时,CAN停止收发报文,TX0和TX1为隐性电平1。在硬件复位和总线关闭时该位被置位。
②CPU接口寄存器(02H):
76543210RSTSTDSCDMCPWDSLEEPMUX0CEN
RSTST――硬件复位状态位。该位由82527写入,为1时硬件复位激活,不允许对82527访问;为0时允许对82527访问。
DSC――SCLK分频位。该位为1,SCLK=XTAL/2;为0,SCLK=XTAL。
DMC――MCLK分频位。该位为1,MCLK=SCLK/2;为0,MCLK=SCLK。
PWD――掉电模式使能位,高电平有效。
SLEEP――睡眠模式使能位,高电平有效。
MUX――低速物理层复用标志位。该位为1,ISO低速物理层激活,PIN24=VCC/2,PIN11=INT#(#表示取反);该位为0,PIN24=INT#,PIN11=P2.6。
CEN――时钟输出允许位,高电平有效。
③标准全局屏蔽寄存器(06~07H)。该寄存器用于具有标准标识符的报文,或XTD置0的报文寄存器。该方式称为报文接收滤波。当某位为1时,报文标识符的相应位必须匹配;为0时,不必匹配。
④扩展全局屏蔽寄存器(08~0BH)。该寄存器用于扩展报文格式,或XTD置1的报文寄存器,其作用与③相同。
765432100COBYPOL0DCT10DCR1DCR0
⑤总线配置寄存器(2FH):
COBY――旁路输入比较器标志位,高电平有效。
POL――极性标志位。为1,如果旁路输入比较器,RX0的输入逻辑1为显性,逻辑0为隐性;为0,则反之。
DCT1――TX1输出切断控制位。为1,TX1输出不被驱动,该模式用于1根总线的情况,2根差分导线短路;为0,TX1输出被驱动。
DCR1――RX1输入切断控制位。为1,RX1与输入比较器的反相端断开,接至VCC/2;为0,RX1接至输入比较器反相端。
DCR0――RX0输入切断控制位。作用与DCR1相同,此时RX0接至比较器同相端。
76543210SJWBRP
⑥位定时寄存器0(3FH);
SJW――同步跳转宽度位场,编程值1~3。
BRP――波特率分频位场,编程值0~63。
76543210SPLTSEG2TSEG1
⑦位定时寄存器1(4FH):
SPL――采样模式标志位。1表示每位采样3次;0表示每位采样1次。
TSEG1――时间段1位场,编程值2~15。
TSEG1――时间段2位场,编程值1~7。
波特率=XTAL/[(DSC+1)*(BRP+1)*(3+TSEG1+TSEG2)]
⑧报文寄存器(把每个寄存器的`第1字节地址作为基址BASE)。
76543210BASE+0MSGVALTXIERXIEINTPNDBASE+1RMTPNDTXRQSTMSGLST/CPUUPDNEWDAT
◇控制寄存器0,1(BASE+0,BASET+1)
MSGVAL――报文寄存器有效标志位,高电平有效。10置位,01复位。
TXIE――发送中断允许标志位,高电平有效。10置位,01复位。
RXIE――接收中断允许标志位,高电平有效,10置位,01复位。
INTPND――中断申请标志位,高电平有效。10置位,01复位。
RMTPND――远程帧申请标志位,高电平有效。10置位,01复位。
TXRQST――请求发送标志位,高电平有效。10置位,01复位。
MSGLST――报文丢失标志位,只用于接收报文寄存器。10表示未读报文被新报文覆盖,01表示未覆盖。
CPUUPD――CPU更新标志位,只用于发送报文寄存器。10报文不被发送,01报文可发送。
NEWDAT――新数据标志位。10表示向寄存器写入了新数据,01表示无新数据写入。
◇仲裁寄存器0,1,2,3(BASE+2-BASE+5)
存储报文标识符。
76543210DLCDIRXTD保留
◇报文配置寄存器(BASE+6)
DLC――数据长度编码,编程值0~8。
DIR――方向标志位。1发送,0接收。
XTD――标准/扩展标识符标志位。1扩展标识符,0标准标识符。
◇数据寄存器(BASE+7-BASE+14)
82527存储报文时,8个数据字节均被写入,未用到的字节数据是随机的。
2 硬件电路设计
智能节点的电路如图1所示(图中6264略去)。
在硬件设计中,由ADC0809完成对8路模拟置的转换,与8051的信息交换采用查询方式,地址BFF8~BFFFH,其时钟可由ALE二分频获得;82527完成与CAN总线的信息交换。本设计中,旁路了输入比较器,与8051的信息交换采用中断方式,地址7F00~7FFFH,可以用82527的P1口和P2口对开关量采集或对继电器进行控制。82C250提供82527和物理总线间的接口,提高接收和发送能力。可根据需要扩展程序存储器。
3 软件设计
本设计软件采用MCS-51汇编语言编写,程序框图如图2所示。
82527的初始化程序如下:
INT:MOV DPTR,#0FF02H
MOV A,#00H
MOVX @DPTR,A ;SCLK=XTAL
;MCLK=SCLK,CLKOUT无效
MOV DPTR,#0FF00H
MOV A,#41H
MOVX @DPTR,A ;置位CCE,INIT
MOV DPTR,#0FF2FH
MOV A,#48H
MOVX @DPTR,A ;旁路输入比较器设置1位隐性,0为显性,RX1无效
MOV DPTR,#0FF3FH;
MOV A,#43H;
MOVX @DPTR,A ;SJW=2,BRP=3
MOV DPTR,#0FF4FH
MOV A,#0EAH
MOVX @DPTR,A ;SPL=1,TSEG1=7,TSEG2=6此时波特率为100Kbps
MOV DPTR,#0FF00H;
MOV A,#01H
MOVX @DPTR,A ;禁止对配置寄存器的访问
MOV DPTR,#0FF10H;
MOV A,#55H;
MOVX @DPTR,A;
INC DPTR;
MOVX @DPTR,A;
・
・
・
MOV DPTR,#0FFF0H;
MOV A,#55H;
MOVX @DPTR,A
INC DPTR;
MOVX @DPTR,A ;报文寄存器控制位初始化
MOV R0,#06H;
MOV DPTR,#0FF06H;
MOV A,#0FFH;
L1:MOVX @DPTR,A ;报文标识符需全部匹配
INC DPTR
DJNZ R0,L1;
MOV DPTR,#0FF16H;
MOV A,#8CH ;报文寄存器1可发送8个字节扩展报文
MOVX @DPTR,A;
MOV DPTR,#0FF26H;
MOV A,#84H;
MOVX @DPTR,A ;报文寄存器2可接收8个字节扩展报文
MOV DPTR,#0FF00H;
MOV A,#00H;
MOVX @DPTR,A ;初始化结束
5.智能家居传感器的应用 篇五
教材分析
本课教学内容分为三部分。第一部分以日常生活中的电子秤引出称重传感器。第二部分介绍称重传感器的应用。第三部分通过介绍车辆超载自动监测系统,体现了物联网的实际应用。
学情分析
学生经过前面的学习,对各类传感器已经有了基本的认识,并能对传感器进行解释和描述。同时,本课中还安排了学生计算自己的体重指数,通过与标准体重指数值的对比,促进学生健康意识的提升。
预设教学目标
1.通过自主学习和知识迁移,对称重传感器做出解释和描述。2.通过对常见电子秤的了解,认识称重传感器及其应用。
3.通过对车辆超载自动监测系统的分析,了解物联网应用系统,知道传感器技术是信息感知的重要技术之一。
4.通过个人体重指数的计算和对比,促进学生健康意识的提升。
教学重点
认识称重传感器及其应用。
教学难点
传感器技术是信息感知的重要技术之一。
课时安排: 1课时 预设教学过程:
一、导入
你知道自己的体重吗?(让学生)描述使用过的称重器具。
(教师出示常见的体重计图片,选择并做适当描述)学生结合生活实际回答
二、新授
1、电子体重计
问题:电子体重计与传统体重计相比,最大的特点是什么? 特点:直接给出体重数值。
思考:结合以往学习经验,电子体重秤中是否应该含有传感器? 你能给它命名吗?(若有问题,教师可以出示前面学过的几类传感器的解释)教师小结、揭题指出:称重传感器—能够将物体重量转换为电信号的电子器件。
2.称重传感器的应用
(1)介绍称重传感器应用产品。观看视频:电子秤视频材料。(2)车辆超载自动监测系统。阅读教材:教材第17页内容。问题:称重传感器在该系统的作用? 对车辆称重的主要目的是什么? 教师小结称重传感器 作用:感知车辆载重。
监测系统的目的:监测车辆是否超载,超载则报警。结论:传感器技术是信息感知的重要技术之一。(3)问题:车辆超载会带来怎样的影响? 出示超载造成的危害或事故图片。
小结:防止车辆超载,避免或减少事故危害的发生。
过渡:车辆超载会带来危害,那么,我们身体超重是否也会对健康造成影响?
三、练习完成实践园: 计算体重指数
(1)交流你的体重指数,对比标准体重指数值,你的体重正常吗?(2)小组讨论:通过体重指数的对比,你得到了什么启示?(从日常饮食和体育锻炼方面思考)
四、全课总结 今天我们学校了什么? 你有哪些感触或想法?
教后反思:
学生经过前面的学习,对各类传感器已经有了基本的认识,并能对传感器进行解释和描述。因此,在本课中可以尝试让学生自行解释和描述传感器,教师只在必要时提供帮助。
教材中介绍的车辆超载自动检测系统是一个综合的物联网应用系统,故可以对此做较全面的介绍。
另外,超载检测系统的目的是防止超载,从而减少因超载带来的危害,因此建议从超载的危害性角度做适当挖掘。
6.传感器的应用论文 篇六
结 课 作 业
姓名:安 班级: 学号: 滨
2013级本科三班
201315110101
光纤温度传感器的设计
光纤温度传感器的设计
论文分析:
意义:光纤传感技术是一门新兴的应用物理技术,它在石油、通信、化工检测以及各种参量测量方面具有许多独特的优点,有广阔的应用前景。近年来,光纤技术已逐渐渗透到各研究领域,其应用范围日渐广泛。随着光纤传感系统在国防军事、航空航天、工矿企业、土木建筑、能源环保、生物医学、计算测量、自动控制等各领域的应用,对光纤传感系统的性能也不断提出新的要求。光纤温度传感器特别适用于易燃易爆的工作环境,从而弥补了传统的点温度传感器的不足。主要内容及研究思路:本文从光纤的基础入手,首先介绍了光纤的基础知识,然后结合传感器引入了光纤温度传感器的定义,分类及工作原理。本课题研究的是一种非功能性光纤温度传感器,它是利用高度敏感的双金属片作为感温元件,金属片的变化改变了光纤的通光强度。
目标:光纤温度传感器可以达到不但测温对象广,从监测相对低温的生物过程到监测高温的发动机零件,而且测量准确度、灵敏度高,抗电磁能力强,传输距离远,使用寿命长,价格相对低廉,使用更加经济。今后光纤温度传感器研究方向将会进一步提高传感器的精度、可靠性;提高抗干扰能力、稳定性,并简化器件结构,降低成本。
光纤温度传感器的设计
目 录
第1章 前 言
1.1选题背景及研究意义 1.2光纤传感器国内外研究现状 1.3光纤传感器及其组成与分类 1.4本论文的主要内容 第2章 光纤温度传感器理论 2.1光纤基础知识介绍 2.2热敏元件双金属片工作原理 2.3光纤探头的原理
2.4纤端光场的光强分布函数选取
2.5光纤温度传感器的特点及应用 第3章 光纤温度传感器系统组成与实验步骤 3.1 实验原理
3.2实验主要设备和材料 3.3实验搭建与调试 第4章 实验结果分析
4.1 位移光强曲线的测定及其与理论曲线的对比 4.2 温度光强曲线的测定及出现的问题和解决办法 4.3 测温曲线的选取及传感器测温范围的确定 第5章 结论与展望
5.1 实验结论
5.2光纤温度传感器存在的不足和展望 参考文献 致谢
光纤温度传感器的设计
第1章 前言
1.1 选题背景及研究意义
1.2光纤传感器国内外研究现状
1.2.1 国外研究现状
1.2.2 国内研究现状
1.3 光纤传感器及其组成与分类
1.4 本论文的主要内容
本文所采用的温度变换器为U型双金属片,依据双金属片的位置随温度的变化而变化的原理,利用双金属片的纵向位置改变来调制光纤探头接收到的光强,从而实现温度对光强的间接调制。与传统的指针式双金属片温度计相比,本传感器具有快速、灵敏、便于实现与计算机接口连接等优点。研究从基本的概念入手。
光纤温度传感器的设计
第2章 光纤温度传感器理论
2.1光纤基础知识介绍
2.1.1 光纤的结构和分类
2.1.2 光纤的传输原理
2.2热敏元件双金属片工作原理
2.2.1 双金属片弯曲机理及其选取
2.2.2 双金属片得到选取及其补偿和调制机理
光纤温度传感器的设计
2.2.3双金属片温度变换对位移的补偿机理及其位移的计算
2.3光纤探头的原理
2.3.1 光纤反射式调制原理及与光强分布的关系
2.3.2 光纤传输信号准共路理论
2.4纤端光场的光强分布函数选取
2.5光纤温度传感器的特点及应用
光纤温度传感器的设计
第3章 光纤温度传感器系统组成与实验步骤
3.1 实验原理
3.2实验主要设备和材料
3.3实验搭建与调试
3.3.1 LED光源I-P特性曲线测试
3.3.2 反射式光纤位移传感实验
3.3.3 光纤温度传感器实验
光纤温度传感器的设计
第4章 实验结果分析
4.1 位移光强曲线的测定及其与理论曲线的对比
4.2 温度光强曲线的测定及出现的问题和解决办法
4.3 测温曲线的选取及传感器测温范围的确定
光纤温度传感器的设计
第5章 结论与展望
5.1 实验结论
5.2光纤温度传感器存在的不足和展望
光纤温度传感器的设计
参考文献
[1]王剑锋,刘红林,张淑琴,余向东,孙忠周,金尚忠,张在宣.基于拉曼光谱散射的新型分布式光纤温度传感器及应用[J].光谱学与光谱析,2013,04:865-871.[2]廖国珍,张军,蔡祥,谭绍早,唐洁媛,肖毅,陈哲,余健辉,庞其昌.基于石墨烯的全光纤温度传感器的研究[J].光学学报,2013,07:26-32.[3]宋海峰,龚华平,倪凯,董新永.基于波长与强度双解调的光纤温度传感器[J].光电子.激光,2013,09:1694-1697.[4]李涛,戴玉堂,赵前程.一种新型微结构高灵敏度光纤温度传感器[J].光电子.激光,2014,04:625-630.[5]李强,王艳松,刘学民.光纤温度传感器在电力系统中的应用现状综述[J].电力系统保护与控制,2010,01:135-140.[6]伍铁生,王丽,王哲,刘玉敏,胡署阳,尹丽丹.一种Sagnac干涉仪结构的光子晶体光纤温度传感器[J].中国激光,2012,11:217-221.[7]程继兴,刘霞.一种基于AT89C51的光纤温度传感器的软硬件实现[J].电子测量技术,2012,12:102-107.[8]周广丽,鄂书林,邓文渊.光纤温度传感器的研究和应用[J].光通信技术,2007,06:54-57.[9]张颖,张娟,郭玉静,王庆华.分布式光纤温度传感器的研究现状及趋势[J].仪表技术与传感器,2007,08:1-3+9.[10]方曼.分布式拉曼光纤温度传感器系统及温度分辨率提高的研究[D].电子科技大学,2004.[11]吕宗岩.分布式光纤温度传感器的系统设计[D].燕山大学,2006.[12]匡绍龙,朱学斌.分布式光纤温度传感器原理及其在变电站温度监测中的应用[J].电力自动化设备,2004,09:79-81.[13]徐申翔,刘南生,张华.光纤温度传感器原理及应用[J].南昌大学学报(工科版),2004,04:9-14.[14]刘凡凡.SMS结构光纤温度传感器[D].浙江大学,2013.[15]陈艳,王海燕,张朋,王宁.简述光纤温度传感器的原理及应用[J].传感器世界,2008,12:23-27.[16]邵嫄琴.分布式光纤温度传感器校准中参考温度的研究[D].中国计量学院,2013.[17]沈永行.从室温到1800℃全程测温的蓝宝石单晶光纤温度传感器[J].光学学报,2000,01:83-87.[18]虞倩.高精度医用光纤温度传感器的研制及其特性研究[D].中国计量学院,2012.[19]孟庆民.光纤温度传感器用于电力高压开关在线监测的研究[D].东南大学,2005.[20]王喜光.分布式光纤温度传感器信号处理的研究[D].燕山大学,2006.光纤温度传感器的设计
7.智能传感器技术及其应用 篇七
一、智能传感器的概念及其特点
智能传感器 (intelligent sensor) 的概念最初是由美国宇航局在开发宇宙飞船的过程中提出来的, 后来得到全世界仪表界的认同。自智能传感器的概念提出以来, 智能传感器技术已经成为传感器的主要发展方向之一。现在智能传感器技术也已经越来越成熟。
智能传感器系统是一门现代综合技术, 何谓智能传感器?至今还没有规范化的定义。人们普遍认为, 智能传感器是一种对外界信息具有一定的检测、自诊断、数据处理以及自适应能力的传感器。智能传感器主要由基本传感器与微处理器构成, 基本传感器是构成智能传感器的基础, 其性能很大程度上决定着智能传感器的性能。
信号处理模块是智能传感器智能化的原因。强大的信号处理功能使智能传感器具有可靠性与稳定性好、感应精度高、信噪比和分辨率较高、自适应能力较强等优点。信息处理模块以微处理器为核心, 接受基本传感器的输出之后, 能够对该输出信号进行各种处理, 如标度变换、线性化补偿、数字调零、数字滤波等, 这些工作主要通过软件编写相应算法完成。智能传感器的诸多优点正是源于其可编程的软件平台。
二、智能传感器的主要功能
智能传感器的功能是通过模拟人的感官和大脑的协调动作, 结合长期以来测试技术的研究和实际经验而提出来的。智能传感器的内嵌微处理器结构使其能够克服传统传感器的诸多限制, 通过软件完成相关的数字信号处理。
1、自补偿与自诊断功能
传统传感器往往具有温度漂移和输出非线性的缺点, 而智能传感器的处理器可以根据给定的传统传感器的先验知识, 通过软件计算自动补偿传统传感器硬件线性、非线性和漂移以及环境影响因素引起的信号失真, 以最佳地恢复被测信号。计算方法用软件实现, 达到软件补偿硬件缺陷的目的, 也大大提高了传感器的应用灵活性。
此外, 传统的传感器往往需要定期检验和标定以保证传感器能够保持所需的精度。而智能传感器可以通过微处理器中的诊断算法对传感器的输出进行检验, 并将诊断信息直观的呈现出来, 使传感器具有自诊断的功能。
2、信息存储与记忆功能
传统的传感器在工业自动化系统中只是起到信息检测与传输的作用, 而智能传感器内含一定的存储空间。智能传感器除了能够存储信号处理、自补偿、自诊断等相关程序外, 还能够进行数据存储, 如历史数据、标定日期和各种必需的参数。智能传感器自带的存储空间缓解了自动控制系统控制器的存储压力, 大大提高了控制器的性能。
3、自学习与自适应功能
智能传感器内嵌微处理器的结构使其具有高级的编程特性, 因此可以通过编辑算法使传感器具有学习功能。智能传感器可以在工作过程中学习理想采样值, 处理器利用近似公式和迭代算法可认知新的被测量值, 即有再学习能力。此外, 在工作过程中, 智能传感器还可以通过对被测量的学习, 根据一定的行为准则自适应地重构结构和重置参数。
4、数字输出功能
近年来, 数字控制系统成为了控制系统的主要发展方向。而传统的传感器大多都是模拟输入、模拟输出的, 在数字控制系统中传感器输出的信号要经过A/D转换后才可以进行数字处理。智能传感器内部集成了模数转换电路, 能够直接输出数字信号。智能传感器的数字输出功能大大缓解了控制器的信号处理压力。
三、智能传感器的应用与发展
1、智能传感器的应用
自智能传感器的概念提出以来就收到了广泛的关注, 智能传感器的独特结构与优点吸引着众多研究者对其开发应用的不断探索。目前, 智能传感器已广泛应用于航天、航空、国防、科技和工农业生产等各个领域中。
在工业生产中, 智能传感器主要应用于生产过程中参数的测量。世界上第一个智能传感器是美国霍尼韦尔 (Honeywell) 公司在1983年开发的ST3000系列智能压力传感器。它具有的多参数传感 (差压、静压和温度) 与智能化的信号调理功能。智能传感器已经被应用到汽车电子系统之中, 例如汽车的胎压监测系统。在汽车四个轮胎上安装高灵敏的智能传感器, 在汽车行驶状态下实时、动态地监测轮胎压力并将数据通过无线电信号发射到接收器, 接收器以数字形式反映出气压值, 驾驶员能随时掌握漏气与温度升高时的轮胎状况。
2、智能传感器的发展方向
从技术角度来看, 智能传感器技术发展的三个主要方向是虚拟化、网络化和信息融合技术。虚拟化是利用通用的硬件平台充分利用软件实现智能传感器的特定硬件功能。传感器的虚拟化可缩短产品开发周期, 降低成本, 提高可靠性。网络化智能传感器是将利用各种总线的多个传感器组成系统并配备带有网络接口 (LAN或Internet) 的微处理器。通过系统和网络处理器可实现传感器之间、传感器与执行器之间、传感器与系统之间数据交换和共享。多传感器信息融合是智能处理的多传感器信息经元素级、特征级和决策级组合, 形成更为精确的被测对象特性和参数。
四、结束语
智能传感器是传感器技术的主要发展方向之一, 其可编程的软件平台及强大的信号处理功能使其能够应用于各个领域之中。智能传感器不仅为传统工业领域注入了新鲜的血液, 也引领了许多新兴产业的发展。随着相关制造工艺及科学理论的不断发展, 我们有理由相信智能传感器的发展前景必将是非常可观的。
摘要:智能传感器是一种具有信息处理功能的传感器, 它的产生极大地推动了自动化领域的发展。本文主要阐述了智能传感器的功能、特点, 探讨了智能传感器在工程中的应用及其未来的发展方向。
关键词:智能传感器,功能,发展,应用
参考文献
[1]张子栋等:《智能传感器原理及应用》, 《河南科技学院学报》, 2008年6月。
8.智能家居传感器的应用 篇八
关键词:ZigBee技术;节水灌溉;数据融合;无线传感器网络
中图分类号: S126;S274.2文献标志码: A文章编号:1002-1302(2015)11-0513-06
收稿日期:2014-11-07
基金项目:陕西省西安市科技局项目[编号:CXY1343(6)];陕西省西安市未央区科技局项目(编号:2012-03)。
作者简介:郭国法(1962—),男,山西陵川人,硕士,教授,研究方向为电气控制。E-mail:849738384@qq.com。
通信作者:许萌,硕士,研究方向为嵌入式物联网。E-mail:sine1991@foxmail.com。目前,我国绝大多数地区的农业依旧处于粗犷型经营管理方式之下,科技含量和自动化程度普遍偏低,这不仅大大地制约了我国农业的可持续发展,而且造成了各种资源的极大浪费。就农业灌溉而言,我国普遍采用落后的大水漫灌方式,加上灌溉设施的老化、损毁和缺乏科学的灌溉量化指标,致使相当一部分的灌溉用水在灌溉过程中损耗[1]。研究表明,我国灌溉用水的有效利用率仅为40%左右,远低于发达国家70%~80%的水平。这种高消耗、低效率的灌溉方式已成为制约我国农业健康发展的瓶颈之一[2]。
1系统总体设计方案
针对当前现状,本研究设计了1种基于ZigBee无线传感器网络的智能节水灌溉系统,该系统主要由田间数据采集终端、ZigBee无线传感器网络、上位机系统、灌溉执行机构以及远程控制终端(可选)组成(图1)。其中,上位机系统通过ZigBee无线传感器网络获取田间数据采集终端所监测到的土壤墒情信息,并结合不同的作物种类以及作物生长阶段,分析和制订出不同的灌溉方案,达到合理调配水源、提高水源利用率的目的。上位机系统可以通过与Internet之间的联通,实现远程终端对系统的控制,用户可使用远程计算机或手持设备(智能手机、掌上电脑等)通过Internet方便地操控系统[1-2],提升了系统使用的灵活性和便利性。同时,在土壤墒情数据的采集过程中引入数据融合技术,可以显著增强和提升系统在野外恶劣工况下对噪声的抵御能力和监测精度,使得系统具有较高的推广和实用价值。
2硬件系统设计
2.1ZigBee网络拓扑结构的设计
ZigBee网络拓扑结构可分为以下3种类型:星型(Star)网络、网型(Mesh)网络、树簇型(Cluster Tree)网络。其中网型网络的各路由节点之间彼此建立对等连接,终端节点的信息可通过多条不同的路由到达协调器(图2)。该拓扑结构不仅可以有效地均衡网络负载,而且具有较强的网络自愈能力,即使某个路由器发生故障,数据也可通过其他路由器送达目的地。此外,网形网络组网方便、适应性强,能够自动感测网络拓扑变化并调整通信路由以获取最有效的传输路径,且整个过程无需人工干预。最后,得益于网络中众多的路由节点,终端节点可以用较低的功率将数据发送到邻近路由节点,从而降低了节点之间的干扰,提高了信道的质量和利用率。综上,网型网络拓扑是较为理想的选择。
2.2无线收发芯片的选型
系统采用Chipcon公司生产的CC2530无线收发芯片。该芯片是一颗专为2.4 GHz IEEE802.15.4以及ZigBee应用而设计的片上系统(SoC)解决方案。基于该芯片,可以用比较低廉的成本搭建起各类型的网络节点,只需极少的外围元件便可确保短距离通信的有效性和可靠性。因此,系统中的终端、路由和协调器节点的硬件架构均基于CC2530芯片进行设计。CC2530集优越的RF收发性能、工业标准增强型8051CPU、系统内可编程闪存、8 kB RAM等优秀特性于一体,并兼具多种工作模式,使其尤为适合对功耗有着苛刻要求的系统。芯片传输数据率最高可达250 kb/s,可以满足系统对数据率的要求。且使用该芯片组成的设备具有体积小、功耗低,组网灵活、抗毁坏性强等优点,能够较好地适应野外复杂多变的工作环境。
2.3数据采集终端节点的设计
在ZigBee无线网络中,通常有全功能设备(FFD)和简化功能设备(RFD)2种类型的设备。由于数据采集终端只进行数据采集和处理,无需承担额外的路由转发任务,因此可将数据采集终端节点设置为RFD类型,以降低设备成本和功耗。
终端节点的原理是外部晶振为CC2530芯片的工作提供基准时钟频率,射频天线与CC2530之间的LC网络则用于阻抗匹配[3],传感器与CC2530相连接,并由CC2530完成A/D转换(图3)。由于终端节点在空闲时间可以进入深度睡眠状态(PM3模式),仅在工作时由外部定时器产生中断将其唤醒至正常工作状态(PM0模式),因此功耗极低,仅靠2节串联的5号1.5 V干电池即可维持设备正常工作至少半年以上。
2.4路由节点的设计
由于路由节点负责众多终端节点的数据转发、路由的维持和发现,因此路由节点的工作负荷较重,应优先考虑设备性能而非设备功耗,故将路由节点设置为FFD设备类型,其硬件架构与图3所示的数据采集终端基本一致,只是去除传感器和外部定时器部分并改变芯片供电方式。由于优先考虑设备性能,因此路由节点采用较为稳定的太阳能电池板加蓄电池的供电方式:当日间阳光较强时,通过太阳能电池对设备供电,同时将多余电能存储到蓄电池;当光线不足时,则使用蓄电池供电[1-3-4]。为防止过度充电对蓄电池带来的损害,系统采用CN3063充电管理芯片对充电过程进行管控(图4)。此外,针对某些路由节点距离协调器节点较远这一实际情况,
nlc202309010054
在这些路由节点上额外配备了CC2592射频前端(RF Front)芯片以扩展通信范围(图5)。
2.5协调器节点的设计
在1个ZigBee网络中,至少存在1个FFD设备充当整个网络的协调器。协调器通常负责开始(建立)1个网络,当网络建立完成之后,协调器一般会作为一个普通的路由节点而
继续存在于网络中。因此,协调器节点的硬件设计与路由节点的硬件设计基本一致,其主要不同之处在于协调器负责将来自于各终端设备的数据通过RS-232串行口传送至上位机[5]。考虑到RS-232接口与CC2530所使用的逻辑电平之间并不兼容,故需进行必要的电平转换,本系统采用MAXIM公司生产的MAX232作为电平转换芯片(图6)。
3系统软件设计
系统采用IAR Workbench 7.0进行ZigBee无线传感器网络中各类型节点的软件部分设计。由于各节点之间的通讯遵循TI公司推出的Z-Stack 2007通讯协议栈,故所有节点软件均在Z-Stack 2007所提供的SampleApp程序框架之下进行设计,以降低开发难度、缩短开发周期。
3.1数据采集终端程序设计
数据采集终端完成初始化设置之后,随即加入到ZigBee无线传感器网络并执行定时采集和发送土壤墒情信息的任务。当数据采集终端对土壤墒情数据进行采集并向父级路由节点发送完成之后,即可进入休眠模式(PM3)以节省电池电力(图7)。待下一采样时刻来临时,通过来自于定时器的外部中断信号将节点从休眠模式中唤醒至正常工作状态(PM0),执行新一轮的采集和发送任务[6]。
3.2路由节点程序设计
路由节点通过多跳路由将来自于各个终端节点的数据转发至协调器,对于来自于其他路由节点的数据,还应视情况进行转发或广播。此外,路由节点还担负着路由的发现和维持任务,因此路由节点的功能相对复杂。在系统所使用的ZigBee无线网络中,存在多个路由节点,这些路由节点之间通过路由表和路由发现功能构成了一个具有相当稳定性和较强自愈能力的无线网络,从而保证了系统的稳定性(图8)。
3.3协调器节点程序设计
在ZigBee网络的建立过程中,协调器在完成自身必要的硬件初始化工作以后,随即初始化通讯协议栈并检视当前无线电环境,然后选择一个可用的信道(Channel)和网络标识(PAN ID)并开始这个网络,1个ZigBee网络中通常只允许有1个协调器(图9)。在网络建立完成之后,协调器将会以路由节点的身份继续工作,所有终端节点的数据都在协调器节点汇聚,并通过RS-232串口发送至上位机[4]。
3.4上位机程序设计
上位机系统是整个节水灌溉系统的控制、决策和管理中心。通过模式切换指令,上位机可以在自动和人工2种模式之间自由切换。在自动模式下,上位机系统通过数据库程序和数据分析程序,对终端节点回传的数据进行各种处理:包括对灌溉执行机构的指令控制[7]、节点数据的融合、存储及分析等(图10)。通过信息反馈程序将土壤墒情数据、系统工况等信息以图表的形式直观地显示出来,方便用户查看[8]。在人工模式下, 用户可以通过本地或远程的方式登录到系统并对系统的运行状况进行监视和干预,例如查看当前系统工况,通过数据库查询作物生长的历史数据等(图10)。登录控制程序负责用户鉴权,防止系统的关键参数设置遭受到来自管理员以外的人恶意修改。
4数据融合算法设计
通常在一段时间内,某一区域内土壤的温度或湿度会处于相对恒定的状态,但由于户外复杂的工作环境和传感器制造过程中存在的工艺分散性,使得各传感器之间的性能有所差异,导致多个数据采集终端在对同一区域的土壤墒情数据采集过程中,往往获得多个不同的测量值。由于这些测量值之间的冗余、矛盾和不确定性,使系统难以获得对被测对象较为一致的描述,也给灌溉系统决策和规划的正确性造成不利影响。为了减弱这种影响,本系统采用传感器权值自适应融合算法,在不增加系统成本的前提下,通过计算机程序对同一被测区域内的多个终端节点测量数据进行融合,以提升系统的可靠性和精确度[9]。这种算法的优势在于:无需任何与传感器有关的先验知识,仅依靠各传感器测量方差的变化,动态地调整各传感器的权值,使得融合结果的整体均方误差总是保持最小,避免了因先验知识不准确而出现的融合精度降低甚至算法发散现象,而且较常规的算术平均值融合算法而言,该算法具有更高的融合精度。
4.1传感器权值自适应融合算法原理
假设用N个传感器同时测量某一真值为Y的被测对象,设每个传感器的测量值分别为Yj (j=1,2,…,N) (图11)。
综上所述,传感器权值自适应权值融合算法的计算机软件实现可依照图12所示的流程进行。
4.3算法仿真与分析
以测量土壤湿度为例,设有3个湿度传感器同时测量某一区域的土壤湿度,设该区域的土壤湿度真值为23%相对湿度(在某一时段内可认为恒定),在此真值的基础上分别加入均值为0,方差为0.1、0.3、0.5的高斯白噪声序列, 用来模拟
3个具有不同测量精度的传感器的测量数据。利用计算机仿真100次融合过程,同时分析融合过程中传感器权值随传感器方差的变化情况和融合输出的结果。
传感器的测量方差越大,其对应的传感器权值就越小,从而有效地避免了误差较大的传感器对融合精确度所造成的不利影响。并且在融合过程中,传感器权值紧随方差的变化而变化,充分体现了“传感器权值自适应于传感器测量方差”的算法特点(图13至图14)。因此,算法的融合精确度非常明显地优于常规的平均值融合算法,也使得系统对噪声的容限能力显著增强(图15)。
5结论
本研究基于ZigBee无线传感器网络设计了1套智能节水灌溉系统,充分利用了ZigBee设备组网方便灵活、低能耗、低成本、高可靠性的优点,使系统在一定灌溉范围内具有较好的伸缩性,能够满足不同种植规模的灌溉需求。同时结合现代数据融合技术,提升了系统的容错性、决策和规划的合理
性。仿真结果表明,使用传感器权值自适应数据融合算法能够使系统获得更接近于真值的数据,在提升系统精确度的同时,降低了对噪声的敏感度。系统整体设计符合现代农业智能化、精细化、数字化的发展趋势,具有一定的推广前景和应用价值。
参考文献:
[1]安进强,魏凯,王立乾,等. 基于物联网的精确灌溉控制技术研究[J]. 西北农林科技大学学报:自然科学版,2013,41(12):220-221.
[2]赵晓顺,桑永英,于华丽. 无线传输及太阳能技术在农田喷灌系统中的应用[J]. 农机化研究,2011(12):172-174,178.
[3]陈思琦,张清波,隋斌雁,等. 基于ZigBee农田自动灌溉信号采集及数据传输系统[J]. 上海工程技术大学学报,2013(12):370-371.
[4]刘俊岩,张海辉,胡瑾,等. 基于ZigBee的温室自动灌溉系统设计与实现[J]. 农机化研究,2012,34(1):111-114,118.
[5]刘江沙,雷伟,尹酉. 基于CC2430 的串口无线模块的设计[J]. 国外电子元器件,2007(4):47-48.
[6]贾科进,王文贞,杜太行,等. 基于ZigBee无线传感器网络的土壤墒情监测系统[J]. 节水灌溉,2014(3):69-71,74.
[7]方旭杰,周益明,程文亮,等. 基于ZigBee技术的无线智能灌溉系统的研制[J]. 农机化研究,2009(1):114-118.
[8]赵震奇. 智能灌溉系统上位机软件的设计与实现[J]. 计算机时代,2012(12):63.
[9]党宏社,寇强,杨红喜. 工业测控系统中的数据融合方法与应用[J]. 陕西科技大学学报,2006(10):68-71.
[10]李媛媛,张立峰. 多传感器自适应加权融合算法及其应用研究[J]. 自动化仪器与仪表,2008(2):10-13.梁琨,肖宏伟,杜莹莹,等. 基于物联网技术的果蔬冷链物流实时监测系统[J]. 江苏农业科学,2015,43(11:519-521.
9.生物传感器的研究现状及应用 篇九
摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料电极等构成生物传感器,在发酵工业、环境监测、食品监测、临床医学等方面得到广泛的应用。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。
关键词:生物传感器;发酵工业;环境监测。
中图分类号:TP212.3文献标识码:A文章编号:1006-883X10-0001-06
一、引言
从1962年,Clark和Lyons最先提出生物传感器的设想距今已有40年。生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。在最初里,生物传感器主要是以研制酶电极制作的生物传感器为主,但是由于酶的价格昂贵并不够稳定,因此以酶作为敏感材料的传感器,其应用受到一定的限制。
近些年来,微生物固定化技术的不断发展,产生了微生物电极。微生物电极以微生物活体作为分子识别元件,与酶电极相比有其独到之处。它可以克服价格昂贵、提取困难及不稳定等弱点。此外,还可以同时利用微生物体内的辅酶处理复杂反应。而目前,光纤生物传感器的应用也越来越广泛。而且随着聚合酶链式反应技术(PCR)的发展,应
用PCR的DNA生物传感器也越来越多。
二、研究现状及主要应用领域
1、发酵工业
各种生物传感器中,微生物传感器最适合发酵工业的测定。因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。
(1).原材料及代谢产物的测定
微生物传感器可用于原材料如糖蜜、乙酸等的测定,代谢产物如头孢霉素、谷氨酸、甲酸、甲烷、醇类、青霉素、乳酸等的测定。测量的原理基本上都是用适合的微生物电极与氧电极组成,利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。
在各种原材料中葡萄糖的测定对过程控制尤其重要,用荧光假单胞菌(Psoudomonasfluorescens)代谢消耗葡萄糖的作用,通过氧电极进行检测,可以估计葡萄糖的浓度。这种微生物电极和葡萄糖酶电极型相比,测定结果是类似的,而微生物电极灵敏度高,重复实用性好,而且不必使用昂贵的葡萄糖酶。
当乙酸用作碳源进行微生物培养时,乙酸含量高于某一浓度会抑制微生物的生长,因此需要在线测定。用固定化酵母(Trichosporonbrassicae),透气膜和氧电极组成的微生物传感器可以测定乙酸的浓度。
此外,还有用大肠杆菌(E.coli)组合二氧化碳气敏电极,可以构成测定谷氨酸的微生物传感器,将柠檬酸杆菌完整细胞固定化在胶原蛋白膜内,由细菌―胶原蛋白膜反应器和组合式玻璃电极构成的微生物传感器可应用于发酵液中头孢酶素的测定等等。
(2).微生物细胞总数的测定
在发酵控制方面,一直需要直接测定细胞数目的简单而连续的方法。人们发现在阳极表面,细菌可以直接被氧化并产生电流。这种电化学系统已应用于细胞数目的测定,其结果与传统的菌斑计数法测细胞数是相同的[1]。
(3).代谢试验的鉴定
传统的微生物代谢类型的鉴定都是根据微生物在某种培养基上的生长情况进行的。这些实验方法需要较长的培养时间和专门的技术。微生物对底物的同化作用可以通过其呼吸活性进行测定。用氧电极可以直接测量微生物的呼吸活性。因此,可以用微生物传感器来测定微生物的代谢特征。这个系统已用于微生物的简单鉴定、微生物培养基的选择、微生物酶活性的测定、废水中可被生物降解的物质估计、用于废水处理的微生物选择、活性污泥的同化作用试验、生物降解物的确定、微生物的保存方法选择等[2]。
2、环境监测
(1).生化需氧量的测定
生化需氧量(biochemicaloxygendemandCBOD)的测定是监测水体被有机物污染状况的最常用指标。常规的BOD测定需要5天的培养期,操作复杂、重复性差、耗时耗力、干扰性大,不宜现场监测,所以迫切需要一种操作简单、快速准确、自动化程度高、适用广的新方法来测定。目前,有研究人员分离了两种新的酵母菌种SPT1和SPT2,并将其固定在玻璃碳极上以构成微生物传感器用于测量BOD,其重复性在±10%以内。将该传感器用于测量纸浆厂污水中BOD的测定,其测量最小值可达2mg/l,所用时间为5min[3]。还有一种新的微生物传感器,用耐高渗透压的酵母菌种作为敏感材料,在高渗透压下可以正常工作。并且其菌株可长期干燥保存,浸泡后即恢复活性,为海水中BOD的测定提供了快捷简便的方法[4]。
除了微生物传感器,还有一种光纤生物传感器已经研制出来用于测定河水中较低的BOD值。该传感器的反应时间是15min,最适工作条件为30°C,pH=7。这个传感器系统几乎不受氯离子的影响(在1000mg/l范围内),并且不被重金属(Fe3+、Cu2+、Mn2+、Cr3+、Zn2+)所影响。该传感器已经应用于河水BOD的测定,并且获得了较好的结果[4]。
现在有一种将BOD生物传感器经过光处理(即以TiO2作为半导体,用6W灯照射约4min)后,灵敏度大大提高,很适用于河水中较低BOD的测量[5]。同时,一种紧凑的光学生物传感器已经发展出来用于同时测量多重样品的BOD值。它使用三对发光二极管和硅光电二极管,假单胞细菌(Pseudomonasfluorescens)用光致交联的树脂固定在反应器的底层,该测量方法既迅速又简便,在4℃下可使用六周,已经用于工厂废水处理的过程中[5]。
(2).各种污染物的测定
常用的重要污染指标有氨、亚硝酸盐、硫化物、磷酸盐、致癌物质与致变物质、重金属离子、酚类化合物、表面活性剂等物质的浓度。目前已经研制出了多种测量各类污染物的生物传感器并已投入实际应用中了。
测量氨和硝酸盐的微生物传感器,多是用从废水处理装置中分离出来的硝化细菌和氧电极组合构成。目前有一种微生物传感器可以在黑暗和有光的条件下测量硝酸盐和亚硝酸盐(NOx-),它在盐环境下的测量使得它可以不受其他种类的氮的氧化物的影响。用它对河口的NOx-进行了测量,其效果较好[6]。
硫化物的测定是用从硫铁矿附近酸性土壤中分离筛选得到的专性、自养、好氧性氧化硫硫杆菌制成的微生物传感器。在pH=2.5、31℃时一周测量200余次,活性保持不变,两周后活性降低20%。传感器寿命为7天,其设备简单,成本低,操作方便。目前还有用一种光微生物电极测硫化物含量,所用细菌是Chromatium.SP,与氢电极连接构成[7]。
最近科学家们在污染区分离出一种能够发荧光的细菌,此种细菌含有荧光基因,在污染源的刺激下能够产生荧光蛋白,从而发出荧光。可以通过遗传工程的方法将这种基因导入合适的细菌内,制成微生物传感器,用于环境监测。现在已经将荧光素酶导入大肠杆菌(E.coli)中,用来检测砷的有毒化合物[8]。
水体中酚类和表面活性剂的浓度测定已经有了很大的发展。目前,有9种革兰氏阴性细菌从西西伯利亚石油盆地的土壤中分离出来,以酚作为唯一的碳源和能源。这些菌种可以提高生物传感器的感受器部分的灵敏度。它对酚的监测极限为5´10-9mol。该传感器工作的最适条件为:pH=7.4、35℃,连续工作时间为30h[9]。还有一种假单胞菌属(Pseudomonasrathonis)制成的测量表面活性剂浓度的电流型生物传感器,将微生物细胞固定在凝胶(琼脂、琼脂糖和海藻酸钙盐)和聚乙醇膜上,可以用层析试纸GF/A,或者是谷氨酸醛引起的微生物细胞在凝胶中的交联,长距离的保持它们在高浓度表面活性剂检测中的活性和生长力。该传感器能在测量结束后很快的恢复敏感元件的活性[10]。
还有一种电流式生物传感器,用于测定有机磷杀虫剂,使用的是人造酶。利用有机磷杀虫剂水解酶,对硝基酚和二乙基酚的测量极限为100´10-9mol,在40℃只要4min[11]。还有一种新发展起来的磷酸盐生物传感器,使用丙酮酸氧化酶G,与自动系统CL-FIA台式电脑结合,可以检测(32~96)´10-9mol的磷酸盐,在25°C下可以使用两周以上,重复性高[12]。
最近,有一种新型的微生物传感器,用细菌细胞作为生物组成部分,测定地表水中壬基酚(nonyl-phenoletoxylate--NP-80E)的含量。用一个电流型氧电极作传感器,微生物细胞固定在氧电极上的透析膜上,其测量原理是测量毛孢子菌属(Trichosporumgrablata)细胞的呼吸活性。该生物传感器的反应时间为15~20min,寿命为7~10天(用于连续测定时)。在浓度范围0.5~6.0mg/l内,电信号与NP-80E浓度呈线性关系,很适合于污染的地表水中分子表面活性剂的检测[13]。
除此之外,污水中重金属离子浓度的测定也是不容忽视的。目前已经成功设计了一个完整的,基于固定化微生物和生物体发光测量技术上的重金属离子生物有效性测定的监测和分析系统。将弧菌属细菌(Vibriofischeri)体内的`一个操纵子在一个铜诱导启动子的控制下导入产碱杆菌属细菌(Alcaligeneseutrophus(AE1239))中,细菌在铜离子的诱导下发光,发光程度与离子浓度成正比。将微生物和光纤一起包埋在聚合物基质中,可以获得灵敏度高、选择性好、测量范围广、储藏稳定性强的生物传感器。目前,这种微生物传感器可以达到最低测量浓度1´10-9mol[14]。
还有一种专门测量铜离子的电流型微生物传感器。它用酒酿酵母(Saccharomycescerevisiae)重组菌株作为生物元件,这些菌株带有酒酿酵母CUP1基因上的铜离子诱导启动子与大肠杆菌lacZ基因的融合体。其工作原理,首先是CUP1启动子被Cu2+诱导,随后乳糖被用作底物进行测量。如果Cu2+存在于溶液中,这些重组体细菌就可以利用乳糖作为碳源,这将导致这些好氧细胞需氧量的改变。该生物传感器可以在浓度范围(0.5~2)´10-3mol范围内测定CuSO4溶液。目前已经将各类金属离子诱导启动子转入大肠杆菌中,使得大肠杆菌会在含有各种金属离子的的溶液中出现发光反应。根据它发光的强度可以测定重金属离子的浓度,其测量范围可以从纳摩尔到微摩尔,所需时间为60~100min[15][16]。
用于测量污水中锌浓度的生物传感器也已经研制成功,使用嗜碱性细菌Alcaligenescutrophus,并用于对污水中锌的浓度和生物有效性进行测量,其结果令人满意[17]。
估测河口出水流污染情况的海藻传感器是由一种螺旋藻属蓝细菌(cyanobacteriumSpirlinasubsalsa)和一个气敏电极构成的。通过监测光合作用被抑制的程度来估测由于环境污染物的存在而引起水的毒性变化。以标准天然水为介质,对三种主要污染物(重金属、除草剂、氨基甲酸盐杀虫剂)的不同浓度进行了测定,均可监测到它们的有毒反应,重复性和再生性都很高[18]。
近来由于聚合酶链式反应技术(PCR)的迅猛发展及其在环境监测方面的广泛应用,不少科学家开始着手于将它与生物传感器技术结合应用。有一种应用PCR技术的DNA压电生物传感器,可以测定一种特殊的细菌毒素。将生物素酰化的探针固定在装有链酶抗生素铂金表面的石英晶体上,用1´10-6mol的盐酸可以使循环式测量在同一晶体表面进行。用细菌中提取的DNA样品进行同样的杂交反应并由PCR放大,产物为气单胞菌属(Aeromonashydrophila)的一种特殊基因片断。这种压电生物传感器可以鉴别样品中是否含有这种基因,这为从水样中检测是否含带有这种病原的各种气单胞菌提供了可能[19]。
还有一种通道生物传感器可以检测浮游植物和水母等生物体产生的腰鞭毛虫神经毒素等毒性物质,目前已经能够测量在一个浮游生物细胞内含有的极微量的PSP毒素[20]。DNA传感器也在迅速的得到应用,目前有一种小型化DNA生物传感器,能将DNA识别信号转换为电信号,用于测量水样中隐孢子和其他水源传染体。该传感器着重于改进核酸的识别作用和加强该传感器的特异性和灵敏性,并寻求将杂交信号转化为有用信号的新方法,目前研究工作为识别装置和转换装置的一体化[21]。
微藻素是一种从蓝藻细菌引起的水华中产生的细菌肝毒素,一种固定有表面细胞质粒基因组的生物传感器已经制得,用于测量水中微藻素的含量,它直接的测量范围是50~1000´10-6g/l[22]。
一种基于酶的抑制
性分析的多重生物传感器用于测量毒性物质的设想也已经提出。在这种多重生物传感器中,应用了两种传导器―对pH敏感的电子晶体管和热敏性的薄膜电极,以及三种酶―尿素酶、乙酰胆碱酯酶和丁酰胆碱酯酶。该生物传感器的性能已经得到测试,效果较好[23]。
除了发酵工业和环境监测,生物传感器还深入的应用于食品工程、临床医学、军事及军事医学等领域,主要用于测量葡萄糖、乙酸、乳酸、乳糖、尿酸、尿素、抗生素、谷氨酸等各种氨基酸,以及各种致癌和致变物质。
三、讨论与展望
美国的HaroldH.Weetal指出,生物传感器商品化要具备以下几个条件:足够的敏感性和准确性、易操作、价格便宜、易于批量生产、生产过程中进行质量监测。其中,价格便宜决定了传感器在市场上有无竞争力。而在各种生物传感器中,微生物传感器最大的优点就是成本低、操作简便、设备简单,因此其在市场上的前景是十分巨大和诱人的。相比起来,酶生物传感器等的价格就比较昂贵。但微生物传感器也有其自身的缺点,主要的缺点就是选择性不够好,这是由于在微生物细胞中含有多种酶引起的。现已有报道加专门抑制剂以解决微生物电极的选择性问题。除此之外,微生物固定化方法也需要进一步完善,首先要尽可能保证细胞的活性,其次细胞与基础膜结合要牢固,以避免细胞的流失。另外,微生物膜的长期保存问题也待进一步的改进,否则难于实现大规模的商品化。
总之,常用的微生物电极和酶电极在各种应用中各有其优越之处。若容易获得稳定、高活性、低成本的游离酶,则酶电极对使用者来说是最理想的。相反的,若生物催化需经过复杂途径,需要辅酶,或所需酶不宜分离或不稳定时,微生物电极则是更理想的选择。而其他各种形式的生物传感器也在蓬勃发展中,其应用也越来越广泛。随着固定化技术的进一步完善,随着人们对生物体认识的不断深入,生物传感器必将在市场上开辟出一片新的天地。
--------------------------------------------------------------------------------
参考文献
[1]韩树波,郭光美,李新等.伏安型细菌总数生物传感器的研究与应用[J].华夏医学,,63(2):49-52
[2]蔡豪斌.微生物活细胞检测生物传感器的研究[J].华夏医学,2000,13(3):252-256
[3]TrosokSP,DriscollBT,LuongJHTMediatedmicrobialbiosensorusinganovelyeast
strainforwastewaterBODmeasurement[J].Appliedmicreobiologyandbiotechnology,,56(3-4):550-554
[4]张悦,王建龙,李花子等.生物传感器快速测定BOD在海洋监测中的应用[J].海洋环境科学,2001,20(1):50-54
[5]YoshidaN,McNivenSJ,YoshidaA,etc.Acompactopticalsystemformulti-determinationofbiochemicaloxygendemandusingdisposablestrips[J].Fieldanalyticalchemistryandtechnology,2001,5(5):222-227
[6]MeyerRL,KjaerT,RevsbechNP.UseofNOx-microsensorstoestimatetheactivityofsedimentnitrificationandNOx-consumptionalonganestuarinesalinity,nitrate,andlightgradient[J].Aquaticmicrobialecology,2001,26(2):181-193
[7]王晓辉,白志辉,孙裕生等.硫化物微生物传感器的研制与应用[J].分析试验室,2000,19(3):83-86
[8]AlexanderDC,CostanzoMA,GuzzoJ,CaiJ,etc.Blazingtowardsthenextmillennium:
Luciferasefusionstoidentifygenesresponsivetoenvironmentalstress[J].Water,AirandSoilPollution,2000,123(1-4):81-94
[9]MakarenkoAA,BezverbnayaIP,KoshelevaIA,etc.Developmentofbiosensorsfor
phenoldeterminationfrombacteriafoundinpetroleum
fieldsofWestSiberia[J].Appliedbiochemistryandmicrobiology,2002,38(1):23-27
[10]SemenchukIN,TaranovaLA,KalenyukAA,etc.Effectofvariousmethodsofimmobilization
onthestabilityofamicrobialbiosensorforsurfactantsbasedonPseudomonasrathonis
T[J].Appliedbiochemistryandmicrobiology,2000,36(1):69-72
[11]YamazakiT,MengZ,MosbachK,etc.Anovelamperometricsensorfor
organophosphotriesterinsecticidesdetectionemployingcatalyticpolymer
mimickingphosphotriesterasecatalyticcenter[J].Electrochemistry,2001,69(12):
969-97
[12]NakamuraH.Phosphateiondeterminationinwaterfordrinkingusingbiosensors[J].Bunsekikagaku,2001,50(8):581-582
[13]A,LucaciuI,FleschinS,MagearuV.Microbialbiosensorfornonyl-phenoletoxylate
(NP-80E)[J].SouthAfricanJounalofChemistry-suid-afrikaansetydskrifvirchemie,
2000,53(1):14-17
[14]LethS,MaltoniS,SimkusR,etc.Engineeredbacteriabasedbiosensorsformonitoring
bioavailableheavymetal[J].Electroanalysis,2002,14(1):35-42
[15]LehmannM,RiedelK,AdlerK,etc.Amperometricmeasurementofcopperionswitha
deputysubstrateusinganovelSaccharomycescerevisiaesensor[J].Biosensorsandbioelectronics,2000,15(3-4):211-219
[16]RietherKB,DollardMA,BillardP.Assessmentofheavymetalbioavailabilityusing
EscherichiacolizntApluxandcopAplux-basedbiosensors[J].Appliedmicrobiologyandbiotechnology,2001,57(5-6):712-716
[17]KarlenC,WallinderIO,HeijerickD,etc.Runoffratesandecotoxicityofzincinduced
byatmosphericcorrosion[J].Scienceofthetotalenvironment,2001,277(1-3):169-180
[18]CampanellaL,CubaddaF,SammartinoMP,etc.Analgalbiosensorforthemonitoring
ofwatertoxicityinestuarineenviraonments[J].Wa
teResearch,2001,35(1):69-76
[19]TombelliSara,MasciniMarco,SocaCristiana,etc.ADNApiezoelectricbiosensorassay
coupledwithapolyerasechainreactionforbacterialtoxicitydeterminationin
environmentalsamples[J].AnalyticaChimicaActa,2000,418(1):1-9
[20]LeeHae-Ok,CheunByeungSoo,YooJongSu,etc.Applicationofachannelbiosensorfortoxicity
measurementsinculturedAlexandriumtamarense[J].JournalofNaturalToxins,2000,
9(4):341-348
[21]Wang,J.MiniaturizedDNABiosensorforDetectingCryptosporidiuminWater
Samples.Technical.Comletion-311,2000(3),26p
[22]NakamuraC,KobayashiT,MiyakeM,etc.UsageofaDNAaptamerasaligandtargeting
microcystin[J].Molecularcrystalsandliquidcrystals,2001,371:369-374
[23]ArkhypovaVN,DzyadevychSV,SoldatkinAP,etc.Multibiosensorbasedonenzyme
inhibitionanalysisfordeterminationofdifferenttoxicsubstances[J].Talanta,2001,55(5):919-927
TheRecentResearchAndApplicationOfBiosensor
Abstract:Inthisarticle,therecentresearchprogressandapplicationofbiosensors,
especiallythemicro-biosensors,arereviewed,andtheprospectofbiosensorsdevelopmentisalso
prognosticated.Biosensorsaremadeupofbioelectrode,usingimmobileorganism
assensitivematerialformoleculerecognition,togetherwithoxygen-electrode,
membrane-eletrodeandfuel-electrode.Biosensorsarebroadlyusedinzymosisindustry,environmentmonitor,
foodmonitorandclinicmedicine.Fast,accurate,facilitateasbiosensorsis,therewill
beanexcellentprospectforbiosensorsinthemarket
Keywords:Biosensor,Zymosis-Industry,Environment-Monitor
作者简介:
何星月:中国科学技术大学生命科学院,合肥230027
【智能家居传感器的应用】推荐阅读:
智能家居市场调查09-02
智能家居家庭安装协议10-01
智能家居商业策划书10-16
智能家居市场营销方案探讨07-31
智能家居控制系统研究背景目的意义及国内外现状与发展趋势01-22
智能交通系统应用07-10
智能化教学管理信息系统的应用和实践07-25
物联网在智能农业应用09-24
智能机器人及其应用11-09
人工智能教育应用场景01-19