基于参数化典型工艺的快速工艺生成技术
1.基于参数化典型工艺的快速工艺生成技术 篇一
一、研发基于SLS快速原型及软模工艺的依据于意义
1、快速原型技术
快速原型技术是20世纪80年代中后期发展起来的观念全新的现代制造技术, 是多个学科的技术集成, 它将计算机辅助设计 (CAD) 、计算机辅助制造 (CAM) 、计算机数字控制 (CNC) 、激光、精密伺服驱动和新材料等先进技术集于一身。与传统的去除成形不同, 它是一种离散—堆积的成型过程。这种加工过程可分为前期数据处理 (亦称离散) 和后期物理过程。在离散过程中, 将三维形体的CAD模型沿一定方向分解, 得到一序列截面数据。
PR技术是一种用材料逐层或逐点堆积出制件的制造方法。分层制造三维体的思想雏形, 最早出现在制造技术并不发达的19世纪。早在1892年, Bianthre主张用分层方法制作三维地图模型。1979年东京大学的中川威雄教授利用分层技术制造了金属冲裁模成型模和注塑模。
SLS快速原型设备采用CO2激光器作为能量源, 通过红外激光束使塑料、蜡、陶瓷和金属 (或其复合物) 的粉末材料均匀的烧结在加工平面上。激光束在计算机的控制下, 通过扫描器以一定的速度和能量密度按分层面的二维数据扫描。激光束扫描之处, 粉末烧结成一定厚度的实体片层, 未扫描的地方仍保持松散的粉末状。根据物体截面层的厚度而升降工作台, 铺粉滚筒再次将粉铺平后, 开始新一层的扫描。如此反复, 直至扫描完所有层面。去掉多余粉末, 经过后处理获得零件或样件[2]。
2、依据与意义
材料是快速原型技术的核心, 一种新材料的出现往往会使快速原型工艺机器设备结构、成型件品质和成型效益发生巨大的进步。快速原型技术的发展历史充分证明了这个道理。1987年, 当第一种商品化的快速原型机问世时, 采用的成型材料为液态光敏聚合物, 针对这种材料, 分层叠加成型的制作方法是SLA, 因此有了SLA快速原型机, 能得到看起来像塑料的成型件。然而, 随着时间的推移和技术的发展, 此后出现了纸、蜡、塑料、陶瓷复合物和金属复合物等多种成型材料, 以及与此相应的一批LOM、FDM、SLS和TDP快速原型工艺和快速原型机, 可以得到近似ABS塑料、陶瓷、金属的高性能样品或模具, 成型效率也有明显的提高[3]。
软模通常指的是硅橡胶模具, 用SLA, FDM, LOM或SLS等技术制作的原型, 再翻成硅橡胶模具后, 向模中灌注双组分聚氨酯, 固化后即得所需的零件, 调整双组分聚氨酯的构成比例, 可使所得到的聚氨酯的零件的机械性能接近ABS或PP。
二、国内外研究概况及发展趋势
快速原型技术已在家电、汽车、玩具、轻工、通讯设备、航空、军事、建筑、医疗、考古、工业造型、雕刻、首饰、三维地图等行业得到应用。RP是利用材料堆积法快速制造产品的一项先进制造技术, 它根据产品的三维模型数据, 不借助其他工具设备, 迅速而精确的制造出该产品。RP技术的应用目的主要有生产研制、市场调研和产品使用。在生产研制方面, 主要通过快速原型制造系统制作原型用来验证概念设计、确认设计、性能测试、制造模具的母模和靠模。在市场调研方面, 可以把制造的原型展示给最终用户和各个部门, 广泛征求意见, 尽量在新产品投产之前完善设计, 生产出销售对路的产品。在产品使用方面, 可以直接利用制造的原型、零部件的最终产品.这样可以大大缩短了新产品的设计、制造周期, 提高新产品的市场竞争力[4]。
翻模成型:实际应用上, 很多产品必须通过模具才能加工出来。用成型机先制作出产品样件再翻制模具, 是一种既省时又节省费用的方法。发动机泵壳原型件产品用传统机加工方法很难加工, 必须通过模具成型。据估算, 开模时间要8个月, 费用至少30万。如果产品设计有误, 整套模具就全部报废。我们用快速成型法为该产品制作了塑料样件, 作为模具母模用于翻制硅胶模。将该母模固定于铝标准模框中, 浇入配好的硅橡胶, 静置12·20小时, 硅橡胶完全固化, 打开模框, 取出硅橡胶用刀沿预定分型线划开, 将母模取出, 用于浇铸泵壳蜡型的硅胶模即翻制成功。通过该模制出蜡型, 经过涂壳、焙烧、失蜡、加压浇铸、喷砂, 一件合格的泵壳铸件在短短的两个月内制造出来, 经过必要的机加工, 即可装机运行, 使整个试制周期比传统方法缩短了2/3, 费用节省了3/4。
这种快速成型机的工作原理与SLA相仿, 不过所用成形材料不是液态的光敏树脂, 而是粉末状的高分子材料、金属或陶瓷与粘结剂的混合物等, 粉粒直径为50-125靘, 成形时先在工作台上铺一层粉末材料, 并加热至略低于熔化温度, 然后激光束按照截面形状进行扫描, 被扫描的部分材料熔化、粘接成形, 不被扫描的粉未材料仍呈粉粒状作为工件的支撑, 一层完成成形后, 工作台下降一个层高, 再进行下一层的铺料和烧结。
优点:一是可直接得到塑料、陶瓷或金属件, 可加工性好;二是无需设计支撑。缺点:一是成形件结构疏松多孔, 表面粗糙度较高;二是成形效率不高;三是得到的塑料、陶瓷或金属件远不如传统成形方法得到的同类材质工件, 需进行渗铜等后处理, 后处理中难于保证制件尺寸精度。
激光快速成形技术是多种先进制造技术的集成。由于不同的快速成形机具有不同的特点, 因此要根据不同的使用要求进行恰当的选择, 选择中要综合考虑成形件的尺寸大小、成形件的精度要求、成形件的用途、成形件的形状、以及成形件的材质要求等等, 还要权衡制作成本。
目前RP技术的发展水平而言, 在国内主要是应用于新产品 (包括产品的更新换代) 开发的设计验证和模拟样品的试制上, 即完成从产品的概念设计 (或改型设计) ———造型设计———结构设计———基本功能评估———模拟样件试制这段开发过程。对某些以塑料结构为主的产品还可以进行小批量试制, 或进行一些物理方面的功能测试、装配验证、实际外观效果审视, 甚至将产品小批量组装先行投放市场, 达到投石问路的目的[5]。部分国产RP设备已接近或达到美国公司同类产品的水平, 价格却便宜得多。我国已初步形成了RP设备和材料的制造体系。
三、总结
总之, 快速成型技术的发展是近20年来制造领域的突破性进展, 它不仅在制造原理上与传统方法迥然不同, 更重要的是在目前产业策略以市场响应速度为第一的状况下, RP技术可以缩短产品开发周期, 降低开发成本, 提高企业的竞争力。下面通过一些事例, 说明该项技术在产品开发过程中起的作用。
课题拟通过在华中科技大学生产的HRPS-III快速原型设备上, 对华中科技大学所开发的HB1材料进行烧结实验, 通过基与SLS烧结出来的叶轮, 翻制成硅橡胶模具后, 取出叶轮原型, 向模具中灌注蜡件和树脂件, 固化后即得到所需的原件。用制造出来的蜡叶轮与原型比较。
基于SLS快速原型的快速软模工艺与制造技术开发, 可以极大地缩短新产品的开发周期, 降低开发阶段的成本, 避免开发风险, 可修改性, 制作出来的零件精度高。
参考文献
[1]王运赣.速成型技术.武汉:华中科技大学出版社, 1999
[2]王秀峰, 罗宏杰.快速原型制造技术.北京:中国轻工业出版社, 2001
[3]卢清萍.快速原型制造技术.北京:高等教育出版社, 2001
[4]王学让, 杨占尧著.快速成型理论与技术.北京:航空工业出版社, 2001
【基于参数化典型工艺的快速工艺生成技术】推荐阅读:
工艺参数改善实验报告07-18
参数化建模10-19
压力机的技术参数10-10
oa设备技术参数要求07-25
煤矿大型设备技术参数10-27
主要技术参数施工升降平台方案11-08
基于遥感技术的北京市热岛研究10-27
基于数据挖掘技术的客户关系管理09-25
基于信息技术的小学英语教学设计10-10