六年级奥数分组问题

2024-07-14

六年级奥数分组问题(9篇)

1.六年级奥数分组问题 篇一

工程问题练习

1、修一条路,甲队独修需15天完成,乙队独修12天完工,两队合修4天后,乙队调走,剩下的甲队继续修完,甲队一共修了多少天?

2、一件稿件,甲独抄要10天完成,乙独抄要7.5天完成,现在两队合抄,中 途甲外出了一天,乙外出了若干天,这样共用了8天才完成,乙外出了几天?

3、一项工程,甲乙合做6天可以完成,乙丙合做10天可以完成,现在先由甲、乙、丙合做3天后,余下的乙再做6天则可以完成,乙独做这项工程要几天完成?

4、一条公路,由甲乙两个筑路队合修需要12天完成,现在由甲队修3天后,再

3由乙队修一天,共修了这条公路的,如这条公路由甲队独修要多少天完成?

5、某项工程,甲独做要12天,乙独做要18天,丙独做要24天,这项工作先由

甲做了若干天,再由乙接着做,乙做的天数是甲的3倍,再由丙接着做,丙做的天数是乙的2倍,这样终于完成了任务,这项工程总共用了多少天?

6、一项工程,甲乙丙合做6天可以完成,如甲先做8天,乙丙再做3天完成了

33全工程的4,如甲乙合做4天,丙做6天也完成了全工程的4,这项工程如让甲丙合做要几天完成?

7、一批零件,师傅每天加工8小时,15天完成,徒弟每天加工9小时,20天完

成,如两人合作每天都加工6小时,需要几天完成?

18、师徒两人加工相同数量的零件,师傅每小时加工自己任务的,徒弟每小时

10加工自己任务的,师徒同时开始加工,师傅完成任务后立即帮助徒弟加工,直到完成任务,师傅帮助徒弟加工了几小时?

9、完成一项工程,甲队独做正好可以按计划天数完成,乙队独做要超过计划 天才能完成,如果甲乙两队先合作天后,再由乙独做,也可以按计划天数完成,完成这项工程计划用多少天?

10、一项工程,如果甲队独做可6天完成,甲3天的工作量乙要4天完成,两队合作了2天后,由乙队独做,还需多少天才能完成?

1、甲乙两人在一条长为400米的环形跑道上散步,他们俩同时从同一地点出发,若相背而行,分钟相遇,若相向而行,分钟甲可以追上乙,在跑道上走一圈,甲乙各要几分钟?

2、当甲在60米赛跑中冲过终点线时,比乙领先10米,比丙领先20米,如果乙

和丙按照原来的速度继续冲向终点,那么乙到达终点时将比丙领先多少米?

3、客车从甲城到乙城要行10个小时,货车从乙城到甲城要15小时,两车同时 从两城相向而行,相遇时客车离乙城还有192千米,求两城间的距离?

4、从时针指向4点开始,再经过多少分钟,时针正好和分针重合?

5、一辆快车与一辆慢车同时从甲乙两地出发,相向而行,在距中点5千米处相 遇,慢车的速度是快车的,甲乙两地相距多少千米?

6、在400米的环形跑道上,A、B两点相距100米,甲乙两人分别从A、B两点 同时出发,按逆时针方向跑步,甲每秒跑5米,乙每秒跑4米,每人每跑100米都要停10秒钟,那么甲追上乙要几秒钟?

7、一辆汽车把货物从甲地运往乙地往返只用了5小时,去时所用的时间是回来 的倍,去时每小时比回来时慢17千米,汽车往返共行了多少千米?

8、一只轮船从甲地开往乙地顺水而行,每小时行28千米,到乙地后,又逆水而

行回到甲地,逆水比顺水多行2小时,已知水速每小时4千米,求甲乙两地相距多少千米?

9、甲乙同时从A、B两地相向走来,甲每小时走5千米,两人相遇后,乙再走10千米到A地,甲再走1.6小时到B地,乙每小时走多少千米?

行程问题练习

2.六年级奥数分组问题 篇二

【知识概述】

把盐溶于水就得到盐水,其中盐叫溶质,水叫溶剂,盐与水的混合液叫做溶液。我们把盐与盐水的比值叫做盐水的浓度,通常浓度用百分数表示,又叫百分比浓度,这一类问题叫做浓度问题。解答与浓度有关的问题经常要用到以下几个关系式: 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量

例题精学

例1 现有浓度为25%的盐水80克,加入多少克水就能得到浓度为10%的盐水? 【思路点拨】将浓度为25%的盐水变为浓度为10%的盐水,盐水中水的重量增加了,但是盐的重量并没有发生变化。可以根据已知条件先求出原来盐水中盐的重量,再求出现在盐水的重量,最后再用现在盐水的重量减去原来盐水的重量就是加入水的重量。

同步精练

1.把碘溶在酒精里,配成碘酒,现在有含碘15%的碘酒50千克,要把它变成含碘3%的碘酒,需要加人多少千克酒精?

2.现有浓度为20%的盐水80克,加入多少克水就能得到浓度为16%的盐水?

3.往40千克含盐16%的盐水中加入10千克水,这时盐水的浓度是多少?

例2 现有浓度为25%的盐水80克,要使盐水的浓度提高到40%,需要加多少克盐? 【思路点拨】将浓度为25%的盐水变为浓度为40%的盐水,在盐水的变化过程中,盐的重量增加了,但是水的重量没有发生变化,也就是原来盐水中水的重量等于现在盐水中水的重量。

同步精练

1.现有浓度为15%的盐水20千克,要使盐水浓度提高到20%,需加多少千克盐?

2.现有浓度为10%的糖水300克,要把它变成浓度为25%的糖水,需要加糖多少克?

3.往40千克含盐16%的盐水中加入10千克盐,这时盐水的浓度是多少?

duag.例3 有浓度为2.5%的盐水700克,为了制成浓度为10%的盐水,从中要蒸发掉多少克水?

【思路点拨】要使溶液的浓度变大,可以采取增加溶质(盐、糖、纯酒精等)的方法,也可以用蒸发水的方法。

把盐水加热,一部分水变成水蒸气蒸发掉了,于是盐水中水的重量减少了,而在变化过程中盐的重量没有发生变化。先根据条件求出原来盐水中含盐的重量,由于在变化过程中盐水中盐的重量没有发生变化,所以原来盐水中盐的重量也是现在盐水中盐的重量,再求出现在盐水的重量,最后用原来盐水的重量减去现在盐水的重量就是要蒸发掉的水的重量。

同步精练

1.现有浓度为12.5%的盐水40千克,将它变成浓度为20%的盐水,要蒸发掉多少千克水?

2.有浓度为2.5%的盐水700克,为了制成浓度为20%的盐水,从中要蒸发掉多少克水?

3.从含盐10%的50千克盐水中蒸发掉10千克水,这时盐水的浓度是多少?

例4 把浓度为25%的40千克盐水与浓度为10%的60千克盐水混合在一起,混合后的盐水的浓度是多少? 【思路点拔】把两种浓度不同的盐水混合在一起,要求混合后的盐水浓度,需要知道混合后盐水的总重量和混合后盐的总重量。两种盐水混合的过程中,盐水的总重量和混合后盐的总重量都没有发生变化,因此,我们解答时,先应分别求出混合后盐水的总重量和盐的总重量,再用盐的总重量除以盐水的总重量求出混合后盐水的浓度。

同步精练

1.把浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克混合后,酒精溶液的浓度是多少?

2.浓度为30%的酒精溶液15千克与浓度为40%的酒精溶液35千克混合后,得到的酒精溶液的浓度是多少?

3.在浓度为50%的100克盐水中,再加入多少克浓度为5%的盐水,就可得到浓度为15%的盐水? duag.练习十

一、填空。

1.一瓶盐水共重200克,其中盐有20克,这瓶盐水的浓度是()%。2.配制一种盐水,在450克水中加了50克盐,这种盐水的浓度是()%。3.一种糖水的浓度是15%,200克糖水中含糖()克。

4.一种酒精溶液的浓度是20%,其中水有240克,酒精有()克。5.一种糖水的浓度是10%,15克糖需加水()克。

二、解决问题。

1.现有浓度为20%的盐水80克,加入20克水,这时盐水的浓度是多少?

2.现有浓度为20%的盐水80克,加入20克盐,这时盐水的浓度是多少?

3.在浓度为15%的糖水200克中,加入多少克水就能得到浓度为10%的糖水?

4.浓度为20%的糖水500克,要把它变成浓度为50%的糖水,需要加入多少克糖?

5.有浓度为2.5%的盐水400克,为了制成浓度为5%的盐水,从中要蒸发掉多少克水?

duag.6.将60克含盐25%和40克含盐10%的两种盐水混合在一起,求混合后盐水的浓度。

7.在浓度为10%的硫酸溶液20千克中,再加入多少千克浓度为30%的硫酸溶液,就可以配成浓度为22%的硫酸溶液?

8.将20%的盐水与5%的盐水混合,配成15%的盐水600克。需要20%的盐水与5%的盐水各多少克?

9.20克盐放入100克水中,放置三天后,盐水重量只有100克,求这时盐水的浓度是多少?浓度比原来提高了百分之几?

10.甲容器中有含盐25%的盐水80克,乙容器中有盐水120克。现将甲、乙两容器中的盐水混合后得到含盐40%的溶液。求原来乙容器中盐水的浓度。

3.六年级奥数计数综合 篇三

1.使学生正确理解排列、组合的意义;正确区分排列、组合问题;

2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合;

3.掌握排列组合的计算公式以及组合数与排列数之间的关系;

4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;

通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。

5.根据不同题目灵活运用计数方法进行计数。

知识点拨:

一、排列

一般地,从个不同的元素中取出()个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列.

根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.

排列的基本问题是计算排列的总个数.

从个不同的元素中取出()个元素的所有排列的个数,叫做从个不同的元素的排列中取出个元素的排列数,我们把它记做.

根据排列的定义,做一个元素的排列由个步骤完成:

步骤:从个不同的元素中任取一个元素排在第一位,有种方法;

步骤:从剩下的()个元素中任取一个元素排在第二位,有()种方法;

„„

步骤:从剩下的个元素中任取一个元素排在第个位置,有(种)方法;

由乘法原理,从个不同元素中取出个元素的排列数是,即,这里,且等号右边从开始,后面每个因数比前一个因数小,共有个因数相乘。

二、组合一般地,从个不同元素中取出个()元素组成一组不计较组内各元素的次序,叫做从个不同元素中取出个元素的一个组合.

从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.

从个不同元素中取出个元素()的所有组合的个数,叫做从个不同元素中取出个不同元素的组合数.记作。

一般地,求从个不同元素中取出的个元素的排列数可分成以下两步:

第一步:从个不同元素中取出个元素组成一组,共有种方法;

第二步:将每一个组合中的个元素进行全排列,共有种排法.

根据乘法原理,得到.因此,组合数.

这个公式就是组合数公式.

例题精讲:

一、排列组合的应用

【例 1】小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?

(1)七个人排成一排;

(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间.(4)七个人排成一排,小新、阿呆必须都站在两边.(5)七个人排成一排,小新、阿呆都没有站在边上.(6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人.小新、阿呆不在同一排。

【例 2】用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数?

【巩固】用1、2、3、4、5这五个数字可组成多少个比大且百位数字不是的无重复 数字的五位数?

【巩固】用0到9十个数字组成没有重复数字的四位数;若将这些四位数按从小到大的顺 序排列,则5687是第几个数?

【例 3】用、、、、这五个数字,不许重复,位数不限,能写出多少个3的倍数?

【巩固】用1、2、3、4、5、6六张数字卡片,每次取三张卡片组成三位数,一共可以组成 多少个不同的偶数?

【例 4】某管理员忘记了自己小保险柜的密码数字,只记得是由四个非数码组成,且四 个数码之和是,那么确保打开保险柜至少要试几次?

【例 5】两对三胞胎喜相逢,他们围坐在桌子旁,要求每个人都不与自己的同胞兄妹相邻,(同一位置上坐不同的人算不同的坐法),那么共有多少种不同的坐法?

【例 6】一种电子表在6时24分30秒时的显示为6:24:30,那么从8时到9时这段时间 里,此表的5个数字都不相同的时刻一共有多少个?

【例 7】一个六位数能被11整除,它的各位数字非零且互不相同的.将这个六位数的6 个数字重新排列,最少还能排出多少个能被11整除的六位数?

【例 8】已知在由甲、乙、丙、丁、戊共5名同学进行的手工制作比赛中,决出了第一至 第五名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军.”对乙说:“你当然不会是最差的.”从这个回答分析,5人的名次排列共有多少种不同的情况?

【例 9】名男生,名女生,全体排成一行,问下列情形各有多少种不同的排法: ⑴ 甲不在中间也不在两端;

⑵ 甲、乙两人必须排在两端;

⑶ 男、女生分别排在一起;

⑷ 男女相间.

【巩固】五位同学扮成奥运会吉祥物福娃贝贝、晶晶、欢欢、迎迎和妮妮,排成一排表演 节目。如果贝贝和妮妮不相邻,共有()种不同的排法。

【例 10】一台晚会上有个演唱节目和个舞蹈节目.求:

⑴ 当个舞蹈节目要排在一起时,有多少不同的安排节目的顺序?

⑵ 当要求每个舞蹈节目之间至少安排个演唱节目时,一共有多少不同的安排节目的顺序?

【巩固】由个不同的独唱节目和个不同的合唱节目组成一台晚会,要求任意两个合唱 节目不相邻,开始和最后一个节目必须是合唱,则这台晚会节目的编排方法共有多少种?

【例 11】⑴从1,2,„,8中任取3个数组成无重复数字的三位数,共有多少个?(要 求列式)

⑵从8位候选人中任选三位分别任团支书,组织委员,宣传委员,共有多少种不同的选法? ⑶3位同学坐8个座位,每个座位坐1人,共有几种坐法?

⑷8个人坐3个座位,每个座位坐1人,共有多少种坐法?

⑸一火车站有8股车道,停放3列火车,有多少种不同的停放方法?

⑹8种不同的菜籽,任选3种种在不同土质的三块土地上,有多少种不同的种法?

【巩固】现有男同学3人,女同学4人(女同学中有一人叫王红),从中选出男女同学各2 人,分别参加数学、英语、音乐、美术四个兴趣小组:

(1)共有多少种选法?

(2)其中参加美术小组的是女同学的选法有多少种?

(3)参加数学小组的不是女同学王红的选法有多少种?

(4)参加数学小组的不是女同学王红,且参加美术小组的是女同学的选法有多少种?

【例 12】某校举行男生乒乓球比赛,比赛分成3个阶段进行,第一阶段:将参加比赛 的48名选手分成8个小组,每组6人,分别进行单循环赛;第二阶段:将8个小组产生的前2名共16人再分成个小组,每组人,分别进行单循环赛;第三阶段:由4个小组产生的个第名进行场半决赛和场决赛,确定至名的名次.问:整个赛程一共需要进行多少场比赛?

【例 13】由数字1,2,3组成五位数,要求这五位数中1,2,3至少各出现一次,那么这 样的五位数共有________个。(2007年“迎春杯”高年级组决赛)

【例 14】个人围成一圈,从中选出两个不相邻的人,共有多少种不同选法?

【例 15】8个人站队,冬冬必须站在小悦和阿奇的中间(不一定相邻),小慧和大智不能相

邻,小光和大亮必须相邻,满足要求的站法一共有多少种?

【例 16】小明有10块大白兔奶糖,从今天起,每天至少吃一块.那么他一共有多少种不同的吃法?

【巩固】小红有10块糖,每天至少吃1块,7天吃完,她共有多少种不同的吃法?

【巩固】把20个苹果分给3个小朋友,每人最少分3个,可以有多少种不同的分法?

【巩固】有10粒糖,分三天吃完,每天至少吃一粒,共有多少种不同的吃法?

【例 17】某池塘中有三只游船,船可乘坐人,船可乘坐人,船可乘坐

人,今有个成人和个儿童要分乘这些游船,为安全起见,有儿童乘坐的游船上必须至少有个成人陪同,那么他们人乘坐这三支游船的所有安全乘船方法共有多少种?

【例 18】从名男生,名女生中选出人参加游泳比赛.在下列条件下,分别有多少种

选法?⑴恰有名女生入选;⑵至少有两名女生入选;⑶某两名女生,某两名男生必须入选; ⑷某两名女生,某两名男生不能同时入选;⑸某两名女生,某两名男生最多入选两人。

【巩固】在6名内科医生和4名外科医生中,内科主任和外科主任各一名,现要组成5人 医疗小组送医下乡,按照下列条件各有多少种选派方法?

⑴ 有3名内科医生和2名外科医生;

⑵ 既有内科医生,又有外科医生;

⑶ 至少有一名主任参加;

⑷ 既有主任,又有外科医生。

【例 19】在10名学生中,有5人会装电脑,有3人会安装音响设备,其余2人既会安装 电脑,又会安装音响设备,今选派由人组成的安装小组,组内安装电脑要人,安装音响设备要人,共有多少种不同的选人方案?

【例 20】有11名外语翻译人员,其中名是英语翻译员,名是日语翻译员,另外两名英 语、日语都精通.从中找出人,使他们组成两个翻译小组,其中人翻译英文,另人翻译日文,这两个小组能同时工作.问这样的分配名单共可以开出多少张?

4.六年级奥数试题及解析 篇四

在甲、乙、丙三个酒精溶液中,纯酒精的含量分别占48%、62.5%和2/3.已知三个酒精溶液中总量是100千克,其中甲酒精溶液量等于乙、丙两个酒精溶液的总量.三个溶液混合后所含纯酒精的百分数将达56%.那么,丙中纯酒精的`量是几千克?

解:设丙缸酒精溶液的重量为x千克,则乙缸为(50-x)千克.

50×48%+(50-x)×62.5%+x×(2/3)

=100×56%,

解得:x=18,

所以丙缸中纯酒精含量是18×(2/3)

=12(千克).

5.六年级奥数小组工作总结 篇五

本学期,我又一次担任了六年级奥数的教学任务,从接任伊始,我就从各方面严格要求自己,结合本班(奥术兴趣小组)特点和实际情况,勤勤恳恳,兢兢业业,使教学工作有计划、有组织、有步骤、有实效地开展,顺利并圆满地完成了教学任务。现总结如下:

一、学生基本情况

本期奥数班成员共36人,其中六一班11人、六二班15人、六三班10人。学生基础及智力水平参差不齐,给教学带来了很大的困难,其中还有一些成绩一般,智力一般的学生,由于班主任思想工作的开展,也报了奥数兴趣小组,这从本质上就给学习任务的开展造成了障碍。

二、工作开展情况

今年所使用的教材是跟教科书相联系的提高教材,内容有些相连,但跨度、深度、难度略大。备课中,不但备教材,而且备教法。根据教学内容及学生的实际情况设计课的类型,采用不同的教法,并对学生的反馈认真做了记录,每一节课都做到“有备而来”,课后及时总结、归纳、反思。

三、注重教学方法,提高教学质量

本期,在第二课堂上,我仍然采用“成功教学法,”即先学后教,注重学生学习的积极性,加强生生(小组)互动、合作,师生交流等学习氛围,充分体现学生学的容易、学的轻松、学的愉快。并注重培养学生多动口、动手、动脑的能力,真正做到玩中学、学中玩的教学思想。

四、认真批改作业

虽然两天才有一节课,但我们班每一节课后都布置作业,作业的布置体现针对性、层次性,并对学生的作业及时批改(一般在课下),认真分析并记录学生作业情况,将他们在作业中出现的问题做出分类总结,并在课上作出详细、透彻的讲评,并针对有关情况及时改进教法,改进进度,做到有的放失,讲求实效性。

五、做好课后管理,注重分层教学

因为兴趣组的同学有一部分是本班学生,其余虽不是本班的,但距离很近。为保证教学质量,努力做到走一步夯实一步。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生需求,同时,加大后进生的辅导力度,做他们的思想工作,解决他们学习上的心结,让他们意识到学习的重要性和必要性,让他们对学习萌发兴趣,这样,他们就由原来的强迫、压制学习转化为后来的自觉、主动的学习,从而大大提高了学习质量。

6.六年级奥数比和比例2 篇六

比和比例,是小学数学中的最后一个内容,也是学习更多数学知识的重要基础.有了“比”这个概念和表达方式,处理倍数、分数等问题,要方便灵活得多.我们希望,小学同学学完这一讲,对“除法、分数、比例实质上是一回事,但各有用处”有所理解.这一讲分三个内容:

一、比和比的分配;

二、倍数的变化;

三、有比例关系的其他问题.一、比和比的分配

最基本的比例问题是求比或比值.从已知一些比或者其他数量关系,求出新的比.例1 甲、乙两个长方形,它们的周长相等.甲的长与宽之比是3∶2,乙的长与宽之比是7∶5.求甲与乙的面积之比.解:设甲的周长是2.甲与乙的面积之比是

答:甲与乙的面积之比是864∶875.作为答数,求出的比最好都写成整数.例2 如右图,ABCD是一个梯形,E是AD的中点,直线CE把梯形分成甲、乙两部分,它们的面积之比是10∶7.求上底AB与下底CD的长度之比.解:因为E是中点,三角形CDE与三角形CEA面积相等.三角形ADC与三角形ABC高相等,它们的底边的比AB∶CD=三角形ABC的面积∶三角形ADC的面积

=(10-7)∶(7×2)= 3∶14.答:AB∶CD=3∶14.两数之比,可以看作一个分数,处理时与分数计算几乎一样.三数之比,却与分数不一样,因此是这一节讲述的重点.例3 大、中、小三种杯子,2大杯相当于5中杯,3中杯相当于4小杯.如果记号表示2大杯、3中杯、4小杯容量之和,求与之比.解:大杯与中杯容量之比是5∶2=10∶4,中杯与小杯容量之比是4∶3,大杯、中杯与小杯容量之比是10∶4∶3.∶

=(10×2+4×3+3×4)∶(10×5+4×4+3×3)

=44∶75.答:两者容量之比是44∶75.把5∶2与4∶3这两个比合在一起,成为三样东西之比10∶4∶3,称为连比.例3中已告诉你连比的方法,再举一个更一般的例子.甲∶乙=3∶5,乙∶丙=7∶4,3∶5=3×7∶5×7=21∶35,7∶4=7×5∶4×5=35∶20,甲∶乙∶丙=21∶35∶20.花了多少钱?

解:根据比例与乘法的关系,连比后是

甲∶乙∶丙=2×16∶3×16∶3×2

=32∶48∶63.答:甲、乙、丙三人共花了429元.例5 有甲、乙、丙三枚长短不相同的钉子,甲与乙,而它们留在墙外的部分一样长.问:甲、乙、丙的长度之比是多少?

解:设甲的长度是6份.∶x=5∶4.乙与丙的长度之比是

而甲与乙的长度之比是 6∶5=30∶25.甲∶乙∶丙=30∶25∶26.答:甲、乙、丙的长度之比是30∶25∶26.于利用已知条件6∶5,使大部分计算都整数化.这是解比例和分数问题的常用手段.例6 甲、乙、丙三种糖果每千克价分别是22元、30元、33元.某人买这三种糖果,在每种糖果上所花钱数一样多,问他买的这些糖果每千克的平均价是多少元? 解一:设每种糖果所花钱数为1,因此平均价是

答:这些糖果每千克平均价是27.5元.上面解法中,算式很容易列出,但计算却使人感到不易.最好的计算方法是,用22,30,33的最小公倍数330,乘这个繁分数的分子与分母,就有:

事实上,有稍简捷的解题思路.解二:先求出这三种糖果所买数量之比.不妨设,所花钱数是330,立即可求出,所买数量之比是甲∶乙∶丙=15∶11∶10.平均数是(15+11+10)÷3=12.单价33元的可买10份,要买12份,单价是

下面我们转向求比的另一问题,即“比的分配”问题,当一个数量被分成若干个数量,如果知道这些数量之比,我们就能求出这些数量.例7 一个分数,分子与分母之和是100.如果分子加23,分母加32,解:新的分数,分子与分母之和是(10+23+32),而分子与分母之比2∶3.因此

例8 加工一个零件,甲需3分钟,乙需3.5分钟,丙需4分钟,现有1825个零件要加工,为尽早完成任务,甲、乙、丙应各加工多少个?所需时间是多少?

解:三人同时加工,并且同一时间完成任务,所用时间最少,要同时完成,应根据工作效率之比,按比例分配工作量.三人工作效率之比是

他们分别需要完成的工作量是

所需时间是

700×3=2100分钟)=35小时.答:甲、乙、丙分别完成700个,600个,525个零件,需要35小时.这是三个数量按比例分配的典型例题.例9 某团体有100名会员,男会员与女会员的人数之比是14∶11,会员分成三个组,甲组人数与乙、丙两组人数之和一样多.各组男会员与女会员人数之比是:

甲:12∶13,乙:5∶3,丙:2∶1,那么丙有多少名男会员?

解:甲组的人数是100÷2=50(人).乙、丙两组男会员人数是 56-24=32(人).答:丙组有12名男会员.上面解题的最后一段,实质上与“鸡兔同笼”解法一致,可以设想,“兔

例10 一段路程分成上坡、平路、下坡三段,各段路程长之比依次是1∶2∶3.小龙走各段路程所用时间之比依次是4∶5∶6.已知他上坡时速度为每小时3千米,路程全长50千米.问小龙走完全程用了多少时间?

解一:通常我们要求出小龙走平路与下坡的速度,先求出走各段路程的速度比.上坡、平路、下坡的速度之比是

走完全程所用时间

答:小龙走完全程用了10小时25分.上面是通常思路下解题.1∶2∶3计算中用了两次,似乎重复计算,最后算式也颇费事.事实上,灵活运用比例有简捷解法.解二:全程长是上坡这一段长的(1+2+3)=6(倍).如果上坡用的时

设小龙走完全程用x小时.可列出比例式

二、比的变化

已知两个数量的比,当这两个数量发生增减变化后,当然比也发生变化.通过变化的描述,如何求出原来的两个数量呢?这就是这一节的内容.例11 甲、乙两同学的分数比是5∶4.如果甲少得22.5分,乙多得22.5分,则他们的分数比是5∶7.甲、乙原来各得多少分?

解一:甲、乙两人的分数之和没有变化.原来要分成5+4=9份,变化后要分成5+7=12份.如何把这两种分法统一起来?这是解题的关键.9与12的最小公倍数是36,我们让变化前后都按36份来算.5∶4=(5×4)∶(4×4)=20∶16.5∶7=(5×3)∶(7×3)=15∶21.甲少得22.5分,乙多得22.5分,相当于20-15=5份.因此原来

甲得22.5÷5×20=90(分),乙得 22.5÷5×16=72(分).答:原来甲得90分,乙得72分.我们再介绍一种能解本节所有问题的解法,也就是通过比例式来列方程.解二:设原先甲的得分是5x,那么乙的得分是4x.根据得分变化,可列出比例式.(5x-22.5)∶(4x+22.5)=5∶7

即 5(4x+22.5)=7(5x-22.5)

15x=12×22.5

x=18.甲原先得分18×5=90(分),乙得18×4=72(分).解:其他球的数量没有改变.增加8个红球后,红球与其他球数量之比是

5∶(14-5)=5∶9.在没有球增加时,红球与其他球数量之比是

1∶(3-1)=1∶2=4.5∶9.因此8个红球是5-4.5=0.5(份).现在总球数是

答:现在共有球224个.本题的特点是两个数量中,有一个数量没有变.把1∶2写成4.5∶9,就是充分利用这一特点.本题也可以列出如下方程求解:

(x+8)∶2x=5∶9.例13 张家与李家的收入钱数之比是8∶5,开支的钱数之比是8∶3,结果张家结余240元,李家结余270元.问每家各收入多少元?

解一:我们采用“假设”方法求解.如果他们开支的钱数之比也是8∶5,那么结余的钱数之比也应是8∶5.张家结余240元,李家应结余x元.有

240∶x=8∶5,x=150(元).实际上李家结余270元,比150元多120元.这就是8∶5中5份与8∶3中3份的差,每份是120÷(5-3)=60.(元).因此可求出

答:张家收入720元,李家收入450元.解二:设张家收入是8份,李家收入是5份.张家开支的3倍与李家开支的8倍的钱一样多.我们画出一个示意图:

张家开支的3倍是(8份-240)×3.李家开支的8倍是(5份-270)×8.从图上可以看出

5×8-8×3=16份,相当于

270×8-240×3=1440(元).因此每份是1440÷16=90(元).张家收入是90×8=720(元),李家收入是90×5=450(元).本题也可以列出比例式:

(8x-240)∶(5x-270)=8∶3.然后求出x.事实上,解方程求x的计算,与解二中图解所示是同一回事,图解有算术味道,而且一些数量关系也直观些.例14 A和B两个数的比是8∶5,每一数都减少34后,A是B的2倍,求这两个数.解:减少相同的数34,因此未减时,与减了以后,A与B两数之差并没有变,解题时要充分利用这一点.8∶5,就是8份与5份,两者相差3份.减去34后,A是B的2倍,就是2∶1,两者相差1.将前项与后项都乘以3,即2∶1=6∶3,使两者也相差3份.现在就知道34是8-6=2(份)或5-3=2(份).因此,每份是34∶2=17.A数是17×8=136,B数是17×5=85.答:A,B两数分别是136与85.本题也可以用例13解一“假设”方法求解,不过要把减少后的2∶1,改写成8∶4.例15 小明和小强原有的图画纸之比是4∶3,小明又买来15张.小强用掉了8张,现有的图画纸之比是5∶2.问原来两人各有多少张图画纸?

解一:充分利用已知数据的特殊性.4+3=7,5+2=7,15-8=7.原来总数分成7份,变化后总数仍分成7份,总数多了7张,因此,新的1份=原来1份+1

原来4份,新的5份,5-4=1,因此

新的1份有15-1×4=11(张).小明原有图画纸11×5-15=40(张),小强原有图画纸11×2+8=30(张).答:原来小明有40张,小强有30张图画纸.解二:我们也可采用例13解一的“假设”方法.先要将两个比中的前项化成同一个数(实际上就是通分)

4∶3=20∶15

5∶2=20∶8.但现在是20∶8,因此这个比的每一份是

当然,也可以采用实质上与解方程完全相同的图解法.解三:设原来小明有4“份”,小强有3“份”图画纸.意图:

把小明现有的图画纸张数乘2,小强现有的图画纸张数乘5,所得到的两个结果相等.我们可以画出如下示

从图上可以看出,3×5-4×2=7(份)相当于图画纸15×2+8×5=70(张).因此每份是10张,原来小明有40张,小强有30张.例11至15这五个例题是同一类型的问题.用比例式的方程求解没有多大差别.用算术方法,却可以充分利用已知数据的特殊性,找到较简捷的解法,也启示一些随机应变的解题思路.另外,解方程的代数运算,对小学生说来是超前的,不容易熟练掌握.例13的解一,也是一种通用的方法.“假设”这一思路是很有用的,希望读者能很好掌握,灵活运用.从课外的角度,我们更应启发小同学善于思考,去找灵巧的解法,这就要充分利用数据的特殊性.因此我们总是先讲述灵巧的解法,利于心算,促进思维.例16 粗蜡烛和细蜡烛长短一样.粗蜡烛可以点5小时,细蜡烛可以点4小时.同时点燃这两支蜡烛,点了一段时间后,粗蜡烛长是细蜡烛长的2倍.问这两支蜡烛点了多少时间?

我们把问题改变一下:设细蜡烛长度是2,每小时点

等需要时间是

答:这两支蜡烛点了3小时20分.把细蜡烛的长度和每小时烧掉的长度都乘以2,使原来要考虑的“2倍”变成“相等”,思考就简捷了.解这类问题这是常用的技巧.再请看一个稍复杂的例子.例17 箱子里有红、白两种玻璃球,红球数是白球数的3倍多2只.每次从箱子里取出7只白球,15只红球,经过若干次后,箱子里剩下3只白球,53只红球,那么,箱子里原来红球数比白球数多多少只?

解:因为红球是白球的3倍多2只,每次取15只,最后剩下53只,所以对3倍的白球,每次取15只,最后应剩51只.因为白球每次取7只,最后剩下3只,所以对3倍的白球,每次取 7×3=21只,最后应剩 3×3= 9只.因此.共取了(51-3×3)÷(7×3-15)= 7(次).红球有 15×7+ 53= 158(只).白球有 7×7+3=52(只).原来红球比白球多 158-52=106(只).答:箱子里原有红球数比白球数多106只.三、比例的其他问题,这里必须用分数来说,而不能用比.实际上它还是隐含着比例关系:

(甲-7)∶乙= 2∶3.因此,有些分数问题,就是比例问题.加33张,他们两人取的画片一样多.问这些画片有多少张?

答:这些画片有261张.解:设最初的水量是1,因此最后剩下的水是

样重,就有

因此原有水的重量是

答:容器中原来有8.4千克水.例18和例19,通常在小学数学中,叫做分数应用题.“比”有前项和后项,当两项合在一起写成一个分数后,才便于与其他数进行加、减运算.这就是把比(或除法)写成分数的好处.下面一个例题却是要把分数写成比,计算就方便些.例20 有两堆棋子,A堆有黑子 350个和白子500个,B堆有黑子

堆中拿到 A堆黑子、白子各多少个?

子100个,使余下黑子与白子之比是(40-100)∶100=3∶1.再要从 B堆拿出黑子与白子到A堆,拿出的黑子与白子数目也要保持3∶1的比.现在 A堆已有黑子 350+ 100= 450个),与已有白子500个,相差

从B堆再拿出黑子与白子,要相差50个,又要符合3∶1这个比,要拿出白子数是

50÷(3-1)=25(个).再要拿出黑子数是 25×3= 75(个).答:从B堆拿出黑子 175个,白子25个.人,问高、初中毕业生共有多少人?

解一:先画出如下示意图:

6-5=1,相当于图中相差 17-12=5(份),初中总人数是 5×6=30份,因此,每份人数是

520÷(30-17)= 40(人).因此,高、初中毕业生共有

40×(17+12)= 1160(人).答:高、初中毕业生共1160人.计算出每份是

例21与例14是完全一样的问题,解一与例14的解法也是一样的.(你是否发现?)解二是通常分数应用题的解法,显然计算不如解一简便.例18,19,20,21四个例题说明分数与比例各有好处,你是否从中有所心得?当然关键还是在于灵活运用.下的钱共有多少元?

解:设钢笔的价格是1.这样就可以求出,钢笔价格是

张剩下的钱数是

李剩下的钱数

答:张、李两人剩下的钱共28元.题中有三个分数,但它们比的基准是不一样的.为了统一计算单位,设定钢笔的价格为1.每个人原有的钱和剩下的钱都可以通过“1”统一地折算.解分数应用题中,设定统一的计算单位是常用的解题技巧.作为这一讲最后的内容,我们通过两个例题,介绍一下“混合比”.用100个银币买了100头牲畜,问猪、山羊、绵羊各几头?

这是十八世纪瑞士大数学家欧拉(1707~1783)提出的问题.们设1头猪和5头绵羊为A组,3头山羊和2头羊绵为B组.A表示A组的数,B表示B组的数,要使

(1+ 5)× A+(3+ 2)× B=100,或简写成 6A+5B=100.就恰好符合均价是1.类似于第三讲鸡兔同笼中例17,很明显,A必定是5的整数倍.A=5,B= 4,6×5+ 5×4=50,50是 100的约数,符合要求.A=5,猪 5头,绵羊 25头,B=4,山羊12头,绵羊8头.猪∶山羊∶绵羊=5∶12∶(25+8).现在已把1∶5和3∶2两种比,组合在一起通常称为混合比.要注意,这样的问题常常有多种解答.A= 5,B=14或 A=15,B=2才能产生解答,相应的猪、山羊、绵羊混合比是5∶42∶53或15∶6∶79.答:有三组解答.买猪、山羊、绵羊的头数是10,24,66;或者5,42,53;或者15,6,79.求混合比是一种很实用的方法,对数学有兴趣的小学同学,学会这种方法是有好处的,会增加灵活运用比例的技巧.通常求混合比可列下表:

下面例题与例23是同一类型,但由于题目的条件,解法上稍有变化.例24 某商品76件,出售给33位顾客,每位顾客最多买三件,买 1件按定价,买2件降价 10%,买 3件降价 20%.最后结算,平均每件恰好按原定价的 85%出售,那么买3件的顾客有多少人?

解:题目已给出平均数 85%,可作比较的基准.1人买3件少 5%×3;

1人买2件多 5%×2;

1人买1件多 15% ×1.1人买3件与1人买1件成A组,即按1∶1比例,2人买3件与3人买2件成B组,即按2∶3的比例.A组是2人买4件,每人平均买2件.B组是5人买12件,每人平均买2.4件.现在已建立了一个鸡兔同笼型问题:总脚数76,总头数33,兔脚数2.4,鸡脚数2.B组人数是

7.小学六年级奥数题及答案 篇七

有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

解答

首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。

2、牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?

解答

这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进行分析。 如果设每个人每小时的淘水量为“1个单位”.则船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30. 船内原有水量与8小时漏水量之和为1×5×8=40。 每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量)。 船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量.3小时漏进水量相当于3×2=6人1小时淘水量.所以船内原有水量为30-(2×3)=24。 如果这些水(24个单位)要2小时淘完,则需24÷2=12(人),但与此同时,每小时的漏进水量又要安排2人淘出,因此共需12+2=14(人)。 从以上这两个例题看出,不管从哪一个角度来分析问题,都必须求出原有的量及单位时间内增加的量,这两个量是不变的量.有了这两个量,问题就容易解决了。

3、奇偶性应用:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

【题-004】整除问题:(中等难度)

用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?

解答

∵被除数=除数×商+余数,即被除数=除数×40+16。由题意可知:被除数+除数=933-40-16=877,∴(除数×40+16)+除数=877,∴除数×41=877-16,除数=861÷41,除数=21,∴被除数=21×40+16=856。答:被除数是856,除数是21。

4、灌水问题:(中等难度)

公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.

解答

如第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开1小时,恰好在打开丙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,应在打开甲管1小时后灌满一池水.不合题意. 如第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开1小时,恰好在打开乙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,应在打开丙管45分钟后灌满一池水;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,应在打开甲管后15分钟灌满一池水.比较第二周和第三周,发现开乙管1小时和丙管45分钟的进水量与开丙管、乙管各1小时加开甲管15分钟的进水量相同,矛盾. 所以第一周是在开甲管1小时后灌满水池的.比较三周发现,甲管1小时的进水量与乙管45分钟的进水量相同,乙管30分钟的进水量与丙管1小时的进水量相同.三管单位时间内的进水量之比为3:4:2.

5、队形:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?

解答

当扩大方阵时,需补充10+15人,这25人应站在扩充的方阵的两条邻边处,形成一层人构成的直角拐角.补充人后,扩大的方阵每边上有(10+15+1)÷2=13人.因此扩大方阵共有13×13=169人,去掉15人,就是原来的人数169-15=154人

6、分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?

解答

除得分88、85、80的人之外,其他人的得分都在30至79分之间,其他人共得分:8250-(88+85+80)=7997(分).

为使不低于60分的人数尽量少,就要使低于60分的人数尽量多,即得分在30~59分中的人数尽量多,在这些分数上最多有3×(30+31+…+59)= 4005分(总分),因此,得60~79分的人至多总共得7997-4005=3992分.

如果得60分至79分的有60人,共占分数3×(60+61+ …+ 79)= 4170,比这些人至多得分7997-4005= 3992分还多178分,所以要从不低于60分的人中去掉尽量多的人.但显然最多只能去掉两个不低于60分的(另加一个低于60分的,例如,178=60+60+58).因此,加上前三名,不低于60分的人数至少为61人.

7、行程:(中等难度)王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?

解答

汽车间隔距离是相等的,列出等式为:(汽车速度-自行车速度)×12=(汽车速度+自行车速度)×4得出:汽车速度=自行车速度的2倍. 汽车间隔发车的时间=汽车间隔距离÷汽车速度=(2倍自行车速度-自行车速度)×12÷2倍自行车速度=6(分钟).

8、跑步:(中等难度)狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?

解答

根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。根据“狗跑5步的时间马跑3步”,可知同一时间马跑3乘7x米=21x米,则狗跑5乘4x=20x米。可以得出马与狗的速度比是21x:20x=21:20根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米

9、排队:(中等难度)有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有( )

解答

根据乘法原理,分两步:第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种综合两步,就有24×32=768种

10、分数方程:(中等难度)

若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去。再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?

解答

设原来小球数最少的盒子里装有a只小球,现在增加了b只,由于小聪没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.

同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.

类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.现在变成:将42分拆成若干个连续整数的和,一共有多少种分法,每一种分法有多少个加数?

因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;又因为42=14×3,故可将42:13+14+15,一共有3个加数;又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子.

11、自然数和:(中等难度)在整数中,有用2个以上的连续自然数的和来表达一个整数的方法.例如9:9=4+5,9=2+3+4,9有两个用2个以上连续自然数的和来表达它的方法.

解答

(1) 请写出只有3种这样的表示方法的最小自然数.(2)请写出只有6种这样的表示方法的最小自然数.关于某整数,它的“奇数的约数的个数减1”,就是用连续的整数的和的形式来表达种数.根据(1)知道,有3种表达方法,于是奇约数的个数为3+1=4,对4分解质因数4=2×2,最小的15(1、3、5、15);有连续的2、3、5个数相加;7+8;4+5+6;1+2+3+4+5;根据(2)知道,有6种表示方法,于是奇数约数的个数为6+1=7,最小为729(1、3、9、27、81、243、729),有连续的2,3、6、9、10、27个数相加:364+365;242+243+244;119+120+…+124;77+78+79+…+85;36+37+…+45;14+15+…+40

六年级数学分数奥数题

1、把甲乙丙三根木棒插入水池中,三根木棒的长度和为 360 厘米,甲有 3/4 在水外,乙有 4/7在水外,丙有 2/5 在水外。水有多深?

【答案】

设水深x厘米,则甲长 4x,乙长 7x/3,丙长 5x/3

4x+7x/3+5x/3=360

x=45

水有 45cm 深

2、小刚有若干本书,小华借走一半加一本,剩下的书小明借走一半加两本,再剩下的书小峰借走一半加三本,最后小刚还剩下两本书,那么小刚原有还剩下两本书,那么小刚原有多少本书?

【答案】

考点:逆推问题.分析:本题需要从问题出发,一步步向前推,小刚剩的 2 本书加上 3 本就是小明借走后的一半, 那么就可以求出小明借走后的数量, 同理可以求出小华借走后的数量,进而可求小明原有的数量.解答:解:小峰未借前有书:

(2+3) ÷(1-1/2 )=10 (本),

小明未借之前有:

(10+2)÷(1-1/2 )=24 (本),

小刚原有书:

(24+1)÷(1-1/2 )=50 (本).

答:小明原有书 50 本.

故答案为:50.

3、甲数比乙数多 1/3,乙数比甲数少几分之几 ?

【答案】

乙数是单位“ 1”,甲数是:

1+1/3= 4/3

乙数比甲数少:

1/3÷4/3=1/4

4、有梨和苹果若干个 ,梨的个数是全体的 5/3 少 17 个,苹果的个数是全体的 7/4 少 31 个,那么梨和苹果的个数共多少?

【答案】

解:设总数有 35X 个

那么梨有 35X乘3/5-17=21X-17 个

苹果有 35X乘4/7-31=20X-31 个

20X-31+21X-17=35X

41X-48=35X

6X=48

X=8

所以梨有21×6-17=109 个,苹果有 20× 6-31=89个。

5、有一个分数,它的分母比分子多 4,如果把分子、分母都加上 9,得到的分数约分后是 9 分 之 7,这个分数是多少?

【答案】

设分子为 X ,分母为 X+4,

则(X+9)/( X+ 13)= 7/9;

解之,得 X=5

答:该分子为 5/9

6、把一根绳分别折成 5 股和 6 股, 5 股比 6 股长 20 厘米,这根绳子长多少米 ?

【答案】

这根绳子长 20÷( 1/5-1/6)=600cm

7、小萍今年的年龄是妈妈的 1/3,两年前母女的年龄相差 24 岁。四年后小萍的年龄是多少岁?

【答案】

解:设小萍今年 X 岁,则妈妈今年 3X 岁

3X-2=X-2+24

3X=X+24

2X=24

X=12

最终答案:12+4=16 (岁)

8、有一篮苹果,甲取一半少一个,乙取余下的一半多一个,丙又取余下的一半,结果还剩下一个。如果每个苹果值 1 元 9 角 8 分,那么这篮苹果共值多少元?

【答案】

丙又取其余的一半,结果还剩一个,说明丙取前是 1+1=2 个

乙取余下的一半多一个,则乙取前是 (2+1)x2=6 个

甲取其中的一半少一个,则甲取前时 (6-1)x2 = 10 个

因此,原来有 10 个

下面是解题过程:设这袋苹果原来 X 个,则

甲取走苹果的个数为 X/2-1

乙取走苹果的个数为( X-X/2+1)/2+1

丙取走苹果的个数(也是剩余的个数)为:总数 -甲取走 -乙取走,即

【X-X/2+1-(X-X/2+1)/2-1 】/2=1

解方程得 X=10

9、小辉乘飞机参加世界少年奥林匹克数学金杯赛。机窗外市一片如画的蔚蓝大海。他看到云海占整个画面的 1/2,并遮住一个海岛的 1/4,露出的海岛占整个画面的 1/4.求被遮住的海岛占应看见的整个海面的几分之几?

【答案】

设海岛为 x,整个画面为 y,遮住海面为 z,

根据题意,

3/4乘x=1/4乘y

y=3x

则海面为 3/4乘x

z=1/2乘3x-1/4乘x=5/4乘x

又海面为 2x …………y-x=3x-x=2x

所以比例为 5/8

除了不用 XY,只用算数,不行的话,只有 X 也行

海岛占整个画面 =1/4÷3/4=1/3

海面占整个画面 =1-1/3=2/3

遮住的海面占整个画面 =(1/2-1/4乘1/3)=1/2-1/12=5/12

遮住的海面占应看见的整个海面 =5/12÷2/3=5/8

即:被遮住的海面占应看见的整个海面的八分之五

10、一只猴子摘了一堆桃子:

第一天吃了这堆桃子的七分之一;

第二天吃了余下桃子的六分之一;

第三天吃了余下桃子的五分之一;

第四天吃了余下桃子的四分之一;

第五天吃了余下桃子的三分之一;

第六天吃了余下桃子的二分之一;

这时还剩下 12 个桃子,那么第一天和第二天猴子所吃桃子的总数是多少个?

【答案】

设桃子总数为 x

1/7x 乘以 6/7x 乘以 5/6x 乘以 4/x5 乘以 3/4x 乘以 2/3x 乘以 1/2x=12

1/7x=12

x=84

第一天 84X1/7=12

第二天 72X1/6=12

12+12=24

11、甲从 A 地到 B 地需要 5 小时,乙从 B 地到 A 地,速度是甲的 5/8.现在甲、乙两人分别从A,B 两地同时出发,相向而行。在途中相遇后继续前进。甲到 B 地后立即返后,乙到 A 地后也立即返回,他们在途中又一次相遇。如果两次相遇点相距 72 千米,则 A,B 两地相距多少千米?

【答案】

解:设 AB两地的距离是单位 1

则甲的速度是 1/5 ,乙的速度是( 1/5 )x(5/8 )=1/8

甲乙的速度比是 甲:乙 =(1/5 ):( 1/8 )=8/5

即第一次相遇时甲行了全程的 8/ (8+5)=8/13

乙行了全程的 5/13

第二次相遇时两人共行 3 个全程,

那么甲行了 3x8/13=24/13

离行完 2 个全程差 2-24/13=2/13

所以 AB两地相距 72/ (8/13-2/13 )=156

答:A、B两地相距 156 千米。

12、把 100 个人分成四队,一队人数是二队人数的 4/3 倍,一队人数是三队人数的 5/4 倍,那么四队有多少人?

【答案】

设第一队为 1,第二队为 3/4,第三队为 4/5,则三队和为 1+3/4+4/5=51/20 ,可知,第一队人数应为 20 的倍数。

第一队为 20 时,20+15+16+49=100 ;

第一队为 40 时,40+30+32>100 舍去。

所以, 20+15+16+49=100 为唯一解,即:第四队有 49 人。

ps:也可将第一队设为 k 人,三队之和 =51k / 20 ;显见, k 应为 20 的倍数。

只有 k=20 时有解。

13、足球赛门票 15 元一张,降价后观众增加了一半,收入增加了五分之一,每张门票降价多少元?

【答案】

观众增加一倍,即原来只有一个人来看,现在是两个人来看。收入增加 1/5 ,即现在两个人的总票价比原来一个人时单人票价多 1/5 ,为 15×(1+1/5 )=18元

平均每人 18/2=9 元

比原来降低了 15-9=6 元

降低了 6/15=40%

答:解:15-15 ×[ (1+1 /5 )÷( 1+1 /2 )

=15-15 ×[6 /5 ÷3 /2 ]

=15-15 ×[6/ 5 ×2 /3 ]

=15-15 ×4/ 5

=15-12

=3 (元)

8.六年级奥数练习题及答案 篇八

答案与解析:

人的头发不超过20万根,可看作20万个“抽屉”,3645万人可看作3645万个“元素”,把3645万个“元素”放到20万个“抽屉”中,得到

3645÷20=182……5根据抽屉原则的推广规律,可知k+1=183

答:陕西省至少有183人的头发根数一样多。

2、已知一个正方形的对角线长8米,求这个正方形的面积是多少?

答案与解析:

①做正方形的另一条对角线。得到四个完全相同的等腰直角三角形。

②一个等腰直角三角形的面积是:

8÷2=4(直角边)

4×4÷2=8(平方米)

③四个等腰直角三角形的面积,即正方形的面积。

9.六年级奥数全真练习题目 篇九

昨天大家帮助萧菲解决了她的.一个疑问,告诉了萧菲她走楼梯共有61034种走法?萧菲想这个数这么大呀,是不是我的年龄24岁的倍数呢?如果不是这个数除以24余多少呢?亲爱的小朋友,你们可以回答她的这个疑问吗?

解析:610不是3的倍数,所以61034也不是3的倍数。因此这个数不能整除24。

610÷24=25……10

6102÷24余4

6103÷24余16

6104÷24余16

……

上一篇:岗位大练兵的心得体会下一篇:游葡萄沟叙事作文