对数的运算教学反思(共10篇)(共10篇)
1.对数的运算教学反思 篇一
发表时间:2014/12/9 来源:《教育学》2014年9月总第70期供稿 作者:方 俊
[导读] 高中的学习是为以后大学的学习或者走向社会做准备的,合作探究可以让学生更独立,更善于表现自己。
方 俊 浙江省金华市宾虹高级中学 321000
摘 要:对数与对数运算是对数的第一节课,主要的内容是对数概念及对数指数的互化、对数的简单运算等内容,而对数与指数的互化是后面学习对数函数的基础,所以本节课的重心就放在对数指数互化上。本节课蕴含转化化归、归纳类比、函数与方程、数形结合等基本数学思想方法。
关键词:对数 对数运算 对数指数互化
【教学目标】1.通过归纳与类比,理解对数概念与指数概念的相互关系,能进行对数式与指数式的互化;了解两个特殊对数;发现对数的基本性质及相关运算公式;了解对数恒等式的实质。2.通过类比发现与归纳发现,让学生体验探究问题的过程,提高学生运用类比和归纳方法的意识。3.通过探究发现, 帮助学生认识数学知识的内在联系与相互转化,从发现中体验成功,进一步提高学习和探索兴趣。
【教学重点】对数的定义,对数式与指数式的互化。
【教学难点】对数概念的理解,对数性质和相关公式的发现。
【教学手段】多媒体辅助教学。
【自主学习】
一、概念引入
1.借助类比感受对数概念的必要性
乘方:xn=b,开方:x= b(a≥0),指数:ax=N(a>0,且a≠1,N>0)
问题1:知道a,x可以求N,那么知道a,N可以求x吗?如何求?
设计意图:通过与已知互逆运算的类比,激发学生学习兴趣,为学生的探究指明方向,同时让学生感受引入对数概念的必要性。
2.通过特例感受引入对数概念的意义
你能求出下列方程中的x吗?
(1)2x=
2(2)5x=625(3)6x=-6
(4)10x=7
利用几何画板画出(4)的图像(略)。
设计意图:打开学生思维。通过(4)让学生回忆指数函数的图像和性质,发现x的值存在且唯一,从而使学生体会到引入对数概念的必要性、合理性。
二、概念讲解
1.定义概念
定义:若ab=N(a>0,且a≠1),则b称为以a为底,N的对数,记作b=logaN。
2.概念解读
(1)读法:以a为底,N的对数。
(2)写法:
(3)概念:让学生完成人教A版必修一的相关表格,了解指数与对数的相关量的关系。
(4)由指数和对数的关系可知,对数的真数N>0,底数必须a>0,且a≠1。
(5)互化:
设计意图:落实双基,通过与已有认知结构中相关知识建立更强的联系,实现“理解基础上的记忆”和“记忆基础上的理解”的相辅相成。
三、巩固概念
1.互化练习
练习1:指数式化对数式
(1)1.07x=2(2)3x=9(3)()-1=2(4)54=625
练习2:对数式化指数式,并判断下列对数式是否正确。
(1)log749=
2(2)log2()=
4(3)log5125=3
(4)log 9=-
(5)log 2=2
设计意图:让学生感受对数与指数的内在联系。
简单的指数函数同学们可以通过笔算直接求值,复杂的指数运算可以借助计算器,那复杂的对数运算也可以借助计算器(展示计算器实物和说明书),同学们发现说明书中对数运算有三种模式:logab,lg,ln由此介绍常用对数和自然对数。
2.特殊对数
(1)常用对数。以10为底的对数叫常用对数,log10a简记作lga。
(2)自然对数。以e为底的对数叫自然对数,logea简记作lna(e≈2.71828)。
此处同学们会对e存在疑惑,教师趁机介绍《不可思议的e》
四、合作探究
1.利用指数,求下列对数的值:
1.(1)log 1(2)lnl(3)log21(4)lgl
2.(1)log22(2)lne(3)log(4)lg10
3.(1)log525(2)lne2(3)log3(4)lg100
探究:对以上各组练习进行观察归纳,能发现什么规律。为何会有上述规律?
设计意图:通过练习让学生更强烈地感受到对数与指数的内在联系。
2.归纳特殊,发现一般规律
总结:
(1)a0=1,所以loga1=0(a>0,a≠1)。
(2)a1=a,所以logaa=1(a>0,a≠1)。
(3)an=an,所以logaan=n(a>0,a≠1)。
五、当堂检测
计算下列各式并改写成指数形式。
(1)log
(2)log2
32(3)log327
(4)log(5)log 1
六、课堂小结
基本知识:对数的定义,特殊对数,对数的简单性质,学会了对数和指数的互化以及对数的简单计算。
思想方法:归纳、猜想、证明等方法,类比思想、方程思想、函数与方程思想、数形结合思想。
七、作业
必修1:P64
1.(3)(4)2.(1)(4)3.(2)(4)4.(3)(4)
八、教学设计的说明和教学反思
新课程理念下,学生是教学活动主体,教师只是教学中的组织者、推动者,而不是单纯的知识传授者,教师的教学应遵循学生的认知规律,给学生充分的时间去发现、接受新知。对数是一个全新的概念,从方程ax=N(a>0,且a≠1,N>0)入手,再通过4个具体的指数方程,让学生觉得现有的知识不够用了,从而引入对数的感念就水到渠成了。
新引入的概念,一定要给学生充分的时间消化,从以往的教学中发现对数的写法会出现底数、真数不分的情况,所以此次教学在对数的写法上放慢脚步。对数概念的理解的重点是指数式、对数式的互化,这个本质理解了,对数的底数、真数的范围自然也理解了。对数指数的互化贯穿了本节课的始终。
通过练习
1、练习2让学生对指数、对数互化有更深刻的理解。此2个练习主要让学生通过小组合作学习完成,合作学习是现有的学习方法中较好的学习方法,能够很好地调动学生的积极性,而且同学之间进行思想上的交流有时候比老师、学生之间的交流更能让学生接受,学生更勇于提出自己的想法,其实数学的学习也要敢想敢说,做错数学题并不可怕,可怕的是不知道自己会做错。我在教学中也不断地向学生潜移默化地传播这个理念。高中的学习是为以后大学的学习或者走向社会做准备的,合作探究可以让学生更独立,更善于表现自己。
以往老师上课不敢把课堂放开给学生,这或许是怕教学进度会落下来,或许也有对学生的不信任吧?这堂课给我最大的感受是要相信学生,学生比我们想得更聪明,而且他们集思广益,总能给课堂带来惊喜,所以以后应多给学生机会合作思考,学生能做的教师绝不包办代替。
数学有其学科特点,数学不像有的学科那么多姿多彩,数学的学习比较枯燥,很多学生畏惧数学,所以数学的教学要遵循学生的认知规律,由简到繁,由易到难,让每个学生都能参与进来,为之则难着亦易矣,不为则难者亦难矣。每天参与一点点,时间久了积少成多,数学学习的困难就越来越少。
2.对数的运算性质教案 篇二
3.2.1对数的运算性质
一、教学目标
1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题; 2.通过法则的探究与推导,培养学生从特殊到一般的概括思想,渗透化归思想及逻辑思维能力;
二、教学重难点
对数的运算法则及推导与应用;
三、教学方法建议
类比联想,观察验证、推理证明
四、教学过程
教学流程
1、学生背诵:(A)对数的定义:(A)有理数指数幂的运算性质
2、(B)学生展示
(1)已知loga2=m,loga3=n,求amn的值.
(2)设logaM=m,logaN=n,能否用m,n表示loga(M·N)呢?观察教材P75中3-2-1中的数据,可以发现对数的哪些运算性质:
3、学生互批
学生批改,教师强调学生展示错误的问题
4、精讲归纳
对数的运算性质:(C)(1)loga(M·N)=logaM +logaN(a>0,a≠1,M>0,N>0);
(2)logMaN=logaM -logaN(a>0,a≠1,M>0,N>0);(3)logM na=nlogaM(a>0,a≠1,M>0,nR)典型例题: 例1(1)log
355125;(2)log2(2·4);
教学方法
类比联想 观察验证,推理证明
对数的运算法则
例2 已知lg2≈0.3010,lg3≈0.4771,求下列各式的值(结果保留4位小数):
(1)lg12;(2)lg2716;
五、课堂检测
1(C)求下列各式的值:
(1)lg25lg(2)log345log35
2(C)已知lg2=a,lg3=b,试用含a,b的代数式表示下列各式:(1)lg54;(2)lg2.4;
(3)教材76页练习1-5
六、教学反思
3.对数运算性质的应用教案设计 篇三
一、内容及其解析
(一)内容:对数运算性质的应用。
(二)解析:本节课是于对数运算性质的一节后延课,是高中新课改人教A版材第二章的第二节的第三节课.在此之前,学生已经学习过了对数的概念、指数与对数之间的关系,并且利用指数与对数的关系推导出了对数的运算性质,对数的换底公式就是在此基础上展开讨论的。本节课的重点是对数的换底公式;难点是换底公式的证明及应用。从指数与对数的关系出发,证明对数换底公式,有多种途径,在中要让学生去探究,对学生的正确证法要给予肯定;证明得到对数的换底公式以后,要引导学生利用换底公式得到一些常见的结果,并处理一些求值转化的问题。
二、目标及其解析
(一)教学目标
1.掌握并能够证明对数的换底公式;
2.正确应用换底公式得到其变形结果,能利用它将对数转化为自然对数或常用对数来计算,体会转化与化归的数学思想;
3.通过本节课换底公式的证明及前一节课对数运算法则的推导过程,培养学生应用已有知识发现问题及解决问题的能力,体会数学内在的逻辑性,发现数学美,提高学生学习数学的热情。
(二)解析
1.掌握并能够证明对数的换底公式指的是:熟记换底公式,能够证明换底公式;
2.正确应用换底公式得到其变形结果指的是:能利用换底公式得到一些常见结论(即换底公式的变形公式),对于具体的求值问题,能够选择适当的底数进行转化,从而简化计算;
3.对数的运算性质及换底公式的推导和证明,可以有不同的顺序,各条性质之间有些也能互相推导,也可以转化为定义推导,对于具体的求值问题,可以应用不同的性质来解决,非常灵活,但不困难,题目做起来非常有趣;通过这部分内容,培养学生的数学能力,感受数学学科的特点,激发学生学习数学的兴趣。
三、问题诊断分析
本节课容易出现的问题是:针对具体问题学生不能选择适当的底数来应用换底公式。出现这一问题的原因是:学生对换底公式尚不太熟悉,转化的`能力也有待提高。要解决这一问题,教师要通过对换底公式的变形公式的探究及具体的例子,让学生自主探究,必要时给予适当引导,让学生学会分析问题,逐步掌握换底公式的应用。
四、教学过程设计
(一)情景导入、展示目标
1.对数的运算性质:如果 a >0 , a ? 1, M >0 ,N >0, 那么
(1)
(2) ;
(3) .
2.换底公式
其中
两个重要公式: ,
(二)合作探究、精讲点拨
例1.( 1).把下列各题的指数式写成对数式
(1) =16 (2) =1
解: (1) 2= 16 (2)0= 1
(2).把下列各题的对数式写成指数式
(1)x= 27 (2)x= 7
解:(1) =27 (2) =7
点评:本题主要考察的是指数式与对数式的互化.
例2计算: ⑴ ,⑵ ,⑶ ,⑷
解析:利用对数的性质解.
解法一:⑴设 则 , ∴
⑵设 则 , , ∴
⑶令 = ,
⑷令 , ∴ , , ∴
解法二:
点评:让学生熟练掌握对数的运算性质及计算方法.
例3.利用换底公式计算
(1)log25?log53?log32 (2)
解析:利用换底公式计算
点评:熟悉换底公式.
五.课堂目标检测
1.指数式化成对数式或对数式化成指数式
(1) =2 (2) =0.5 (3)x= 3
2.试求: 的值
3. 设 、、为正数,且 ,求证: .
六.小结
4.对数的运算教学反思 篇四
管理提醒: 本帖被 清水煮音 执行加亮操作(2008-12-02)
(今天偶然居然发现很多网站转了我的帖子,转载要注明来源,包括华图的一些网站,整理和总结是劳动成果,要尊重!还有很多人不明白权重的那题,我这里统一说明一下,7*3+2+3是三辆车上每车7人,五个工厂需要4的6的和7的车上的够用了,还有要9的和10的车上不够用,所以要加上2、3.在做题中体会到在考试中最重要的还是心气,就像NBA赛场上最后几秒的绝杀所需要的,每道题都要在51秒秒杀,所以大家吃好睡好,在考场上考出霸气)首先声明本贴仅供学习交流,禁止转载。数学运算可以说是行测当中最费时费力的一种题型了,具有速度和难度测验的双重性质,这类题型测试的范围很广,涉及的知识点很多,但是2/3的部分都是基础部分,我们需要把这些基础部分的方法牢记,掌握主要的题型有路程问题、工程问题、尾数计算问题、比较大小问题等,其他类型的问题会在更新中不断增加,其关键还是要掌握方法,能熟练掌握方法就能在考场上大大节约时间。同时要掌握一些常用的数学技巧,尽量用简便方法,理解题意,掌握一定的题型和解题方法,加强训练,主要练速度。那么下面针对这几种题型在国考中的真题来讨论一下解题方法。基础板块
1、路程问题,这类问题分为相遇问题、追及问题、流水问题
相遇问题要把握的核心是“速度和”的问题,即A、B两者所走的路程和等于速度和*相遇时间;追及问题要把握的核心是“速度差”的问题,即A走的路程减去B走的路程等于速度差*追及时间;流水问题,为节省空间只需记住以下结论:船速=(顺水速度+逆水速度)除以2,水速=(顺水速度—逆水速度)除以2.当然题目不会单纯明显的考你相遇、追及、流水问题,存在许多变形。
(03中央)姐弟俩出游,弟弟先走一步,每分钟走40米,走了80米后姐姐去追他。姐姐每分钟走60米,姐姐带的小狗每分钟跑150米。小狗追上了弟弟又转去找姐姐,碰上了姐姐又转去追弟弟,这样跑来跑去,直到姐弟相遇小狗才停下来。问小狗共跑了多少米? A.600米
B.800米
C.1 200米
D.1 600米
答案:A设x分钟后相遇,则40x+80=60x。则x=4。
因小狗的速度为150米/分钟,故小狗的行程为150×4=600,故A正确
2、工程问题,个人觉得这类题目还是比较简单的,可以把全工程看做1个单位,工作要N天完成其工作效率就是1/N,两人共同完成就是1/n1+1/n2,工程问题有许多变形,如水池灌水之类的,思路是一样的。
(07中央)一篇文章,现有甲乙丙三人,如果由甲乙两人合作翻译,需要 10 小时完成,如果由乙丙两人合作翻译,需要12 小时完成。现在先由甲丙两人合作翻译4 小时,剩下的再由乙单独去翻译,需要12 小时才能完成,则,这篇文章 如果全部由乙单独翻译,要()小时能够完成.
A.15
B.18
C.20
D.25 答案:A各自设为 1/X,1/Y,1/Z,列出方程即可求解
3、尾数计算问题,对于此类问题要知道,和的尾数是一个加数的尾数加上另一个加数的尾数,差、积、商都有同样的道理
(05中央)173*173*173-162*162*162=()
A.926183
B.936185
C 926187 D 926189 答案:D 因为3*3*3-2*2*2=19,所以是D
4、比较大小问题,有三种方法作差、作商、找中间值,找中间值比较经典。比如4/9,3/7,151/301,拿它们分别与1/2比较就可以看出大小了。
5、过河问题,这种问题是比较恼人的题目,不过掌握了方法后还是知道如何应对的。先看题目
有a,b,c,d四人在晚上都要从桥的左边到右边。桥一次最多两人,只有一个手电,过桥必须手电。四人过桥速度a2分钟,b 3分钟,c 8分钟,d 10分钟,走得快的要等走得慢的,问所有人过最短要()分钟
A 22
B21 C20 D 19 答案:B这类题目要按这种顺序来
1、过河最短次最短先过
2、已过的最短时间的人返回
3、过河最长时间的和次最长的过
4、已过次最短的人返回
5、剩下过河时间最短和次最短的人过河,重复以上过程直至走完
6、日期问题,这种问题主要就是看最后的余数。你比如 2003 年 7 月 1 日 是星期二,那么 2005 年 7 月 1 日 是:
A 星期三 B 星期四 C 星期五 D 星期六
答案:C。2004 年是闰年,共有 366 天,所以从 2003 年 7 月 1 日 到 2005 年 7 月 1 日 共有 731 天。731 除以 7 的余数等于 3,2003 年 7 月 1 日 是星期二,则 2005 年 7 月 1 日 是星期五。
7、缴费问题,这种问题有几种方法,常规方法速度慢,这里只讲速度最快的方法。如:(08中央)为节约用水,某市决定用水收费实行超额超收,标准用水量以内每吨2.5元,超过标准的部分加倍收费。某用户某月用水15吨,交水费62.5元,若该用户下个月用水12吨,则应交水费多少钱?
A.42.5元
B.47.5元
C.50元
D.55元
答案:B如果该用户15吨水全部都交5元钱/吨,则他应当交75元水费,比实际缴纳额少了12.5元。少缴纳的12.5元是因为未超出标准用水量的部分每吨少缴纳2.5元。因此标准水量为12.5÷2.5=5吨,知道标准水量剩下的直接求就可以了。
8、鸡兔同笼的变式,这种题目的思想是假设,假设全是鸡,算出脚数,与题目中给出的脚数比较,看差多少,每差一个(4-2)只就说明有一只兔子,将所差脚数除以(4-2),就可以求出兔子数,同理假设全是兔,可以求出鸡数。
例:红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?
解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有:
蓝笔数=(19×16-280)÷(19-11)=24÷8=3(支).红笔数=16-3=13(支).答:买了13支红铅笔和3支蓝铅笔.对于这类问题的计算,经常可以利用已知脚数的非凡性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是8×(11 19)=240.比280少40.40÷(19-11)=5。就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3.30×8比19×16或11×16要轻易计算些.利用已知数的非凡性,靠心算来完成计算.实际上,可以任意设想一个方便的兔数或鸡数。例如,设想16只中,“兔数”为10,“鸡数”为6,就有脚数
19×10 11×6=256,比280少24。
24÷(19-11)=3,就知道设想6只“鸡”,要少3只。要使设想的数,能给计算带来方便,经常取决于你的心算本领。
9、牛吃草问题变式
牛吃草原题,天气变冷,牧场上草以每天均匀速度减少。经计算,牧场草可供20头牛吃5天,或者16头牛吃6天。那么可供11头牛吃几天?
这类问题的数量关系是(牛数*吃草较多天数-牛数*吃草较少天数)/(吃草较多天数-吃草较少天数)=草地每天新长草量
牛数*吃草天数-草地每天新长草量*吃草天数=原有草量,把握这两个式子这类问题就OK啦 例:有一个水池,池底有一出水口,5台抽水机20小时抽完,8台抽水机15小时抽完。仅靠出水口出水,要多长时间出完?
A 25小时
B 30小时
C 40小时
D 45小时
答案:D 每小时漏水(8*15-5*20)(/20-15)=4份水,原来有水8*15+4*15=180份,故180/4=45小时
10、时钟问题的所有解法,解时钟方面的问题一般是做两面钟的时差或者速度比,另外记住这几个结论也是相当的重要的,时针每小时走30度,分针每小时走360度,分针走一分钟(6度),时针走0.5度,两者速度差为5.5度。另外涉及钟表图形时候你可以画个草图,分针是要比时针长。
(05中央)一个快钟每小时比标准时间快 1 分钟,一个慢钟每小时比标准时间慢 3 分钟。如将两个钟同时调到标准时间,结果在 24 小时内,快钟显示 10 点整时,慢钟恰好显示 9 点整。则此时的标准时间是:
A 9 点 15 分 B 9 点 30 分 C 9 点 35 分 D 9 点 45 分
答案:D(快钟-标准):(标准-慢钟)=1:3,那么当快钟10点,慢钟9点,按1:3进行时间划分就可以得到标准时间是9点45了
从12点到13点,钟的时针和分针可成直角的机会有()A 1次 B2次 C 3次 D 4次
[yc]答案:B理论上可以判断出2次,分别是90度和270度的时候,要确认下,角度差/速度差=分钟数,即90/5.5<60分钟,270/5.5<60分钟,都在60分钟里,所以2次都成立[/yc]
11、页码问题,页码问题我感觉是简单的,只要记住这些结论页码为一位数用1-9页码,用9个数字;页码为两位数用10-99页码,用了180个数字;三位数100-999页码,用2700个数字;一般最多到三位数,记住这些大可放心,那么你根据题目给出的所用数字,看下在哪个范围,然后再算。
(08中央)编一本书的书页,用了270个数字(重复的也算,如页码115用了2个1和1个5,共3个数字),问这本书一共有多少页?
A.117 B.126 C.127 D.189 [yc]答案:B一眼可以看出180<270<2700,说明有三位数的页码,270-(180+9)=81,81/3=27,从100页开始,到126页,恰好有27页[/yc]
12、统筹问题,这种问题06、07中央题目都出现了,08没有出现,09就有希望了。主要对策就是能直接算出来、直接推出来的就直接算、直接推,不能的话就用权重系数比较顺手。一个车队有三辆汽车,担负着五家工厂的运输任务,这五家工厂分别需要 7、9、4、10、6 名装卸工,共计 36 名;如果安排一部分装卸工跟车装卸,则不需要那么多装卸工,而只需要在装卸任务较多的工厂再安排一些装却工就能完成装卸任务。那么在这种情况下,总共至少需要要()
名装卸工才能保证各厂的装卸需求?
A.26
B.27
C.28
D.29
答案:A。常规方法不用了,好烦,权重系数就设五家工厂权重系数为7、9、4、10、6,假设车上权重为7,总权重为7*3+2+3=26;再假设车上系数为6,结果还是26,依次类推,就可以得到正确答案。
13、抽屉原理及其应用
数学中的抽屉原理源自生活中的普遍现象,三个苹果放入两个抽屉,每个抽屉必须有苹果,则总有一个抽屉有两个苹果。
(08江苏A类)将104张桌子分别放到14个办公室,每个人办公室至少放一张桌子,不管怎样分至少有几个办公室的桌子数是一样多?()
A.2
B.3
C.7
D.无法确定
若要让办公室中桌子数不同,可以按自然数列分放,那么14个房间需要 张,故最少有2个办公室的桌子数是一样的。故选A。
提升版块对于另外一些问题我认为没有有效的方法或者有方法但是很麻烦,这时候就需要我们上升到一个高度,利用数学精神和数学思想来进行解题,这是数学的精髓和提高速度的有效方法。
1、极限思想,如:(08中央)相同表面积的四面体,六面体,正十二面体以及正二十面体,其中体积最大的是:
A.四面体
B.六面体
C.正十二面体
D.正二十面体
答案:D。这个题目应该说没有直接的方法,这里我们就要利用极限的数学思想,当表面积相同的时候,最大的应该是球体的体积,这些正多边体中,如果边数越多,越趋近于球体,那么很快就可以得到是D选项
2、整除验证思想,这种题目出现得很多,就是你要在已知条件下就出一个关系式,比如A=7B,那么找A的答案就可以找7的倍数而不用具体的求出来。你比如
某班男生比女生人数多 80%,一次考试后,全班平均成级为 75 分,而女生的平均分比男生的平均分高 20%,则此班女生的平均分是:
A .84 分
B.85 分
C.86 分
D.87 分
答案A。设男生成绩是a,那女生的就是1.2a了,你直接到答案中找能被1.2除尽的就可以找到A了,而不用去列出方程来慢慢求。
3、十字相乘解比例问题,很多人还不知道十字相乘方法,这里顺便介绍下,会的巩固,不会的学习。十字相乘不仅数量运算有效,对资料分析中的比例问题也相当有效。
原理是这样:一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A的个体与取值为B的个体的比例。假设A有X,B有(1-X)。AX+B(1-X)=C,X=(C-B)/(A-B),1-X=(A-C)/(A-B)因此:X∶(1-X)=(C-B)∶(A-C)
上面的计算过程可以抽象为:
A
C-B
C
B
A-C 这就是所谓的十字相乘法。总均值放中央,对角线上,大数减小数,结果放在对角线上,看下例子就会了。
(07中央)某离校 2006 毕业学生 7650 名,比上增长 2 %.其中本科毕业生比上减少 2 %.而研究生毕业生数量比上增加10 % , 那么,这所高校今年毕业的本科生有:
A .3920人
B .4410人
C .4900人
D .5490人
[yc]答案:C去年毕业生一共7500人,7650÷(1+2%)=7500人。
本科生:-2%
8%
2%
研究生:10%
4%
本科生∶研究生=8%∶4%=2∶1。7500×2/3=5000 5000×0.98=4900 这所高校今年毕业的本科生有4900人。[/yc]
4、最佳假设法
看例题(07中央)学校举办一次中国象棋比赛,有10 名同学参加,比赛采用单循环赛制,每名同学都要与其他9 名同学比赛一局.比赛规则,每局棋胜者得2 分,负者得O 分,平局两人各得l 分.比赛结束后,10 名同学的得分各不相同,已知:
(1)比赛第一名与第二名都是一局都没有输过;(2)前两名的得分总和比第三名多20 分;
(3)第四名的得分与最后四名的得分和相等.那么,排名第五名的同学的得分是:
A.8 分
B.9 分
C.10 分
D.11 分
(1)要明白每场比赛产生的分值是2分。
(2)要明白比赛一共进行了45场。因此产生的分数总值是90分。
(3)个人选手的最高分只能是18分,假设9场比赛全部赢。根据(1)比赛第一名与第二名都是一局都没有输过,可以得出第一名一定和棋过。要是第一名全部赢了,那么第二名一定输过棋。这说明第一名最多17分,第二名最多16分。
第一名和第二名的总分最多33分。在这种假设下,第三名分数为13分。假设第四名为12分,第7,8。9。10。名的分数和为12分。第五名为11分,第六名分数为9分。因此。答案选D。
5、方程设而不求的思想
最典型的就是小张、小李、小王三人到商场购买办公用品,小张购买1个计算器、3个订书机、7包打印纸共需要316元,小李购买1个计算器、4个订书机、10包打印纸共需要362元。小王购买1个计算器、1个订书机、1包打印纸共需要
A.224元
B.242元
C.124元
D.142元 A+3B+7C=316 A+4B+10C=362 下-上得到:B+3C=46,得到:3B+9C=138,A+4B+10C=362 3B+9C=138 上-下得到:A+B+C=224 甲乙二人分别从相距若干公里的A、B两地同时出发相向而行,相遇后各自继续前进,甲又经1小时到达B地,乙又经4小时到达A地,甲走完全程用了几小时
A.2
B.3
C.4
D.6 [yc]甲X,乙Y。XT/Y=4
5.对数函数教学反思 篇五
本节课在备课组全体老师集体备课后,课堂教学设计完成得很好,课件的制作精美实用,学案的设计适当充分。各人再根据具体班级的情况去修改某些细节。
本节课在学习了指数函数及其性质以后,学生通过类比学习的方法很容易进入学习探究的状态,因此我还是采用了知识迁移及类比的学习方法进行本节课的设计。
回顾了指数函数的概念及性质以后,通过把指数式写成对数式的小练习,学生很轻松的完成把指数函数式写成对数函数式。进而引出课题。学生自主阅读课本70页内容后完成学案的第一部分,基本上能够理解对数函数的概念。并且很自觉的主动动手画图,观察图形得出性质,在性质的分析环节中,给予简单的提示(如,从图形观察特征,并用数学符号语言描述等),学生基本上能够运用类比指数函数的性质,说出对数函数的定义域、值域、单调性、过定点、函数值的变化情况等,性质的应用的设计我只采用了比较大小及求定义域两个例题及练习。学生完成得还不错,但在时间上还应多给予学生独立思考的时间。还需加强习题的变式能力。
6.《运算定律》的教学反思 篇六
这次她能听我的随堂课,是一次很好的学习机会。正如学校领导所说的那样是对我的课堂教学的把脉与诊断。在《运算定律》这节课备课前拜读了吴教授的《小学数学新视野》,也试图想把新基础的教育理念能体现在这节课中,但是从课堂执行情况看,教学理念的更新不是搬家这样的概念,学习新基础理论也不是一种即兴状态,要想把新基础理念运用到实践上还要*平时的“练功”,那是一种主动的教学意识的转变。就目前每个教师已经形成的课堂习惯而言,这样的转变在起始阶段是艰难的。听了吴教授的评课我也了了解自己的上课状态。
一.对“从容”的重新认识
对“从容”一词的理解无非停留与遇到紧急的事情冷静、镇定不慌不忙。如果用在教学上,最多是在上课时遇到紧急的情况下也能泰然处之的一种状态。这样的状态要在刚踏上工作岗位时却是需要这样的“从容”,生怕慌乱情急之中乱了教学次序,然而已有近十年工作时间的我“从容”已不再是一向首要的教学指标了,把“拿什么来从容”应该是我的教学追求的目标。对这一词的理解已经不能停留在教师身体的层面,更应拓展到师生身心合一后的一种从容,是教师能处理各种教学意外后的一种从容,从容的背后反映了教师的综合素质的能力。
二.对“激情”的再次认可
“激情”原本在我眼里那应该是语文老师的上课状态,因为那是课文的需要,情感培养的需要,而在数学课上如果把“激情”放在首位的话,有些喧宾夺主的味道,所以几年来课堂教学中这样的做作情绪本人一直处于不屑一顾的鄙视,长期下来在造成上课“平”的现象。在听了吴教授的评点之后,我非常赞同她提出的关键时刻释放“激情”,能调动学生强烈的求知欲望。如这节课中,引导学生对规律的验证时,应对突出一些重点的关键词,能帮助学生对规律的验证有一定的指向。只有教师本身积极的投入到教学中,那么学生才有可能对你有一个“热情”的回应,这种回应主要体现的学生的思想意识上的回应。
三.对“数学素养内涵”的拓展认识
在《小学数学教师》第10期《教师应追回失落的数学素养》一文中谈到了有关数学教师的素养问题,这次吴教授也在评点中谈到了这个问题,看来面对当前的课程改革教师的数学素养是一个非常关注的问题。数学教师应当具有广泛的知识背景,不仅要明了小学数学知识的背景、地位与作用,精通小学数学的基础理论知识,熟悉小学数学内部的系统结构。其中包含四个方面:
1、培养学生学习数学兴趣能力,以此激发学生的学习数学积极性。
2、抓住课堂上动态生成的资源,作为活的教育资源,引发进一步的思考,这些亮点有助于学生数学学习的顿悟、灵感的萌发、瞬间的创造,促进学生对新知理解和掌握。
3、合理运用数学知识迁移,利用学生已有的数学知识水平,进行合理的数学知识迁移,从而为新知的形成成为可能,变繁琐为简单数学知识学习,变枯燥为有趣数学知识学习。
4、引导学生从数学角度去思考问题。义务教育阶段的数学教育给学生带的绝不仅仅是会解更多的数学题,而是非数学问题时,能够从数学的角度去思考问题,能够发现其中所存在的数学现象并运用数学的知识与方法去解决问题。这是目前作为教师的我只注重提高数学教学质量时缺少思考的方面,数学学科质量不能仅仅停留于学生“做”的过程,忽视了自身“思与行”的反思。
四.重新认识“数学学科育人价值”
数学学科的育人价值在我眼中无非是培养严谨科学的学习态度,养成良好的思维品质就可以了。听了吴教授对数学学科育人价值的阐述后,我觉得“人人都是教育者”这句话的真正理解。作为无论你是哪门学科的教师,都应该充分挖掘育人资源,因为这是每个教师共同的责任。
“新基础教育”数学教学的改革,从原来关注数学知识的层面向更深的层次开发。数学学科对于学生的发展价值,除了数学知识本身以外,至少还可以提供学生特有的运算符号和逻辑系统,使学生具有数学的语言系统;可以提供学生认识事物数量、数形关系及转换的不同路径和独特的视角,使学生具有数学的眼光;可以提供学生发现事物数量、数形关系及转换的方法和思维的策略,使学生具有数学的头脑;可以提供学生一种惟有在数学学科的学习中才有可能经历和体验并建立起来的独特的思维方式。
“教书”是为了“育人”,“育人”就需要育人的资源,这样的资源来自:
1.以数学知识的内在结构作为育人资源
2.以数学知识创生和发展的过程作为育人资源
3.以数学发明的人和历史作为育人资源
4.以学生的学习基础和生活经验作为育人资源
5.以开放的问题设计提升数学教学的育人质量。
7.《实数的运算》教学反思 篇七
教学任务二:如能化简算式,则先化简,再用计算器计算,这样能使计算方便。对于学生当然也想利用计算器一次性得出,这样都好,不用计算,结果也成功。这样学生觉得挺方便的,你说先化简简单方便,谁信?这里我觉得教案设计不恰当,不了解学情,没能做到备学生。所以做了更改,补充一题:我想现在你总没办法一次性按出结果吧!这时就可以顺水推舟、水到渠成完成任务二。
到课堂里,果真学生就一次性得出结果,我就继续拿出第三题,这下你该没招了吧,有学生在叫:中括号没有怎么办?我就借机引导:那能否把它处理一下,化简变得简单点,再利用计算器。可是还有些同学不可罢休,继续在思考尝试,终于得出结果来,用小括号代替中括号,不影响运算顺序。这下我咋办?还是硬拉着学生先化简,可是还些同学在嘀咕,这样太麻烦了,还不如直接用计算器简单;有些同学干脆不听你的。我气得只拍桌子,那效果就不用说了。
下课后,我心里很不是滋味,边走边埋怨学生,在回办公室的路上碰到上同一级段的数学老师,正好她也上这节课,也很气很糟糕,这样我就来到她的办公室进行讨论交流起来,
她也同感,上了后很气,学生只管自己的,根本不吃老师的一套,教材安排的用意何在呢?若是让学生理解有理数的运算法则和运算在实数范围内同样适用,以及掌握运算顺序等,那通过哪些教学环节或教学活动来达到目的呢?显然教材没有(因为使用计算器,学生根本体验不到计算的顺序,只能通过教师的讲授,效果大打折扣)。教材应该安排一些乘方、开方(开得尽方)和加减、乘除之类的混合运算,让学生在计算中体验和掌握实数运算的顺序以及有关法则与运算律。这是其一。其二,如能化简算式,则先化简,再用计算器计算,这样能使计算方便。请问:什么叫方便?对学生来说,把式子一次性输入计算器马上得出答案,应该是方便,干嘛还要化简呢?再说,这化简对学生来说难度可大了,特别是分配律,符号可令学生头痛啊!自然学生极力排斥,没法落实教学目的,这又是教材编制失败之处。而化简计算能力正是需要培养训练的,为下面整式的化简作好准备。如设计恰当可一箭双雕,既可巩固运算的顺序,也可让学生产生冲突,能化简的非化简不可,进而培养学生养成先化简后计算的习惯。那咋设计更好呢?随着科技的发展,计算器功能越来越多,而教材上例2式子的计算计算器就方便的完成,已失去原有的功能。必需另行设计。
从以上的反思可看出,不管是笔者还是编教材者,只是单方面思考,没有从学生的角度思考分析,更欠缺的是只想不做,让学生做的,教师先要做,是否可行,作为例题编者事先
8.分数混合运算的教学反思 篇八
在教学了分数乘法的基础上又学习了分数除法和加减法混合运算的计算题,我原以为这部分知识很简单。呵呵!没有想到,错的人还真不少。我真佩服学生们的“创造能力”。细究其类型,主要有以下三种:一是乘法和加减法计算方法混淆,不少学生做加法时也约分,而在我强调之后又出现个别的学生乘法计算通分的笑话。二是不能灵活运用运算定律来使计算简便,特别是分数乘法分配律的相关计算,原先的整数小数的基础就不够好的学生,碰到分数更是一塌糊涂啦!三是一般计算题和简便计算题混淆,将不能用简便方法的也给你发明个“简便”方法出来,哎,真拿他们没办法呢!
针对这些现象我采取了以下措施:一引导学生回顾分数乘法和加减法的意义,追溯求本,理解各自的意义;二联系分数乘法和加减法各自的计算方法,并采取针对性练习(即数不变、运算符号改变);三复习整数、小数的与之相关的简便运算,并对常见的分数乘法简便运算的题型予以分类整理,辅之对应练习;四是加强审题的训练,让学生学会判断。其实最主要还是抓班级里学习有困难的学生,因为这些错误类型几乎都是由他们所创。
9.有关0的运算教学反思 文档 篇九
有关0的运算的教学反思
这节课由讲《0和1的故事》导入,激发学生的学习兴趣。先让学生完成导学案中有关0的练习题,复习旧知,然后对所做的练习题进行分类,并按分类的结果试着归纳0的四则运算。然后对子交流、组内交流,解决自学中的疑难,最后在班内展示。让学生重点展示:0为什么不能做除数?并作举例说明。老师适时点拨。让学生真正明白0不能做除数的原因。
通过写达标测评,发现学生基本上能掌握0的四则运算,但是在计算过程中由于马虎还会出错,以后要多加练习。
10.对数的运算教学反思 篇十
高考网
3.2.1对数及其运算
(二)教学目标:理解对数的运算性质,掌握对数的运算法则 教学重点:掌握对数的运算法则 教学过程:
1、复习:(1)、对数的概念,(2)、对数的性质,(3)、对数恒等式
2、推导对数运算法则:
logaMNlogMNaMlogaN
logalogaMlogaN logaM
logaM3例子:
1、求下列各式的值:
2、计算:计算:
3、用logax,logay,logaz表示下列各式:
解
(注意(3)的第二步不要丢掉小括号.)
4、学而思教育·学习改变命运 思考成就未来!
高考网
【对数的运算教学反思】推荐阅读:
对数与对数运算教学设计11-29
除法的简便运算的教学反思09-26
公开课对数教案和反思09-02
《运算定律与简便计算》的教学反思06-30
四则运算教学反思11-13
小数混合运算教学反思01-01
四年级下册 《有括号的四则运算》教学反思12-23
小数四则混合运算教学反思08-07
《分数混合运算》优秀教学反思10-07
《运算律》教学设计及反思10-30