昆虫运动会教案

2024-06-15

昆虫运动会教案(4篇)

1.昆虫运动会教案 篇一

活动目标:

1.在了解昆虫特征的基础上,学会儿歌。

2.有节奏地看图谱念儿歌。

活动准备:

1.课件。

2.昆虫图谱。

3.人手一份操作材料。

活动过程:

一、观察课件,初步感知儿歌中的形象。

1.教师:小朋友们,今天在草地上有一场特殊的比赛——昆虫运动会。你们都认识了许多的昆虫,来猜猜看会有哪些昆虫来参加运动会呢?

幼儿猜测,教师依次点击昆虫(蚱蜢、瓢虫、螳螂、蚂蚁、蜻蜓、蝴蝶)

二、结合图片,分析儿歌中昆虫适合参加的比赛项目。

1.运动会上来了这么多的昆虫,除了有运动员,还会有谁?(裁判)你们觉得谁来做裁判最合适?(声音响亮)

教师:知了的叫声特别响亮,就像裁判在吹哨子。

教师结合图谱说“一只知了吹口哨”(两遍,加强句式练习)

2.蜻蜓早就想参加运动会了,我们可以推荐它去参加什么比赛项目?想一想蜻蜓有什么特长呢?

幼:蜻蜓的平衡能力特别好,它能稳稳的保持不动停在水面上。

教师:蜻蜓的平衡能力这么好,我们就推荐它去参加比平衡吧!

“两只蜻蜓比平衡”

3.瓢虫看到了说我也要参加运动会,你觉得瓢虫有什么本领?参加什么比赛最合适?

幼:瓢虫喜欢爬上叶子,吃掉叶子上的蚜虫。

教师边放图片边说:“三只瓢虫比爬竿”。

4.这是谁呀?(螳螂)有几只?螳螂能参加什么比赛呢?

幼:螳螂的前肢像大刀,我们国家的国粹——中国武术,就有一项运动时耍大刀,螳螂的前肢这么厉害,可以比赛大刀。

教师:我们一起来说一说“四只螳螂比大刀”

三、幼儿操作。

1.教师:看看图上还有哪些昆虫也来参加运动会,老师为你们准备了一份操作材料,请你们根据数字,找出与它数量相同的昆虫贴在数字后面,完成了以后,想一想它有什么本领?可以参加什么比赛呢?自己试着用完整的话念一念。

幼儿操作。

2.教师:请你们拿着你们的操作卡轻轻地回到座位上。

四、完整练习儿歌。

1.教师:哪个昆虫的数量是5呢?蚂蚁适合参加什么比赛呢?

幼:蚂蚁能够举起比它身体还要重的物体。

教师:它的力气这么大,可以参加举重比赛(做举重动作)

“五只蚂蚁比举重”

2.教师:数量为6的昆虫是什么呢?我们一起来数一数是不是6只(师幼数数)

教师:蚱蜢有什么本领呢?可以参加什么比赛呀?

幼:蚱蜢能跳得很高。能参加跳高比赛

教师:“六只蚱蜢比跳高”

3.教师:美丽的蝴蝶也来了,它在运动会上会做些什么?它要给昆虫们做啦啦队,喊加油呢!

教师:“七只蝴蝶来跳舞”

4.其实我们把这些好听的句子连起来念,就是一首好听的儿歌了,名字叫“昆虫运动会”(出示儿歌名字)。

教师:我们一起来念一念这首儿歌,好吗?

5.教师:这一次,老师帮你们指着图片,小朋友念,有没有信心呀?

6.教师:小朋友们!运动会马上就要开始啦!老师要来当一回广播员,让其他的昆虫都来为运动员加油!(教师示范一遍。)

7.教师:老师念的好不好听?你们想不想也来做一次播音员?好!让我们跟着圆舞板有节奏地把儿歌念出来。

师幼跟着圆舞板念儿歌。

8.教师:这一次老师想请两边的小朋友合作,这一边的小朋友念前半句儿歌(一只知了),这一边的小朋友就把后半句(吹口哨)念完,老师来做指挥,好吗?

幼儿分角色念儿歌。

5.教师:今天我们学会了一首好听的儿歌,休息的时候你们可以把你们认识的别的昆虫也编进我们的儿歌里,再把我们的操作卡也放到阅读区里,和好朋友一起念一念,好吗?

附儿歌:昆虫运动会

一只知了吹口哨,

两只蜻蜓比平衡,

三只瓢虫比爬竿,

四只螳螂比大刀,

五只蚂蚁比举重,

六只蚱蜢比跳高,

七只蝴蝶来跳舞,

运动会呀真热闹。

2.昆虫运动会教案 篇二

活动目标:

1、通过捕捉、观察各种昆虫,使幼儿了解昆虫的外形特征与活动方式,并发现它们之间的联系。

2、培养幼儿对事物的好奇心,乐于大胆探究和实验。

3、遵守社会行为规则,不做“禁止”的事。

4、培养幼儿乐意在众人面前大胆发言的习惯,学说普通话。

小容器、塑料袋等若干个。

活动过程:

(一)捕捉昆虫

幼儿到草地上捕捉昆虫。将捕到的昆虫按会爬的、会跳的、会飞的……分类放在容器中。

(二)昆虫运动会

将幼儿捕捉的各种昆虫放在一起,准备举办昆虫运动会。

1、将会跳的虫子放在大纸盒子内,比一比谁跳得高。“文章.出自快思老.师教案网."同时引导幼儿观察比较昆虫的前腿与后腿有什么不同,为什么有的昆虫跳得高,有的跳不高?

2、将会爬的虫子放在桌子(或地板)上,比一比谁爬的快。用火柴盒做小车,套在昆虫的身上,比比谁拉得动,谁的力气大。让幼儿观察这些昆虫的身体和腿的特点,想一想它们为什么不会跳?

3、将会飞的虫子放在地上比一比谁飞得远。注意观察它们的身体与翅膀的特点,想一想它们为什么会飞。

4、将昆虫放到水中,看看谁会游泳,谁害怕水?

5、将昆虫肚皮朝上放置,让幼儿观察它们怎样翻身。

(三)饲养昆虫

将几种常见昆虫,放在容器中饲养。让幼儿观察它们如何活动,如何进食。

活动建议:

此活动适合在夏、秋季进行。捕捉的昆虫最好是当地常见的种类。

教学反思:

今天的幼儿,将是未来世界建设的主力军,面向高速发展的新时代,幼儿科学教育越来越受重视。活动我以昆虫运动会为线索,贯穿整个活动,又在环节中设计了小游戏。活动中认真观察每位幼儿的行为,科学地设计与组织科学活动,是完成与落实以上目标的有效手段。促进幼儿身体与心理的协调健康发展。

3.昆虫运动会教案 篇三

—《昆虫记》读书交流会

教学目标:

1.对法布尔有初步的了解,了解《昆虫记》的主要内容,了解昆虫的习性、繁衍和死亡等级特点,感受作者对昆虫的爱。

2.欣赏《昆虫记》精彩片段,体会作者运用全面细致的观察、生动形象的细节描写,拟人化的手法等写作方法,进一步激发阅读兴趣,提高阅读能力。教学准备:

1.人手一本《昆虫记》。2.多媒体课件。

3.学生阅读《昆虫记》,并做好适当的积累摘抄。教学过程:

一、谈话导入。

同学们,读书,是一个陪伴我们长大的话题,它的涓涓细流最终能够汇成一片浩瀚,正所谓腹有诗书气自华,阅读使我们了解了大千世界的奇妙,也使我们的人生充满灵气、充满智慧。本学期,《昆虫记》就是我们的必读书目,今天,让我们再次走的近法布尔,走进《昆虫记》,去领略昆虫世界的神秘吧!

二、了解法布尔。

1.鲁迅先生称法布尔为“讲昆虫的楷模”,现在让我们进一步了解这位伟大的昆虫学家。2.出示法布尔的资料:(师讲述)

法布尔,生于法国南部圣莱昂村一户农家,童年在乡间与花草虫鸟一起度过。由于贫穷,他连中学也无法正常读完,但他坚持自学,一生中先后取得了业士学位、数学学士学位、自然科学学士学位和自然科学博士学位,获实验生理学奖。法布尔被誉为“昆虫诗人”,《昆虫记》被誉为“昆虫的史诗”。

三、交流昆虫知识。

1.《昆虫记》自出版以来,先后被翻译成50多种文字,经历百年仍是一座无人逾越的丰碑。这小小的昆虫何来如此的魅力,诱惑着一代又一代的读者?你从这本书中了解了哪些内容,知道了哪些昆虫知识呢?

2.我知道有的同学读了这本书还做了昆虫的卡片,那就来展示一下吧!(学生展示)

3.看来大家知道的还真不少,老师忍不住想考考大家。4.知识抢答(出示)。

5.法布尔在《昆虫记》中对上千种昆虫进行了细致入微的描写,你能从下面的文字中看出他写的是什么昆虫吗?

6.(出示)学生回答。

四、欣赏片段,感受写作风格。

1.《昆虫记》描写了几十种昆虫的外形以及生活习性,光蜜蜂就有11种之多,其实这些蜜蜂都是大同小异的,如果让我们来区分肯定会一头雾水,看看法布尔是怎样区分他们,描写它们的吗?(1)出示几个蜜蜂描写的片段,对比区分它们的不同。舍腰蜂:它的身体很有意思,中间部分非常瘦小,但后部却是非常肥大的,而这两个部分之间是由一根长线连接起来的。

矿蜂:这是一种细长型的蜜蜂,腹底有一条明显的沟,沟里藏有一根刺,这根刺可以沿着沟来回地移动,它的身上有红色的斑纹。

赤条蜂:它身材小巧,身段玲珑,细细的腰,腹部分成两节,上面小,下面大,黑色的肚皮上围着一条漂亮的红色腰带。无翅黄蜂:它身上长着红、白、黑相间的条纹,它没有翅膀,形状就像一只难看而又多毛的大蚂蚁。

樵叶蜂:樵叶蜂是白色的,身上带着条纹,通常寄居在蚯蚓的地道里。

金蜂:它全身闪耀着金色、绿色、蓝色和紫色的光芒。(2)读了这些片段,你知道怎样区分这些蜜蜂了吗?谁能来说说,怎样一眼就区分出这几种蜜蜂呢?几乎是长得一模一样的各种蜜蜂,法布尔怎么会区分得这么清楚的呢?而我们为什么一读他的描写,也能区分清楚了呢?

(3)小结:(出示)正是因为法布尔观察细致,所以可以区分各种蜜蜂,正是因为他描写细腻,我们才可以身临其境。各类昆虫在他的笔下都是栩栩如生、呼之欲出。这就是法布尔的写作风格:观察细致、描写细腻。(板书)如果你打开这本书,那么你能感受到这一个个小昆虫仿佛就在你的眼前快乐地舞蹈,快乐地歌唱。设计意图:读整本书,不仅是要学生了解整本书的主要内容拓展知识面,更是要学生学习作者细腻的表现手法教师在教学中通过引导学生对不同种类的蜂加以辨认,可以让学生深刻感受到,在他们眼里看似差不多的蜂,在作者的眼里笔下却是那样的与众不同追本溯源,这离不开法布尔的细致观察和细腻描写。

2.不光如此,在法布尔的笔下,昆虫世界和人类世界一样有美有丑,有善有恶,有勤劳有懒惰,有热情也有冷酷。你有没有读出来?

(1)学生在书中寻找相关片段并品读。(2)请同学们自由读读下面的片段。(出示)

矿蜂:矿蜂可谦虚友好了,不信你看这场面:一只蜂刚要出来,而另一只蜂正要进去。于是那只要进去的蜂会很客气地让路,表现得可有风度和礼貌呢,简直就是一个绅士。矿蜂不但谦逊,而且还很聪明。看看它的小家。每一个都修得很光滑别致。

西西斯甲虫:西西斯爸爸和妈妈一起做好孩子的食物球后,妈妈去找地方贮藏,而爸爸会留下来,蹲在食物球上守护着。如果等的时间太久,它就用它高高举起的后足灵活地搓球,用来解闷儿。瞧,他那幸福的样子,好像在说:“我搓的这个球,是做给孩子们的面包。”等他们把食物球贮存好以后,爸爸会钻出洞穴为妻子和孩子们看门。

无翅黄蜂:无翅黄蜂是一群好吃懒做、不劳而获的恶棍,你千万不要被它漂亮的外表骗了。你瞧,它经常潜进别人的茧子,把自己的卵产在那睡得正甜的幼虫的旁边,等它的卵孵化成幼虫,就会把茧子的主人当成美食。(3)读了这几段话,这些昆虫给你留下了怎样的印象?你觉得法布尔为什么能把昆虫写得这样充满趣味呢?

(4)小结:(出示)正是因为法布尔把昆虫当作人来写,让他们拥有了人的喜怒哀乐,人的善恶美丑,所以才更加引人入胜。发现法布尔笔下的昆虫们都拥有“人”的喜怒哀乐“人”的善恶美丑,所以他的文章才那么引人入胜感人至深。

五、用心灵去感悟,用情感去体验。

1.昆虫记中哪些情节让你读后笑出了声?哪些情节又让你心头一震惊讶无比?(小组交流)

2.读完昆虫记后,你对昆虫的认识发生了怎样的变化?自由发言,交流。

设计意图:如此不起眼的生命,却有和我们人类世界一样的人情冷暖善恶美丑对这些片段的回顾,可以唤起学生对生命的尊重和对生命之美的赞叹,而这也正是法布尔想要传递给读者的。

六、好书推荐。

法布尔具备如此高明的表达才能,具备如此博大精深的昆虫学造诣,读完《昆虫记》,你会怎么样向别人推荐这本书呢?

七、作业。

继续完善昆虫记读书报告单。板书:

走进奇妙的昆虫世界

—《昆虫记》读书交流会 知 昆虫知识

学 细致观察 细腻描写 悟 生命之美

4.普通昆虫教案 篇四

第一节 昆虫纲的基本特征

昆虫纲(Insecta)是动物界(Kingdom animal)、节肢动物门(Arthropoda)中的一个纲,故其与节肢动物既有共性,又有不同之处。

一、节肢动物门的特征

1、体躯由一系列体节组成;

2、整个体躯被有一层含几丁质的外骨骼;

3、多数体节上生有成对的分节附肢;

4、体腔即为血腔,循环器官——背血管位于消化道的背面,以大动脉开口于头腔内,开管式血液循环;

5、中枢神经系统由一系列成对的神经节组成,脑位于头内消化道的背面,腹神经索位于消化道的腹面。

二、昆虫纲的特征

1、体躯的若干环节明显地分段集中,构成头部、胸部、腹部3个体段;

2、头部具有1对触角、口器,通常还具有复眼和单眼,是昆虫感觉和取食的中心;

3、胸部由3个体节组成,生有3对足,一般还有2对翅,是昆虫运动的中心;

4、腹部通常由9—11个体节组成,内含大部分内脏和生殖系统,腹末多数具有转化成外生殖器的附肢,是昆虫生殖和代谢的中心。

5、昆虫在生长发育过程中,通常要经过一系列内部及外部形态的变化(变态)才能变成性成熟的个体。

第二节 昆虫纲在动物界中的地位

在节肢动物门中,除昆虫纲外,还有几个比较重要的纲,它们除缺少翅外,与昆虫纲的主要区别特征如下: 1.三叶虫纲(trilobita)

体扁平,背面的两条沟将身体分为三部分(已灭绝)。2.蛛形纲(Arachnida)

身体分为头胸部、腹部两个体段;无触角;如蜘蛛、蜱、蝎子、鲎等。3.甲壳纲(Crustacea)体躯分为头胸部、腹部两个体;2对触角;至少5对行动足;附肢多为二肢式; 鳃呼吸。包括虾、蟹等。4.重足纲(Diplopoda)身体分为头部、胴部两部分;1对触角;多数体节有2对足。

5.唇足纲(Chilopoda)身体分为头部、胴部两部分;1对触角;胴部每个体节有1对足,第一对足特化为毒爪;生殖孔位于体躯末第二节上。

6.寡足纲(Pauropoda)身体分为头部、胴部两部分;1对触角;3-9体节有1对足。

7.结合纲(Symphyla)

身体分为头部、胴部两部分;每体节有1对足,但第一对足不特化为毒爪;每体节有1对刺突和1对翻缩泡;生殖孔位于体躯末第四节上。

第三节 昆虫的多样性

一、昆虫纲繁盛的特点

1、历史长:昆虫---3.5亿年;人类---100多万年

2、种类多:动物界中最为繁盛的1个类群 估计全球1000万种,记载100万种 我国60---100万种,记载约7万种

3、数量大:同种个体数量大,如蚂蚁种群达50万个体。

4、分布广: 赤道—两极;高山—海底;盐池;原油等地均有分布。

二、昆虫纲繁盛的原因(1)有翅能飞:(2)繁殖力强:(3)体小势优:

(4)取食器官多样化:

(5)具有变态与发育阶段性:(6)适应能力强:

第二章 昆虫与人类的关系第一节 昆虫的有害方面

一、昆虫对经济植物及其产品的危害

1、农业害虫 :

(1)造成灾害:707-1949年,我国蝗灾800次(2)产量、品质下降:

全世界有67000种有害生物危害农作物,其中9000种昆虫和螨类;50000种植物病原体;8000种杂草。

我国常见农业害虫1000余种,每种主要作物害虫种类100—400种之间。主要作物如不喷施杀虫剂造成的产量损失:小麦52%;水稻83%;玉米59%;马铃薯74%;大豆59%;棉花84%。

目前,全世界每年投资260亿美元,使用250万吨的农药,加上其他非化学防治方法的使用,每年有害生物危害造成的损失仍为全世界的食用和纤维作物产量的35%和42%之间。其中,害虫造成的损失达13%-16%,植物病原体造成的损失为12%-13%,杂草为10%-13%,每年作物损失的价值达到2440亿美。外来入侵动植物对农田、园艺、草坪、森林、畜牧、水产等可带来直接经济危害。水花生:对水稻、小麦、玉米全生育期引致的产量损失分别达45%、36%、19%;紫茎泽兰:含有的毒素易引起马匹的气喘病,仅1979年在云南省的52个县179个乡,发病马5015匹,死亡3486匹,甚至造成“无马县”, 牛羊也因无可食饲料种群数量锐减;水葫芦:全国每年用于人工打捞的费用至少超过1亿元,而水葫芦带来的农业灌溉、粮食运输、水产养殖、旅游等方面的经济损失更大。

美洲斑潜蝇:最早于1993年在海南发现,到1998年已在全国21个省市区发生面积达2000多万亩,目前在我国,每年防治斑潜蝇的成本高达4亿元。松材线虫病:被称为“松树癌症”,在短短十年间,疫区已扩至江浙六省,发生面积100多万亩,对黄山、张家界等风景名胜区构成了巨大威胁。(3)传播植物病害:真菌、细菌、病毒病 300种植物病毒中,仅蚜虫传播占50%以上。间接造成损失远远大于直接损失。

2、林业害虫:

我国常见森林害虫400余种,主要有:

松毛虫:200-270万hm2,损失270-380万m3木材; 天牛: 小蠹:

3、其它害虫:

贮藏物害虫:标本虫、米象等

建筑物、桥梁等木材害虫:白蚁。

二、昆虫对动物的危害

(1)直接危害:取食、骚扰、恐吓 蝇、蚤、虱子、臭虫、蚊子、胡蜂(2)间接危害:传播疾病

人类疾病约2/3由昆虫传播,如

疟疾:蚊子传播,非洲每年1亿人患病,80万人丧生 鼠疫:跳蚤传播

蟠尾线虫病:蚋传播,非洲每年100万人患病,70万人由此失明

第二节 昆虫的有益方面

一、传粉昆虫

80%植物为虫媒植物

蜜蜂传粉,使作物增产显著,如: 棉花:12-15% 油菜:40-60% 向日葵:30-50% 果树:50%以上 瓜类:50-60% 温室大棚果树、蔬菜:30-70%

二、工业原料昆虫 家蚕、柞蚕:丝绸

五倍子蚜虫:五倍子(盐肤木,虫瘿),鞣酸—制革、染料 紫胶虫(蚧):紫胶---油漆、绝缘物、唱片 昆虫:几丁质

胭脂虫(蚧):洋红—染料

三、天敌昆虫

捕食性天敌(28%):蜻蜓、螳螂、多数瓢虫 寄生性天敌(2.4%):赤眼蜂、姬蜂、茧蜂

四、食用、饲用昆虫 富含蛋白质、不饱和脂肪酸、微量元素等

目前世界约5000种昆虫可被食用,如蝗虫、蝉、蜻蜓稚虫、蚂蚁、桂花蝉等 家蝇、黄粉虫作为饲料

五、药用昆虫

中药重要组成部分,目前300种入药,如 蝉蜕、螳螂卵壳、斑蝥、蜣螂、冬虫夏草、蝇蛆、蜜蜂

六、文化昆虫

丰富人们文化生活,如 漂亮昆虫:蝴蝶

发音昆虫:螽斯(蝈蝈)发光昆虫:萤火虫

争斗昆虫:蟋蟀(蛐蛐)

七、腐食、粪食昆虫:17.3% 清洁工,如澳大利亚的神农蜣螂纪念馆

八、科学试材

果蝇:遗传研究材料

九、仿生学:

第三章 昆虫学简史 第一节 世界昆虫学简史

昆虫学是人类在长期认识自然与改造自然的历史过程中对昆虫知识不断积累的结果。但昆虫学作为一门独立的学科应从17世纪算起。

17世纪:显微镜出现,观察昆虫的外部器官、内部结构(描述阶段)

18世纪,大批人士开始昆虫学研究,除形态描述外,对昆虫习性、生活史进行记述

1758 年,林奈--《自然系统》,2000种昆虫

1775年,Fabricius—(Systema etomological)、《昆虫系统》 1780年,伦敦昆虫学会成立(世界第一个)

19世纪,欧美各发达国家的昆虫学蓬勃发展,注意昆虫生理学、生态学 1807年,世界第一个昆虫学专业期刊—《伦敦 皇家昆虫学会会刊》,(Transa-ctions of Royal Entomological Society of London)问世 1859年,达尔文《物种起源》出版

1866年,美国堪萨斯大学首次开设昆虫学课程

1881年,美国康乃尔大学成立昆虫学系(Comstock教授)20世纪是昆虫学发展的黄金时期

30年代前:昆虫分类、农业昆虫学研究 30年代,是昆虫学科分化的重要年代 1931年,Chapman出版《昆虫生态学》

1934年,Wigglesworth出版《昆虫生理学》 1935年,Snodgrass出版《昆虫形态学原理》 40年代后,昆虫学飞速发展(先进仪器、设备)90年代,昆虫学基本方向、范围大体形成

自1994年2月27日美国科罗拉多州立大学建立了世界上第1个昆虫学Internet站点(http://,CO等物质所抑制,在pH 6-8时活性最大。

五、色素

昆虫表皮中含有各种色素,如黑色素、类胡萝卜素和嘌呤衍生物等。

第三节 脱 皮

昆虫的体壁由于外表皮的硬化,形成外骨骼,阻碍了昆虫的生长,幼虫只有进行周期性脱皮,才能继续进行生长发育。脱皮是一个复杂的生理过程,并受激素的调控。

一、脱皮过程

脱皮过程包括皮层溶离、旧表皮的消化和新表皮的沉积等一系列连续的生理过程。

二、脱皮的激素调控

至少有两类激素直接控制着皮细胞进行“表皮形成”和脱皮作用的一系列生化反应。前胸腺分泌的蜕皮激素是发动皮细胞进行表皮形成过程,以及成虫器官芽开始发育的一系列生化反应。咽侧体分泌的保幼激素,它与蜕皮激素共同作用可以改变脱皮的方向和延迟成虫特征的出现时间。

三、鞣化作用的激素调控

除蜕皮激素直接参与表皮的鞣化过程外,大多数昆虫还有另一种由神经分泌细胞产生的激素,即鞣化激素(bursicon),它能启动鞣化作用。

第四节 昆虫体壁的色彩

昆虫的体壁通常具有不同的色彩,因其形成方式不同可分为以下3类:

一、色 素 色(pigmentary colour)又称化学色(chemical colour),是昆虫着色的基本形式,这类体色是由于虫体一定部位有某些化合物的存在造成的。

二、结 构 色(structural colour)又称物理色(physical co-lour),是由于昆虫体壁上有极薄的蜡层、刻点、沟缝或鳞片等细微结构,使光波发生散射、衍射或干射而产生的各种颜色。

三、结 合 色(combination colour)又叫合成色,这是一种普遍具有的色彩,它是由色素色和物理色混合而成。

第五节 表皮的通透性

表皮是昆虫与环境之间的一个通透性屏障,外源性化学物质在一定条件下可以穿透体壁。

一、水 分

昆虫由于具有开放式的气管呼吸系统,加上虫体小,暴露于空气中的表面积相应地增大,如何保持水分的散失对维持昆虫正常的生命活动来说,具有重要的生理意义。昆虫表皮具有高度抵制水分蒸发作用的特性,这主要是因为表皮中存在定向蜡层作用的结果。昆虫表皮的蜡质层常有一个最高的临界温度,超过最高临界温度会引起蜡质层的 通透性的改变。

我们可以用升高温度使蜡质熔化或使用有机溶剂移除蜡质来提高昆虫体内的水份蒸发率,或使外部水份向昆虫体内渗透引起昆虫死亡。

三、杀 虫 剂

杀虫剂等外源性化合物进入虫体比水分来得容易。当药剂进入原表皮层时,由于大量几丁质-蛋白质复合体及水分的存在,使极性物质容易穿透,许多药剂还能沿着孔道直接进入皮细胞层。因此药剂的穿透能力与脂水两相中的分配系数有很大的关系,兼具脂溶性和水溶性的药剂,是比较理想的杀虫剂。很多药剂进入虫体时,往往与蛋白质结合,从而改进它们的穿透能力。原表皮鞣化以后,亲水性降低,能阻止某些药剂的进入,但节间膜、感觉毛和气门气管等处都为杀虫药剂进入虫体提供了可能。此外药剂在穿透入表皮后,达到靶组织之前,还会受到皮细胞内解毒酶的作用而降低毒性。

第三章 昆虫的消化系统

昆虫的消化系统(digestive system)包括一根自口到肛门,纵贯于血腔中央的消化道,以及与消化有关的唾腺(salvary gland)。

第一节 消化道的一般构造和机能

昆虫的消化道,主要是摄取、运送、消化食物及吸收营养物质,此外,还具有控制水分平衡和排泌作用的特殊功能。各种昆虫由于取食方式和取食种类的不同,其消化道常发生不同程度的变异。

昆虫的消化道根据其发生的来源和机能的不同,可分为前肠(foregut)、中肠(midgut)和后肠(hindgut)。

一、前肠的组织、区分和机能

由于前肠是由外胚层内陷而成,因此在组织上和体壁相似,由内向外可区分为6层,即内膜、肠壁细胞层、底膜、纵肌、环肌及围膜。1.咽喉(pharynx):食物的通道。

2.食道(oesophagus)是咽喉后面的狭长管,可以直接伸入中肠或终止于前胃,仅是食物的通道。

3.嗉囊(crop)是食道后端的膨大部分,嗉囊作用(1)暂时贮藏食物的场所;(2)进行部分消化作用的场所;

(3)蜜蜂吸食的花蜜在嗉囊中转化为蜂蜜,因此嗉囊有“蜜胃”之称;

(4)很多昆虫在脱皮或羽化过程中,嗉囊可以大量吸入空气使虫体膨胀,以帮助脱皮。

4.前胃(proventriculus)位于前肠的后端,常特化成多种形状,其原始型仅为狭长的管道。取食固体食物的昆虫前胃常很发达,有的外包以强大的肌肉层,内壁形成若干条深的突入肠腔的纵褶,内膜特化成齿或刺。前胃功能:磨碎食物; 调节食物进入中肠的速度; 过滤食物作用;

蚤类的前胃是繁殖鼠疫杆菌的场所

5.贲门瓣(cardiacvalve)位于前胃的后端,由前肠末端的肠壁向中肠前端内褶而成,一般呈筒状或漏斗形,主要功能是使食物可以从前肠直接输入到中肠的肠腔,而不与胃盲囊接触,阻止中肠内食物倒流入前肠。前肠的功能: 接收食物 磨碎食物 暂时贮存食物 初步消化食物

二、中肠的组织、超微结构和功能

中肠是分泌消化酶、消化食物和吸收养分的主要部位。一般昆虫的中肠呈管状,前端紧接前胃,后端以马氏管着生处与后肠分界。很多昆虫中肠肠壁的前端,常向外突出形成囊状的胃盲囊(gastric caeca),其数目和形状因昆虫种类不同而异,它的主要功能是增加中肠的表面积,有利于分泌消化酶和吸收营养物质,此外还有扩大容积和滞留共生物的作用。

中肠在组织上也分为6层,由内向外分别为:围食膜、肠壁细胞层、底膜、环肌、纵肌和围膜(下页图11-4),中肠组织与前肠的不同在于肠壁细胞层较厚,肠壁细胞大而呈海绵状,纵肌排列在环肌之外,肌肉层较薄,可允许营养物质、水分和无机盐渗入血液。

围食膜一般仅存在于取食固体食物的昆虫中,而取食液体食物的昆虫多无围食膜,它是由中肠细胞分泌形成的。其形成方式有两种:一种是由全部中肠细胞分泌形成的多层重叠的管状膜,多见于鳞翅目幼虫和某些直翅目昆虫等;另一种是由中肠前端的一群特殊细胞分泌的粘液,通过贲门瓣的伸缩活动将其挤压成单层均匀的管状薄膜,并不断推向肠腔后方形成的,如双翅目、革翅目和等翅目昆虫等。

围食膜的主要功能: 包围食物,保护肠壁细胞 具选择通透性 具保护酶的功能 提高吸收效率

参与茧的形成(裸蛛甲)

中肠细胞的形状变异很大,常见的有消化细胞,杯状细胞和再生细胞,有时还有内分泌细胞)等。

消化细胞:又称柱状细胞,主要功能是分泌消化酶和吸收消化产物,是肠壁细胞中最重要和最基本的一类细胞。其顶端原生质膜形成微绒毛(或称条纹边),以增加细胞的表面积,提高对消化产物的吸收能力;基膜形成许多纵深的内褶,内含线粒体。细胞内含有丰富的内质网和高尔基体,能合成消化酶。可通过3种方式将消化酶分泌进入肠腔,一种是顶端分泌,即将酶原粒或液泡从顶端微绒毛间直接排入肠腔;另一种是局部分泌,即酶原粒集聚在细胞顶部或侧面,由细胞膜包围成囊泡,以胞吐的方式排入肠腔;第三种是全浆分泌,即含酶原的细胞脱离肠壁进入肠腔,以细胞崩解的方式释出消化酶。杯状细胞:主要存在于鳞翅目幼虫中,在肠壁中多与消化细胞相间排列,其功能可能与调节血淋巴中钾离子的含量有关。细胞顶部内陷成杯腔和杯颈,细胞质少,核位于杯腔下方。杯腔基部的微绒毛较长,绒毛内有线粒体;中部微绒毛较短,无线粒体;顶端的微绒毛最短,而且多呈分叉状。

再生细胞:又称原始细胞,是一种具有分裂增殖能力的小型细胞,多位于肠壁细胞的基部,主要功能是补充因分泌活动而消耗的细胞,或在脱皮和化蛹过程中更新旧的肠壁细胞。

内分泌细胞:是能够分泌某些内激素的一类细胞,其形态和染色特性都与神经分泌细胞相似,细胞内含有分泌颗粒,但功能尚不十分清楚。

三、后肠的组织和机能

后肠的组织结构与前肠相似,只是肌肉的层次排列同中肠相似,即环肌在内,纵肌在外,除直肠垫细胞外,大多数肠壁细胞都比较扁平。内膜比前肠的薄,易被水分和无机盐类渗透。

后肠一般分为回肠(ileum)、结肠(colon)和直肠(rectu-m)3个部分。在后肠的前端与中肠的交界处,着生有开口进入肠腔的马氏管,在马氏管开口的前方,常有突入肠腔内的幽门瓣,幽门瓣有控制中肠内消化残渣进入回肠的功能。

在回肠与直肠的交界处,有一圈由瓣状物形成的直肠瓣(rectal valve),以调节残渣进入直肠。许多昆虫的直肠常特化成卵圆形或有长形的垫状内壁或圆锥状突起,称直肠垫(rectal pads)(见下页图)。垫上的内膜特别薄,主要功能是吸回残渣中的水分和无机盐类。后肠的功能:

排除残渣、代谢废物 吸收残渣中水分、无机盐 白蚁、甲虫后肠: “发酵室” 蜻蜓:直肠鳃

蚁类:分泌跟踪激素

玉米螟:分泌后肠激素,加速滞育

四、唾 腺(salivary glands)唾腺是开口于口腔中的多细胞腺体,在胚胎发育过程中,由皮细胞内陷而成。按开口的位置,可以区分为,上颚腺(mandibular gland)、下颚腺(maxillary gland)和下唇腺(labial gland)3类。

唾液的主要功能是润滑口器、溶解食物和分泌消化酶,昆虫分泌消化酶的种类与食物有关。

第二节 各类昆虫消化道的变异

昆虫的消化道因种类和食性的不同,常有较大的变异。取食固体食物的昆虫,它们的消化道一般比较短粗,前胃外面包有强壮的肌肉层,内面常具有齿状或板状的表皮突起,有磨碎食物及调节食物进人中肠的功能。取食汁液的昆虫,常无前胃,整个消化道比较长,前肠前端及口前腔的食窦部分或咽喉部分常特化为强有力的吸泵。全变态类型昆虫中,同种昆虫在不同的发育阶段消化道的构造变化也很大。

嗉囊的形状和位置(见下图),中肠和胃盲囊的结构也有较大的变异(下页图F-H)。

后肠形状的变异,主要看前端部分是否特化成回肠和结肠以及直肠的形状。在同翅目昆虫如介壳虫和蝉等的消化道中,有一种特化的结构--滤室,滤室是吸取大量汁液昆虫的一种适应性构造。

第三节 消化与吸收

一、昆虫的消化作用

昆虫的消化作用分为肠外消化和肠内消化两种方式。

(一)肠外消化 昆虫在取食前先将唾液或消化液注入寄主组织内,当寄主组织溶解后,再吸回肠内的过程,称为肠外消化。肠外消化常见于具刺吸式口器和肉食性的昆虫中。

(二)肠内消化 昆虫消化食物主要发生在中肠内,在某些昆虫中,肠道内的共生菌也参与部分消化作用。

1.糖类 昆虫一般不能吸收食物中的多糖和双糖,只有分解为单糖后才能吸收利用。淀粉和纤维素可在多种酶的作用下逐渐分解为单糖。

水解淀粉主要依靠á-淀粉酶,消化纤维素是在两种酶的作用下完成的,一种是裂解纤维素为纤维素二糖的纤维素酶;另一种是裂解纤维素二糖为葡萄糖的半纤维素酶(纤维二糖酶)。

2.蛋白质 昆虫将蛋白质消化成为蛋白胨和多肽后,才能被肠壁细胞吸收。消化蛋白质依靠唾液与消化液中的肽链内切酶,通常称为类胰蛋白酶(trypsinlike enzyme)。.脂类 昆虫对脂类的消化吸收,由于脂类组分比较复杂,因此方式也多样。消化脂类的一个特殊例子是一种蜡螟幼虫,它能消化含脂、脂肪酸和烃类的蜂蜡。

二、影响消化酶活性的因素

昆虫消化酶活性受肠道pH值和氧化还原电位的影响。

(一)pH值 消化酶只有在一定的pH范围内才能显示出最大活性。前肠的pH值一般呈酸性;中肠液能以较强的缓冲力来稳定pH值;后肠肠液的pH值通常呈弱酸性。

(二)氧化还原电位 在昆虫的消化和吸收过程中,氧化还原电位决定生化反应的能量和方向,同时还影响消化酶活性和肠壁细胞的吸收。中肠的氧化还原电位通常是正的,后肠则有很高的氧化电位。

三、营养物质的吸收

昆虫对营养物质的吸收主要发生在中肠前部和胃盲囊中,有主动吸收和被动吸收两种,随着吸收作用的进行,营养物质通过肠壁细胞进入血淋巴中。(1)糖类物质的吸收 当双糖和多糖水解成葡萄糖后,葡萄糖按浓度梯度从肠腔向血腔扩散,并迅速进入中肠周围的脂肪体,转化为海藻糖,从而降低血液中的葡萄糖浓度。(2)蛋白质和氨基酸的吸收 蛋白质通常先被消化成分子质量较小的肽,再被中肠细胞吸收,进而在细胞内分解成为氨基酸,有的则在肠腔内直接分解成氨基酸后再吸收。

(3)脂类的吸收 食物中脂类,大多是甘油三酯,在肠腔内被水解成游离脂肪酸、甘油二酯和甘油单酯。

四、肠液流动循环理论

Berridge(1969)提出营养物质和排泄物质的液流循环理论,其中包括一部分中肠细胞的分泌循环,胃盲囊的吸收循环,以及直肠垫的吸收循环与马氏管的排泄循环。

从前肠分期流入中肠的大部分食物颗粒,经消化作用形成液状的营养物质后,都可被中肠和胃盲囊细胞吸收,由中肠前段区域流人血液,形成吸收据环液流(见下图)。而从前段吸人过多的K+和H2O,则可经后端的杯状细胞分泌,排入肠腔内,形成分泌循环。

五、营养物质的利用

食物通过消化作用后,一部分变成为可吸收的养分;另一部分则不能吸收而排出体外,可消化吸收的部分与消耗食物的比值,称消化系数(coefficient of digestibility)。虫取食不同食物,其消化系数不同,消化系数大的营养价值高,但食物的营养价值还应以食物的转化率(efficiency of conversion)来衡量。

消化系数=(消耗食物干质量-排泄物干质量)×100% 消耗食物干质量

食物转化率=昆虫增加的体重(干质量)×100% 消耗的食物量(干质量)

第四节 昆虫的营养生理

一、昆虫的营养需要

昆虫所需的营养物质,按其生理作用与功能,可分为3大类:一类是用来建造身体和能量来源的多种有机物与无机物;另一类是用来调节生理功能的辅助物质或附加物质;第3类是决定某些昆虫选择食物或刺激取食的激食要素。对昆虫生长发育和生命活动比较重要的营养物质有蛋白质、糖类、脂类、甾醇、维生素、无机盐和水。

(1)蛋白质 是昆虫身体基本的组成成分,又是昆虫生长发育和生殖所必需的营养物质。

(2)糖类 主要供给昆虫生长、发育所需的能量,以及转化成贮存的脂肪,有些糖则为激食剂。碳水化合物和蛋白质都是昆虫营养上所必需的,但是两者的比例即氮碳比(N/C)对昆虫生长发育有很大影响。

(3)脂类 脂肪是昆虫贮存能量的主要化合物,还是磷脂的必需成分,而磷脂则是细胞内外各种膜结构的必需成分,因此昆虫体内常有大量的脂肪。(4)甾醇(固醇、胆固醇)类 固醇类是昆虫生长、发育和生殖必不可少的营养成分。

(5)维生素 维生素不是构成虫体的原料,也不是供给能量的物质,昆虫对其所需量甚微,但对维持虫体正常的生理代谢却是必需的,须由食物供给,是一种外源性物质。

(6)水分和无机盐 水分和无机盐是昆虫生长发育不可缺少的物质。

二、人工饲料

人工饲料指昆虫所取食的不是天然饲料食物,人工饲料的成分是根据不同昆虫生长发育所需营养物质配合而成。包括糖类、蛋白质、脂肪、维生素、无机盐、填充剂以及防腐剂构成。第五节 择食过程及其影响因子

昆虫在形态、生理、生态和行为方面的特化,大多与搜集和利用食物有关,它包括一系列的行为程序,如定向、趋性以及对食物的辨认和取食等。

一、择食过程

对某些昆虫来说幼虫孵化时就很容易发现食物,因为它们的亲代在产卵时就选择了富有食物的场所。但对大多数昆

虫来说仍需借助视觉、嗅觉和味觉来寻找食物。

(1)视觉判断 视觉在昆虫的择食过程中,帮助它们识别食物的颜色和形状,以及确定食物的方位。

(2)嗅觉定向 在一定的范围内,昆虫主要依靠化学感受器接受寄主植物或捕食对象所产生的特殊气味来搜寻食物。

(3)味觉鉴别 当昆虫接触到寄主时,味觉感受器和接触化学感受器起着重要作用。

二、影响择食的因子

对于植食性昆虫来说,寄主植物所含的化学物质可对昆虫产生引诱、助食和抑食作用。

(1)引诱作用 昆虫能对各种具有引诱作用的化学物质的气味产生正趋性。(2)助食作用 对大多数昆虫来说,很多化合物具有刺激取食和营养的双重作用,但植物次生性物质只有助食作用而无营养价值。

(3)抑食作用 某些化合物能抑制昆虫取食,阻碍对食物的消化和利用,产生抑食作用。

第四章 昆虫的循环系统

昆虫的循环系统(circulatory system)属开放式,不像哺乳动物那样具有与体腔完全分离的分级网管系统,它的整个体腔就是血腔,所有内部器官都浸浴在血液中。昆虫的血液兼有哺育动物的血液及其淋巴液的特点,因此又称“血淋巴”。昆虫开放式循环系统的特点是血压低,血量大,并随着取食和生理状态的不同,其血液的组成变化很大。其主要功能是运输养料、激素和代谢废物,维持正常生理所需的血压、渗透压和离子平衡,参与中间代谢,清除解离的组织碎片,修补伤口,对侵染物产生免疫反应,以及飞行时调节体温等。昆虫的循环系统没有运输氧的功能,氧气由气管系统直接输入各种组织器官内,所以昆虫大量失血后,不会危及生命安全,但可能破坏正常的生理代谢。

第一节 循环系统的构造 昆虫的循环系统主要包括推动血液流动的背血管及辅搏器,但背膈和腹膈也进行有节奏的收缩活动,使血液沿着一定的方向流动。

一、背 血 管

背血管(dorsal vessel)是位于昆虫的背壁下方,纵贯于背血窦中央的一条管状器官,一般从腹部伸达头部,由肌纤维和结缔组织组成,可以分为动脉和心脏两个部分。心脏(heart)是背血管中呈连续膨大的部分,每个膨大的部分称为心室(chamber),心室的数目随昆虫的种类而不同。背血管的前段称动脉(aorta),其直径较小,前端开口于脑及食道之间形成的血窦内,可使脑及咽侧体浸泡在血液中。背血管在构造上变化较大,但大致可以分为以下3个基本类型:a.直管型;b.球茎型;c.分枝型。

二、辅 搏 器

辅搏器(accessory pulsatile organ)是昆虫体内辅助心脏进行血液循环的结构,通常位于触角、翅和附肢的基部,由含肌纤丝的薄隔所组成,有膜状、瓣状、管状或囊状等多种形状。

三、造血器官

造血器官(hemopoietic organ)是昆虫体内不断分化并释放血细胞的囊状构造,周围有膜包被,膜囊内有相互交织的类胶原纤维和网状细胞。

第二节 血液的组成和物理性状

昆虫的血液包括血细胞和血浆两部分,除少数昆虫(如摇蚊幼虫)因含血红素而呈红色外,大多数呈黄色、橙色或蓝绿色。昆虫的血液一般占虫体容积的15%一75%。

一、血 细 胞

血细胞(hemocytes)指悬浮在血浆中的游离细胞,约占血液的2.5%,昆虫血细胞种类常因观察方法的不同而有较大的差异,但最基本的血细胞可分为6类:原血细胞、浆血细胞、粒血细胞、珠血细胞、类绛色细胞和凝血细胞。(一)原血细胞(prohemocyte)是一类普遍存在的椭圆形小血细胞,原血细胞无吞噬功能,但具有活跃的分裂增殖能力,并能转化为浆血细胞,主要功能是通过分裂来补充血细胞。

(二)浆血细胞(plasmatocyte)是一类形态多样的吞噬细胞,浆血细胞在各种昆虫体内通常都是优势血细胞,并可转化为粒血细胞,它的主要功能是吞噬异物,同时也参与包被和成瘤作用。

(三)粒血细胞(granulocyte)是一类普遍存在且含有小型颗粒的圆形或梭形血细胞,它的主要功能是贮存代谢,此外还参与防卫作用。

(四)珠血细胞(spherulocyte)是一类含有较多大型膜泡的圆形或卵形血细胞,珠血细胞由粒血细胞发育而来,具有贮存和分泌作用。

(五)类绛色血细胞(oenocytoide)是一类形态和大小多变的血细胞,胞质内含有酪氨酸酶、糖蛋白和中性黏多糖,主要参与物质代谢和分泌作用。(六)凝血细胞(coagulocyte)是一类普遍存在的,非常脆弱的圆形或纺锤形细胞,凝血细胞由粒血细胞发育而来,主要功能是凝血和防卫。

二、血 浆

血浆(plasma)是一种浸浴着所有组织和细胞的循环液体,其中水分占85%左右,胞与血浆间频繁的物质交换,构成了血浆中复杂的物质体系和动态变化。(一)无机离子 昆虫血浆中无机离子的含量变异较大,其种间差异常与系统的发育地位和食物有关,离子的作用主要是参与物质运输,调节神经活动、酶活力,pH值和渗透压。

(二)血糖 昆虫的血糖主要是海藻糖(trehalose),血糖主要被用作能源化合物,或用来合成表皮中的几丁质以及各种黏多糖和糖蛋白。

(三)血脂 昆虫血浆中非水溶性的脂类化合物,一般含量为0.5%一2.5%,包括甘油一酯、甘油二酯、甘油三酯、脂肪酸、甾醇、磷脂和其他烃类化合物,其中以甘油二酯为主,通常结合成脂蛋白的形式运输。

(四)氨基酸和蛋白质 昆虫血浆中具有高浓度的氨基酸,包括合成蛋白质所需的各种氨基酸以及某些氨基酸衍生物。

昆虫血浆中蛋白质主要是各种酶类,当成虫进行卵黄沉积时,血浆中含有大量的卵黄原蛋白。此外,血浆中还有载脂蛋白、JH-结合蛋白、免疫蛋白和温滞蛋白等。

(五)酶类 血浆中的酶类是血蛋白的主要部分,最常见的酶有蛋白酶、淀粉酶、转化酶、酪氨酸酶和酯酶等。

(六)氮素代谢物 不同昆虫血浆中发现的氮素代谢物主要有尿酸、尿囊素、尿囊酸、尿素和氨。

第三节 血液的功能

昆虫血液的功能相当于脊椎动物血液、淋巴液和组织液3者的功能。血细胞相当于脊椎动物的白细胞。血液为组织细胞提供一个比较稳定的物理、化学环境,是合成与代谢的场所,也是细胞获取营养和排除废物的媒介。

一、止血作用

昆虫止血是在伤口处形成凝血块,以防血液流出和病菌侵入。根据昆虫形成凝血块的能力和方式,可将止血作用分为4种类型:a.在伤口处形成典型的凝血块;b.形成网状凝集物;c.不形成网状凝集物,凝血细胞部分破裂和部分血细胞伸出线状伪足相结合形成凝血块;d.不形成凝血块,血液没有明显的止血功能。

二、免疫作用

昆虫免疫(immunity)不同于高等动物,没有诱导产生高度专一性抗体的淋巴系统,其免疫机制主要有血细胞的吞噬、成瘤和包被作用及经诱导产生抗菌肽的杀菌作用。

(一)吞噬作用(phagocytosis)当少量单细胞病原物如细菌,真菌、原虫以及病毒等侵入血腔时常发生吞噬作用。

(二)成瘤作用(noduIe formation)当小型病原物大量进入血腔时,常发生成瘤作用。

(三)包被作用(encystment)当较大的病原物(如线虫、寄生物及较大的原虫)侵入血腔时,就会发生包被作用,这是隔离大型病原物的一种有效的免疫机制。

(四)溶菌作用 血浆中的溶菌酶(lysozymes)或裂解蛋白(ce-cropins)能直接作用于病原物,使其细胞溶解(lysis)。

三、解毒作用

各种外源毒物进入血腔后,能与血浆中的凝集素和非专一性酯酶结合,使毒物分解,或被血细胞摄人,通过胞质中的各种酶进行降解或贮存在脂滴内,减少体内的有效浓度。

四、阻止天敌捕食

昆虫利用血液中某些特殊化合物或反射性出血来阻止天敌捕食,反射性出血是昆虫受天敌攻击时产生的自动出血行为,这些血液中往往含有能使天敌厌食或催吐的物质,可有效地击退捕食者,因而具有防卫功能。

五、营养贮藏和运输作用

昆虫血液内除了有足够的水分外,还含有丰富的离子、氨基酸和碳水化合物,这些营养物质可通过血液循环输送给各组织、器官。昆虫血液最突出的运输功能是把没有管道组织的内分泌激素输送到各个靶器官或靶细胞,以调节昆虫的生长发育。

六、机械作用

昆虫血液可传递由身体某一部位收缩而产生的机械压力,有助于昆虫脱皮、羽化、展翅、卵孵化和呼吸通风。

第四节 心脏的搏动与血液循环

昆虫的血液循环主要靠心脏和辅搏器的搏动以及膈膜和肌肉的运动来完成。

一、心 搏

昆虫的心脏由单细胞层的心肌所组成,里面为一层很薄的基膜,外周是结缔组织构成的围膜。昆虫的心脏是肌原性的,它不受神经的支配,可自发产生动作电位引起收缩,随后由心脏壁的弹性产生舒张,从而进行有节律性的搏动。昆虫心脏的搏动周期可分为3个阶段,即收缩期(phase of systole)、舒张期(phase of diastole)和休止期(phase of diastasis)。

二、影响心搏的因素

昆虫心博的速率因虫种、性别、发育阶段、生理代谢、环境条件、化学毒物等的影响而变化

第五章 昆虫的排泄器官及其生理

昆虫在生命活动过程中不断地进行物质和能量代谢,其代谢过程中产生的二氧化碳通过气管系统或体壁借扩散作用排出体外,氮素代谢物主要经马氏管-直肠系统排出。马氏管是主要的排泄器官,其他如体壁、消化道、脂肪体、下唇腺和围心细胞等,在不同的昆虫中也起着不同的排泄作用。

昆虫的排泄系统除完成排弃代谢废物外,还有维持昆虫体内盐类和水分的平衡、保持内环境稳定的作用。

第一节 马氏管及其排泄机能 马氏管(Malpighian tube)于1669年由意大利解剖学家Malpighi在家蚕中首先被发现而得名。

一、马氏管的数量和表面积

马氏管的数目在各类昆虫中差异很大,少的(如介壳虫)只有2根马氏管,多的(如直翅目)可达100根以上。一般来说,数量多的,马氏管一般比较短,而数量少的则比较长,两者的总表面积差异不大。

二、马氏管的基本类型

根据马氏管解剖构造,可将其区分为4种基本类型:

a.直翅目型:马氏管的基段和端段在形态、组织与机能上没有产生分化,末端封闭,游离子血淋巴中,整个管内的排泄物全系自血淋巴进入的水溶性代谢物。直翅目、革翅目、脉翅目及某些鞘翅目昆虫属此种类型。

b.鞘翅目型:马氏管的构造与直翅目型相似,但其盲端附着于直肠表面,外包以围膜形成“隐肾”构造,“隐肾”中的马氏管,能协助直肠对水分和无机盐等进行再吸收。此种类型多见于鞘翅目和某些鳞翅目昆虫。

c.半翅目型:马氏管在构造和机能上分化为基段和端段两部分,端段管壁细胞形成蜂窝边伸向管腔,能从血淋巴中吸收水溶性代谢物,在二氧化碳作用下成为尿酸沉淀进入基段,水分由基段管壁吸回血淋巴,尿酸排入后肠中。见于半翅目昆虫

d.鳞翅目型:马氏管的构造与半翅目型基本相似,即也分化为基段和端段两部分,但端段与直肠结合形成“隐肾”构造。多数鳞翅目昆虫属于此种类型。

三、马氏管的结构

马氏管由单层真皮细胞组成,外面为基膜,向管腔的一面具有缘纹,缘纹通常在基部呈刷状(下图A),在端部呈蜂窝状(图B),真皮细胞的基膜高度内褶,可达整个细胞的1/3,内质网在细胞的中部形成复杂的网络,且和线粒体伸入顶部的微绒毛内。马氏管常分布有一定的肌肉,另外,在马氏管的最外层还有众多的微气管分布。

四、马氏管的排泄机制

一些水生昆虫和陆生昆虫的马氏管管液,几乎与血液是等渗的,但其无机成分与血液有明显的不同,马氏管液的组成不是借简单的物理过程由血液滤过管壁形成的,而是靠主动运输系统进行的。除K+行主动运输外,竹节虫和丽蝇等Na+的运输以及吸血蝽管液中Cl-都是靠主动运输进行的。但马氏管对分子质量较小的多数代谢物如氨基酸类、糖类、尿素、尿酸盐等,均表现自由的渗透性。

K+等无机盐类的主动运输,是马氏管液产生及流动的基础,血液中的尿酸以尿酸氢钾(或尿酸氢钠)形式随管液的流动分泌进入马氏管腔内,当含有尿酸氢钾及尿酸氢钠的尿液通过具刷状边的基段时,在CO2的作用下,水及无机钾盐和钠盐被吸回血液,尿液的pH值由端部的7.2下降至6.6,导致尿酸沉积于马氏管的基段(图13-3),过量的沉淀进入后肠与肠内的消化残渣混在一起成为粪便排出体外。

尿酸是昆虫尿中重要的含氮废物,尿酸与其他含氮排泄物相比,分子中所含的氢原子最少,有利于水分的保持,有利于水分的保持,加上尿酸不论以游离酸的形式,还是以铵盐的形式都不易溶于水,排出时无需水伴随而消耗大量的水,这是陆生性昆虫适应性的重要一环,对于没法获得水分的卵期和蛹期来说,其保水作用更为重要。

五、马氏管的其他机能

(一)分泌泡沫和黏液(如沫蝉幼虫);(二)分泌丝(如草蛉幼虫);(三)分泌石灰质(如竹节虫)。

第二节 直肠及其排泄生理

一、直肠的重吸收功能

昆虫排泄系统所表现的选择性主要是由直肠的机能所产生的。直肠的肠壁细胞及其特化的直肠垫,能从排泄的尿中以及从中肠进入后肠的内含物中,将有用的物质再吸收并输入血淋巴中。马氏管和直肠一起形成排泄循环,排泄循环是指马氏管从血液内吸收的代谢物、水分、无机盐类及其他有机分子不断地进入后肠,由直肠垫细胞调节再吸收的过程。排泄循环的主要作用是保持一个体液循环液流,使血液内的代谢废物不断地被运送到直肠腔内沉淀,从而调节血液的渗透压和离子平衡。

二、隐肾管系统

大多数昆虫的马氏管都游离在血淋巴中,但在鞘翅目和鳞翅目的很多种类中,马氏管的顶端部分与直肠紧密联结在一起,组成隐肾管复合体(cryptonephridial complex)。

第三节 其他排泄器官

有些昆虫没有马氏管,排泄作用改由其他器官担任。例如,蚜虫类即以消化道作为主要排泄器官,此外在昆虫中常见的其他排泄器官有:

一、下 唇 肾

弹尾目和双尾目中的铗尾虫

都没有马氏管,但在头内含有几对腺体,其中一对管状腺具有一根公共导管,其开口于下唇的基部,称为下唇肾(管状腺)(labial kidney)(见右图),腺体的囊状部分称腺囊,其导管部分与马氏管的功能类似,具有吸收和排泄机机能。

二、脂 肪 体

脂肪体(fat body)是昆虫体内很重要的器官,有时可占血腔的大部分。脂肪体有两个主要功能,即贮存营养物质和暂时不需要的氮素代谢物以及进行中间代谢和一些生化合成、转化反应等。

三、围 心 细 胞

围心细胞(pericardial cell)是由中胚层演变而来,常排列在心脏的表面或分散在背膈与翼肌的表面,不随血液流动。它的特点是可从血液中吸取那些不能被马氏管吸收的胶体颗粒。

第六章 昆虫的呼吸系统

昆虫的呼吸系统(respiratory system)是由外胚层内陷形成的管状气管系统(tracheal system),昆虫通过这一管状气管系统直接将氧气输送给需氧组织、器官或细胞,再经过呼吸作用,将体内贮存的化学能以特定形式释放,为生命活动提供所需要的能量。

昆虫的呼吸过程和一般动物相同,包括两个不可分割的环节。一是外呼吸,指昆虫通过呼吸器官与外界环境之间进行气体交换,即吸入氧气和排出二氧化碳,是一个物理过程;二是内呼吸,指利用吸入的氧气,氧化分解体内的能源物质,产生高能化合物-ATP,是一个化学过程。

第一节 气管系统

气管系统包括在昆虫体内呈现一定排列的管状气管以及分布于各组织细胞间的微气管和气管在虫体两侧的开口-气门。此外,还包括由气管转化成的气囊等组织结构。

一、气管的组织

气管(trachea)由内胚层内陷而成,在活体中呈银白色,其组织结构与体壁大致相同,由底膜(basement membrane)、管壁细胞层(epithelium)和内膜(intima)组成。

二、气管的分布和排列

气门气管(spiracular trachea)背气管(dorsal trachea)分布于背面的体壁肌和背血管 腹气管(ventral trachea)分布于腹面肌肉和腹神经索

内脏气管(visceral trachea)分布于消化道壁、生殖腺、生殖管和脂肪体等。侧纵干(lateral longitudinal trunk)背纵干(dorsal longitudinal trunk)腹纵干(ventral longitudinal trunk)内脏纵干(visceral longitudinal trunk)背气管连锁(dorsal tracheal commissure)腹气管连锁(ventral tracheal commissure)

三、微气管和气囊

昆虫的气管由粗到细进行分枝,当分枝到直径为2-5ìm时,伸入一个掌状的端细胞(end cell),然后由端细胞再形成一组直径在1ìm以下,末端封闭的微管--微气管(tracheole)伸入组织内或细胞间,微气管的内壁和气管一样,也具有螺旋丝。

气囊(air sac)是气管的某些膨大成囊状,可被压缩的部分,常见于有翅亚纲昆虫中。气囊易被血压或体躯的弯曲压缩或扩张,主要功能是保证气管进行通风作用。对飞行昆虫或水栖昆虫来说,具有增加浮力的作用。此外,气囊的伸缩还可促进血液循环。气囊的存在,还可允许取食后的前肠或中肠有膨大扩展的部位;相反的,当某些器官退化或缩小时,气囊可占据空出的部位,这对内部器官发挥正常功能有重要作用。

四、气门及其开闭机制

不同的昆虫种类,因其生活习性和环境的不同,气门(sp-iracle或stigma)的数目、位置和结构,也相应地发生了变化,但一般来说昆虫的胸部只有2对气门,分别位于中胸和后胸的前端,腹部有8对气门分别位于第1至第8腹节。

(一)气门数目、分布形式

1.多气门型: 至少具有8对有效的气门

全气门式(holopneustic):10对有效气门(蝗虫)周气门式(peripneustic):9 对有效气门(家蚕)

半气门式(hemipneustic):8对有效气门(蕈蚊幼虫)2.寡气门型:具1-2对有效 气门

两端气门式(amphipneustic):2对有效气门(蝇蛆)后气门式(metapneustic): 1对有效气门(孓孓)前气门式(propneustic): 1对有效气门(蚊蛹)3.无气门型(apneustic):无有效的气门

(二)气门的结构

最简单的气门仅是气管在体壁上的一个开口,称气管口(tracheal orifice),它是体壁内陷形成气管后留下的原始孔。如无翅亚纲昆虫的胸部气门。但绝大多数昆虫的原始气管口,已陷入体壁再度内陷的气门腔(atrium)内,腔的外口称气门腔口(atrial orifice),气

门腔口常围以一块特别硬化的骨片,称围气门片(peritreme)。

(三)气门的开闭机构(closing apparatus)(1)外闭式气门: 关闭气门腔口如蝗虫

1对唇形活瓣:包围在气门腔口的四周 垂叶:

闭肌:(2)内闭式气门: 主要控制气门腔内气管口的大小,大多数昆虫的气门,特别是腹部气门常具有这种开闭机构。在其气门腔口,往往能见到被称为筛板的密生细毛的刷状过滤结构(filter apparatus)。内闭式气门的开闭机构主要由3部分组成: a.闭弓(closing bow)b.闭带(closing valve)c.闭肌(occlusor muscle)和开肌(dilator muscle)。

气门的另一附属结构是气门腺(spiracular gland)。气门腺主要存在于水栖昆虫中,用以在气门表面分泌一层疏水性的物质,便于呼吸。

第二节 昆虫的呼吸方式

昆虫的呼吸方式依体躯的结构、生活习性、栖境、虫期的不同而有很大变异,大致可归纳为下列几种:

一、体壁呼吸

有些昆虫没有气管系统,或仅有不完整的气管系统,气体交换经体壁直接进行,如弹尾目昆虫。

二、气管鳃呼吸

一些水生昆虫如蜉蝣目和蜻蜓目的稚虫,体壁的一部分突出呈薄片状或丝状的结构称气管鳃(tracheal gill),其内分布有丰富的气管,昆虫利用气管鳃和水中氧的分压差来摄取氧气。蜻蜓稚虫的气管鳃突出在直肠腔内,形成直肠鳃(rectal gill)。

三、气泡和气膜呼吸

这是水生昆虫的一种特殊呼吸方式,常称做“物理性鳃呼吸”。一部分水生昆虫的幼虫或成虫的气门减少,腹部末端常形成长的呼吸管,上面有气门开口,气门周围因分泌有油质或生有拒水毛,呼吸时常以体末端倒悬于水面上,利用分泌油质或拒水毛打破水的表面张力,从空气中直接吸氧。

四、气门和气管呼吸

这是绝大多数陆栖昆虫的呼吸方式。昆虫依靠气管系统的通风和扩散作用,使体内各组织直接吸取大气中的氧气和排出二氧化碳。

五、寄生昆虫的呼吸方式

与水生昆虫相类似,寄生昆虫的呼吸方式通常依靠体壁的渗透作用从寄主体液或组织中摄取氧,或以气门穿透寄主的体壁从大气中获取氧。

第三节 气管系统的呼吸机制和控制

昆虫的呼吸是在管状的气管系统里进行的,气体在气管里的传送主要靠通风扩散作用,而在微气管与细胞、组织间则依靠扩散作用进行气体交换。

一、气管的通风作用

体躯较小或行动缓慢的昆虫,单靠气体的扩散作用就能够满足呼吸的需要,但对行动活泼和飞行的昆虫来说,耗氧量大大增加,此时除去气体扩散作用外,还需要有通风作用来保证氧的迅速供应,并尽快地排除体内产生的二氧化碳。

昆虫为了有效地进行通风作用,气管系统产生了两种适应结构,即:气管本身具有伸缩性和气囊可被血压或体躯弯曲等压缩,表现出风箱作用。

昆虫体躯的收缩运动是产生通风作用的主要原因,这种体躯的收缩运动也可称为呼吸运动。昆虫的呼吸运动有以下几种类型:a.仅背板运动;b.背板和腹板同时运动;c.左右和上下压缩同时进行;d.沿腹部长轴伸缩。

二、微气管中的呼吸机制

昆虫呼吸所需氧气,大都是通过微气管壁扩散进组织和细胞中去的。因此,凡是大量需氧的组织,如神经节、翅肌、卵巢、睾丸等都布满了微气管。微气管的末端常充满液体(图14-3),当组织活动(如肌肉收缩)时,产生的代谢物使组织液的渗透压升高,微气管末端的液体进入组织,其液体上面的空气柱也随之扩散到微气管末端和管外,直接与进行氧化作用的细胞接触,进行气体交换。当组织停止活动时,代谢产物在氧的作用下被氧化,组织液的渗透压下降,微气管末端又重新充满液体。

在正常情况下,昆虫代谢活动产生的二氧化碳通过体壁和气管系统排放。

三、气门开闭的调控

昆虫的气管系统通过微气管广泛分布于昆虫的组织和细胞之间,这不仅有利于氧气和二氧化碳的扩散,而且也非常有利于水分的蒸发,这对于生活在干旱环境中的昆虫,尤其是不取食的虫态,是非常不利的。因此,昆虫在正常呼吸过程中总是尽量减少气门开启。一般来讲,气管内二氧化碳的浓度达到临界点时,气门即开启,其它时间气门则关闭,气管内二氧化碳的浓度再次达到临界点时,气门再次开启,形成二氧化碳间歇式暴发释放。这样既保障了气体交换的正常进行,又减少了水分的失散。

昆虫腹部神经节含有控制该节或下节气门和气管分支活动的呼吸中心,而组织内氧的含量,及呼吸代谢产生的二氧化碳和酸性代谢物则通过内感器传递到呼吸中心,引起呼吸活动的改变。

昆虫的呼吸活动还受到环境因素如温度、光等的调控。

第四节 能量代谢和能源物质的相互转化

昆虫通过呼吸来获得能量和维持体内正常的生化环境,糖、脂、和氨基酸等各种能源物质按照特定的代谢途径,产生供虫体生命活动所需的各种能量。糖类是昆虫的重要能源物质,主要来自食物中的单糖、体内贮存的糖元和海藻糖。糖类的完全氧化代谢,包括糖酵解,三羧酸循环和呼吸链的电子传递及氧化磷酸化过程。

脂肪是一种高效的能源物质,虽然不同昆虫体内的贮存和运输形式有一定差异,但一般以甘油二酯为主进行运输。脂肪酸的代谢酶类存在于线粒体内,主要代谢途径是?氧化。

昆虫血淋巴中虽然含有高浓度的氨基酸,但绝大多数昆虫并不利用氨基酸作为代谢的能源物,氨基酸的重要性主要是经过转氨作用后生成各种酮酸,为三羧酸循环提供代谢中间体,起动丙酮酸的彻底氧化。

不同物质在氧化时的耗氧量和二氧化碳的产生量是不同的,通常把有机体呼吸时释放二氧化碳的量与吸收氧气的比值称为呼吸商(respiratory quotient,RQ)或呼吸系数。呼吸商的大小可用来判断昆虫所用的能源物质种类或代谢途径。当RQ=1时表示消耗的是碳水化合物,0.8表示消耗的是蛋白质,0.7表示消耗的是脂肪。影响呼吸商的因素很多,如虫态,飞行,饥饿等。昆虫的能源物质从总体上讲都来自食物,当营养物质(单糖、氨基酸和脂肪酸等被中肠吸收后,在脂肪体内转换成适于贮存和运输的形式,贮存于脂肪体和血液中,只有少量的能源物质直接进入肌肉内。血淋巴除了作能源物质运输的介体外,也是海藻糖和氨基酸的贮存库。

脂肪体是能源物质代谢的重要场所,它具有各种能源物质相互转换的酶系,通过独具的磷酸戊糖途径,不仅可为物质合成提供原料,同时还可将各种单糖,通过转酮基或醛基

作用,转变成葡萄糖合成糖元,或通过代谢转换合成甘油三酯进行贮存,也可合成海藻糖释入血淋巴,维持血糖含量。在大量消耗糖时脂肪体又可以通过糖异生过程,将氨基酸转变生成必需的糖类物质,供肌肉吸收利用。能源物质的转化常受到激素和基质的调控。

第七章 昆虫的肌肉系统

昆虫通过肌肉系统(muscular system)来维持其基本形态,通过肌肉的收缩来实现昆虫的一切活动和行为。在寒冷条件下还可以通过肌肉收缩来提高体温,如蜜蜂。昆虫肌肉的活动受神经支配。ATP是肌肉收缩的直接动力。昆虫飞行肌的代谢途径有很多特殊的适应性机制,能够维持昆虫长时间的飞行活动,而不至于出现明显的“氧债”。

第一节 昆虫肌肉的主要类型

昆虫肌肉系统起源于中胚层,在胚胎发育过程中,当体腔囊开始扩大互相融合成整个体腔时,囊壁细胞分别在外胚层下形成体壁肌(skeletal muscle),在内胚层外面形成内脏肌(visceral muscle)。

体壁肌按肌原纤维的形状和排列方式,分为管状肌(tu-bular muscle)、束状肌(close-packed muscle)和纤维状肌(fibrillar muscle)3类。

第二节 肌肉的组织结构

一、肌细胞(肌纤维)肌肉是肌细胞的总称,肌肉运动就是肌细胞活动的表现。因肌细胞呈细长的纤维状,故又称肌纤维(muscle fiber)。肌纤维是一个大型的多核细胞,外面包有肌膜(sarcolemma),肌膜上有微气管分布,由肌膜垂直内陷分化成的许多横向小管构成肌肉的横管系统(T管系统)。昆虫内脏肌的肌纤维通常是单核的,而体壁大多是多核的。

二、肌原纤维

肌原纤维(sarcostyle)是肌细胞特化的功能细胞器,这种细胞器由粗细两组蛋白肌纤丝聚合而成,在偏光显微镜下呈现出明暗相间的带状构造,使整个肌纤维呈现分段现象,因此昆虫的肌纤维亦称横纹肌(striated muscle).在明带(isotropic, I带)中部有一薄膜横贯其间,肌原纤维就连接于此膜上,此膜称端膜(telophr-agma)或Z膜,两相邻端膜之间的部分构成了肌小节(sarco-mere),肌小节是肌细胞进行收缩的基本单位。肌小节包括暗带(anisotropic,A带)和两端明带的各1/2所构成的部分。在暗带中央,还有一段颜色较淡的区域,称中带(median d--isc)或H带。H带中央又可分出一条横向的暗线称M线,有的昆虫在Z膜于A带之间还有N带(副带)。

第三节 肌肉的收缩机制

在肌原纤维中,粗肌丝和细肌丝按照一定的方式结合,通过蛋白质的变构作用,引起细肌丝在粗肌丝间滑动,产生肌肉收缩活动。

一、粗 肌 丝

昆虫肌原纤维中的粗肌丝由单一的肌球蛋白(myosin)分子聚合而成。肌球蛋白是一种原纤维蛋白,其分子呈杆状,分子尾部是一对经á-螺旋组成的肽链,多个肽链再聚合成粗肌丝的主干。分子头部呈球状膨大的部分由4根较短的肽链组成,并有规律地裸露在粗肌丝主干,表面形成外突。

二、细 肌 丝

昆虫肌原纤维中的细肌丝主要由肌动蛋白组成,肌动蛋白有两种形式:一种是单个球状分子,称为肌动球蛋白;另一种是它的聚合形式,呈串珠状,称为纤维状肌动蛋白。

三、肌肉收缩及滑行学说

1954年,Huxley & Hanxon根据甘油抽提肌原纤维的相差显微镜观察,以及Huxley & Niedergerke用活肌肉纤维的干涉显微镜观察,分别独立地提出了肌丝滑行学说:认为肌小节无论是被拉长或者在主动或被动缩短的情况下,粗肌丝、细肌丝的长度都不变,只是细肌丝在粗肌丝之间滑行。引起肌丝滑行的动力是肌动球蛋白横桥键角的改变,在肌肉收缩过程中,主要有两个耗能过程即肌纤维分子变构和Ca2+的移除。

第四节 肌肉收缩的调控

昆虫肌肉的收缩是由肌膜去极化引起的,这大多由分布在肌膜上的运动神经释放化学递质进行调控。但也有一些肌肉没有神经分布,它们能自发地产生收缩。此外,肌肉的收缩还受到激素、血淋巴的离子组成和机械张力的调控。

一、肌纤维上的神经分布

昆虫肌肉上的神经呈多点式分布,即每条肌纤维都与运动神经末梢形成多个突触联结,运动神经末梢与肌肉的连接点又称运动终板(terminal lamella)。昆虫肌膜的电激应性较差,终板电位的传递是分级的(传播距离按指数级衰减),通常只能形成局部兴奋,不能作远距离传递。昆虫不同肌纤维上的运动终板间隔通常是一定的,一般在10一100 ìm之间。昆虫的运动神经元除了在每条肌纤维上形成多个运动终板外,每一运动终板内的神经末梢还产生大量分支,这样,整条肌纤维就形成了一个能同时兴奋的运动单位。

昆虫的运动神经元分为兴奋性和抑制性两类,兴奋性神经又分为快神经、慢神经及一些中间类型。在昆虫的一条肌肉中,肌纤维通常仅接受一个或少数几个运动神经元的控制,在这种情况下,昆虫的中枢神经系统通过调整参与的运动单位数量和种类来控制收缩强度。

二、肌膜-神经的突触调控

运动神经元的末端以大量分支与肌纤维膜形成突触联系,并通过神经递质调节肌肉的兴奋。兴奋性神经释放的递质是L-谷氨酸,一次神经冲动所释放的递质通常足以引起肌膜的去极化,但慢神经一次神经冲动仅释放少量的递质囊泡,一般不足以使肌膜去极化,必须由连续的脉冲作用,才能释放足够的递质囊泡,使肌膜产生兴奋;抑制性神经的化学递质,为?-氨基丁酸,使肌肉不产生兴奋或降低其兴奋性。

三、其他因子对肌肉活动的调节作用

昆虫肌肉的兴奋性还受到激素、体液化学成分和机械张力的影响。

四、肌肉的收缩特性

肌肉接受一次有效刺激所引起的收缩过程,称为单收缩;在一次单收缩结束前又接受新的刺激,产生连续收缩的过程称为复合收缩。单收缩包括3个时期:潜伏期、收缩期和松弛期。复合收缩又包括完全紧张性收缩和不完全紧张性收缩。

行紧张性收缩的肌肉称紧张性收缩肌或称慢收缩肌,紧张性收缩肌对单个神经脉冲不敏感,反应迟钝。与紧张性收缩肌相对应的是相位性收缩肌,又称快收缩肌,它对单个神经脉冲敏感,并迅速做出全或无的反应。快收缩肌与慢收缩肌的差异主要在于肌纤维内肌质网的发达程度。

肌肉在机械收缩过程中,只有少部分能量用于牵动负荷,绝大部分以热能形式散失。

第八章 昆虫的神经系统 昆虫通过神经系统(nervous system)与外界环境取得联系,协调虫体的快速运动,并调节其内部的生理状态与复杂多变的外界环境保持一致。

昆虫的神经系统联系着体壁表面和体内各式各样的感受器和反应器,由感受器接受刺激引起电位改变产生冲动,再由神经细胞产生激应,将冲动传导到肌肉、腺体等反应器,引起肌肉的收缩和腺体的分泌活动。

昆虫的神经系统由外胚层的一部分细胞特化形成,属腹神经索型。在解剖学上可以区分为3个部分:中枢神经系统(central nervous system)、周缘神经系统(peripheral ner-vous system)和交感神经系统(sympathetic nervous system)。

第一节 神经系统的基本构造

一、神经细胞

神经细胞(nerve cell)是构成神经系统的基本单元,神经细胞又称神经元(neurone),它包括一个神经细胞体(soma)或称核周质(perikaryon),及由此发出的神经纤维。神经纤维的主干部分叫轴突(axon),有时在主干上还可能有侧支(collateral),在轴突的末端分出很多像树根状细小的纤维,其传入神经冲动的细小纤维叫树状突(dendrite),其传出神经冲动的细小纤维叫端丛(terminal arborization),轴突外面包有一层含有细胞质和线粒体的薄膜,称神经围膜(neural lamella)。

二、神经细胞的类型和功能

从形态上可分为:单极神经元(monopolar neurone)双极神经元(bipolar neurone)多极神经元(multipolar neurone);

从功能上可分为:感觉神经元(sensory neurone)运动神经元(motor neurone)联络神经元(association neurone)

三、神 经 节

昆虫的体神经节(ganglion)是卵圆形、多角的神经组织,每一体节内有左右合并的神经节一个(见下页图A),前后端各以两根神经索与邻近的神经节相连,构成腹神经索。神经节由很多神经细胞体及其神经纤维集合而成。神经细胞体位于神经节内缘四周,而轴突、侧支、树状突和端丛等神经纤维则位于神经节中央,形成紧密复杂的神经纤维网络--神经髓(neuropile)。神经髓是中枢神经系统的“突触联系”中心,根据神经纤维排列的形式,可分为“无结构神经髓”和“有结构神经髓”两类。

在每一个神经节的两侧各发出两三根侧神经(lateral nerve),每一根侧神经内具有两个根,分别称为背根和腹根。背根中含有运动神经纤维,腹根中含有感觉神经纤维,在整个神经节外面包有一层具细胞核的神经鞘,鞘外有气管分布。

神经鞘(nerve sheath)由内外两层组成。外层为非细胞组织的神经围膜(neurallamella),内层为鞘细胞层(perineurium)。

四、神 经 昆虫的神经(nerve)由成束的神经纤维(轴突)集合而成,在一般情况下,同一神经内既包含有感觉神经纤维,又包含运动神经纤维,神经是神经纤维传导神经冲动的通道。

第二节 昆虫的中枢神经系统的结构和功能

昆虫的中枢神经系统(central nervous system)包括一个位于头部的脑(brain)和一条位于消化道腹面的腹神经索(ventral nerve cord)。脑和腹神经索之间,以围咽神经索(circumoesophageal connective)相连。连接前后神经节的神经,称为神经索(connective);横连的神经,称神经连锁(commissure)。

一、脑

脑是联系和协调的中心,它联系着头部所有感觉器官的神经纤维,以及口区、胸部和腹部的所有运动神经元,并调节内分泌腺体的分泌活动,从而调节昆虫的一切行动。脑虽是昆虫活动的激发和控制中心,但咽喉下神经节和体神经节也有相对自主的控制和反馈作用。脑的相对体积的大小与行为的复杂性密切相联。脑由前脑、中脑和后脑组成。(1)前脑(protocerebrum)视叶(optic lobe):直接与复眼相连接

单眼柄(ocellar pedicel):与背、侧单眼相连 蕈体(corpus pedunculatum): 1对 脑桥体(protocerebral bridge):1个 中央体(central body):1个 附叶(accessory lobe): 1对

蕈状体由大量小型的联络神经细胞球体及其神经纤维组成,每一个蕈体包括膨大的蕈体冠(calyx)、较狭长的蕈体柄及分叉的蕈体根(root)。蕈体根又分为α叶(αlobe)和β叶(β lobe),蕈状体是最重要的联络中心。视叶包括三3个联络中心,从外向内分别是视叶神经节层(lamina ganglionaris)、视外髓(medulla externa)和视内髓(medulla interna)。(2)中脑(deutocerebrum)包括两个膨大的中脑叶(antennallobe)及由此发出的触角神经(antennal nerve)分布到触角肌上,中脑是触角的神经中心。(3)后脑(triocerebrum)由第1体节的1对神经节前移特化而成,但仍保留咽下神经连锁,从后脑发出的主要神经有:与额神经节连接的额神经索,与上唇联系的上唇神经。

二、腹神经索(ventral nerve cord)腹神经索位于消化道腹面,包括头部的咽喉下神经节(suboesophageal ganglion)和胸、腹部的一系列神经节和神经索。

咽喉下神经节位于头内咽喉的腹面,是腹神经索的第1个复合神经节。咽喉下神经节发出的神经主要通至上颚、下颚下唇、舌、唾管及颈部肌肉等,咽喉下神经节既是口器附肢活动和协调中心,又能显著地影响虫体的活动,并对胸部神经节的神经中心具有刺激作用。在缨尾目、有翅亚纲比较低等的种类和很多完全变态昆虫的幼虫期,可以见到11对神经节,即胸部3对,腹部8对,但腹部的最后1对神经节通常由腹部第8至第10节合并而成。在较进化的类群和很多完全变态昆虫的成虫期常有不同程度的合并现象

第三节 昆虫的交感神经和周缘神经系统

昆虫的交感神经系统与中枢神经系统的分工,不像哺乳动物那样明显。根据它们联系的器官不同,可以分为口道神经系统(stomodaeal nervous system)、中神经和腹部最后一个复合神经节(同属于中枢神经系统)。

一、口道神经系

口道神经系主要包括额神经节(frontal ganglion)和后头神经节(occipital ganglion)及其发出的神经纤维,口道神经系的额神经节和后头神经节中,含有感觉联络和运动神经元,它是口器、前肠、中肠和背血管活动的控制中心。

二、中 神 经

中神经常见于昆虫幼虫体内,位于腹神经索的前后两个神经节的两条神经索之间,起源于前一神经节内,其中含有两根很细的感觉神经纤维和两根较粗的运动神经纤维。中神经是各体节气门的控制中心。

第四节 神经系统的电活动

神经细胞的特点之一就是能在轴突上形成跨膜电位差(membrane potential)。这是因为膜的选择通透性和离子的不均匀分布形成膜外带正电荷、膜内带负电荷的结果,在电位差发生变化时,产生神经脉冲,从而产生出各种各样的神经电活动。

一、静息电位

在神经细胞的外周液体中,含有高浓度的Na+、低浓度的K+,并有Cl-为主的阴离子;与此相反,细胞内部含有低浓度的Na+与高浓度K+除Cl-以外、尚有部分有机阴离子,当神经细胞膜在静息状态时,K+可以自由进出,但Na+则不能通过,结果K+沿浓度梯度进入细胞膜外,K+向外扩散的结果,使膜内相对留下了较多的负离子,此时膜两侧便会出现电位差,当这种电位差达到一定程度时,就会阻止K+继续向外扩散,离子浓度与电场强度之间形成一种平衡状态,此时膜表面电位正于膜内,膜两边的电位差称静息电位。

二、动作电位及其在轴突上的传导

神经的某一部位接受刺激后,就会产生兴奋,兴奋使膜的通透性发生变化,体液中的Na+进入膜内,致使膜表面电位下降,膜内电位上升,膜内外电位差减小,甚至内外电位反过来,造成膜的“去极化”(depolarization),形成脉冲形的动作电位(action potential)。

由于轴突内外的电解质都是可导的,当Na+进入膜内时,即可形成回路,产生动作电流,膜外的电流从兴奋部位流向未兴奋部位,导致未兴奋部位的去极化,进而产生一定间隔的脉冲形神经冲动,这个过程在膜上反复连续地进行,就表现为动作电位在整个轴突上的传导。

三、突触传导

神经元之间在组织学上的间断性,使动作电位不能直接通过突触(synapse),而必须借助神经递质(neurotransm--itter)进行传导。

突触是神经元之间的联接点,神经传导的联络区。突触由突触前神经和突触后神经组成,它们的神经膜相应为突触前膜和后膜,突触间隙(synaptic cleft)的宽度为20一30 nm神经递质在突触之间的传导过程:

动作电位→突触前膜→前膜去极化→Ca2+通道打开Ca2+内流→囊泡与前膜释放位点结合→胞吐作用释放Ach→Ach与后膜受体(AchR)结合→AchR构象改变→后膜对Na+、K+通透性改变→后膜去极化→信息在轴突上传导。Ach与受体的结合是可逆的,当它激发受体发生变构以后,就被释放出来,随即被后膜上的胆碱酯酶(cholinesterase,AchE)所水解生成胆碱和乙酸,胆碱和乙酸可被突触前膜吸收,重新合成乙酰胆碱,部分进入血淋巴。

乙酰胆碱并不是惟一的兴奋性递质,有些昆虫以谷氨酸盐(glutamate)作为递质。

在抑制性神经中,神经递质是?-氨基丁酸。

第五节 杀虫剂对神经系统的影响

很多高效杀虫剂都是神经毒剂,不同类型的神经毒剂作用于不同的神经靶标,对杀虫机制的深入研究,有助于我们对昆虫神经生理学的进一步了解。

一、对轴突传导的影响

昆虫受滴滴涕中毒以后,表现过渡兴奋和痉挛,随之发生麻痹而死亡。这是因为滴滴涕的分子结构能嵌入轴突膜上的Na+通道,从而延缓轴突的去极化以及钠离子通道的关闭时间,出现重复的动作电位,产生中毒症状。

拟除虫菊酯药剂的杀虫作用与滴滴涕很相似,也是抑制轴突膜的Na+通道,使膜的渗透性改变,造成传导阻断,但也可能影响突触传递,产生神经毒素及其他作用,如ATP酶的抑制等。

二、对乙酰胆碱受体的影响

一些杀虫剂如烟碱、季胺化合物箭毒(curare),沙蚕毒类杀虫剂能与突触后膜上的乙酰胆碱受体产生抑制作用,从而阻断了Ach与受体的结合,冲动不能传导,使昆虫死亡。

三、对乙酰胆碱酯酶的影响

有机磷和氨基甲酸酯类杀虫剂都是乙酰胆碱酯酶(AchE)的抑制剂,它们能像乙酰胆碱那样与AchE相结合,但结合以后不容易水解,使酶分解乙酰胆碱的作用受阻,造成突触部位乙酰胆碱大量积聚,造成昆虫过度兴奋,麻痹而死。

第九章 昆虫的感觉器官

昆虫体壁的皮细胞所演变而成的各种感觉器官(sensory organ)是对周围环境和内部各种刺激产生反应的重要结构,它们和神经系统一起,控制和调节昆虫的行为。

昆虫对刺激的反应可分为3个过程即感受器对刺激的接受,传导和对刺激产生适应性反应。

根据昆虫感受器接收刺激的性能,可将感受器分为感触器、听觉器、感化器和视觉器。

第一节 感受器的结构 昆虫的感受器作为感觉系统中的一个基本单位,既能独立行使感觉功能,又能组成复杂的感觉器官。

昆虫的感受器都可分为由体壁的皮细胞特化而成的接受部分和由神经细胞形成的感受部分。最简单的形式仅包含一个感觉神经细胞(双极神经元),其端突联接着表皮突起,而感觉神经纤维则伸入中枢神经节内由于昆虫具有各种形状的表皮突起,因此感受器的类型也极为多样。昆虫感受器的类型有:毛状感受器、锥状感受器、鳞状感受器、坛状或瓮状感受器、板状感受器、剑梢感受器。

第二节 昆虫感觉器感受刺激的机制

任何形式的感受器,当受到一种足以激起反应的刺激后,首先是表面的膜产生激应性,引起感受器膜电位的改变,产生动作电位,动作电位沿着感觉细胞的端突或树状突传导到神经细胞体附近的电激应区,引起传入神经纤维产生神经冲动,其频率与感受器动作电位的幅度成正比,并迅速地达到高峰,然后下降并保持在一个稳定的水平,直到刺激消失为止。

组成各种感受器的细胞因分化程度不同,具有控制传入刺激或改变刺激能量的特性,也就是说,一种特殊的感受器只有受到一种适宜的质和量的刺激(如光子、电子、质子、分子等),才能产生反应。如果刺激不合适,感受器就不会兴奋。

第三节 昆虫的感触器或机械感受器

昆虫感受环境和体内机械刺激的感受器,称作感触器,机械刺激一般包括实体的接触、身体的张力、空气的压力和水波的振动等。

昆虫感触器的表皮部分有各种不同的形状,典型的感触器常有较长的表皮外突,如感触毛内部含有形成表皮突起的毛原细胞和一个较大的感觉神经细胞,最常见的感触器有毛状感触器和钟状感触器。

第四节 听 觉 器

昆虫的听觉器是感受压力改变和空气或水振动的结构,昆虫的听觉感受器有听觉毛(auditory haif)、江氏(Johnston,s organ)及鼓膜听器(tympanal organ)。

一、听 觉 毛

一般为长而易动的毛状感受器,内部仅有一个神经细胞与毛窝膜连接,特化程度较低,位于虫体的暴露部位。最适的音波感受频率在400-1500 Hz。听觉毛一般又是感触器。

二、江 氏 器

江氏器于1855年由Johnston在雄性埃及伊蚊成虫触角的梗节中发现。

三、鼓膜听器

鼓膜听器普遍存在于具发音能力的昆虫中,如蝗科和蝉科的第1腹节两侧,螽斯科和蟋蟀科的前足胫节基部,都具有1对鼓膜听器。鳞翅目成虫的鼓膜听器位于后胸或第1腹节上,而仰泳蝽科的则在胸部。鼓膜听器的基本结构都具有一个略凹入周围体壁的椭圆形或圆形的听膜或鼓膜(tympanum)以及一组或数组由剑梢感受器组成的听体。

剑梢感受器(scolophorous sensillum)有两类:一类称为“被膜式剑梢感受器”,其一端以冠细胞连接于体壁表皮下面;另一端以结缔组织纤维束固定于另一处的体壁下面,另一类称为“下膜式剑梢感受器”,其一端的冠细胞不接触表皮;另一端游离在体腔或附胶腔内。

第五节 昆虫的化学感受器

化学感受器是感受化学物质的感受器,昆虫在觅食、求偶、产卵、选择栖境、寻找寄主等行为中,都和化学感受器有关。化学感受器的表皮部分主要包括两类结构,一类结构是具微孔的薄壁毛状、锥状或板状突,另一类结构是表皮凹陷成坛状或瓮状腔,腔底含有感觉细胞的端突或树状突。

化学感受器在功能上可以分为嗅觉器和味觉器两类,嗅觉(olfaction)是由挥发性物质的分子所激发,可在一定的距离内发挥作用。而味觉(gustation)则是在直接接触液态或固态的物质分子后才能感受。

一、嗅 觉 器

嗅觉器(olfactory organ)大都呈毛状、栓状或板状,主要位于触角上,其次为下额须和下唇须。

二、味 觉 器

味觉器(gustatory organ)常呈毛状、栓状或板状,大多位于口器上、口前腔壁上、足跗节上以及产卵器上,与昆虫的取食、产卵有关。

第六节 昆虫的视觉器

视觉器是感受光波刺激的器官,其感觉细胞中的色素能对一定波长范围内的光谱(253-700nm)产生生物电位,传递给中枢神经系统引起视觉反应。昆虫的视觉器包括复眼和单眼,其视觉中心分别位于视叶和单眼柄顶端内,它们对昆虫的觅食求偶、避敌、休眠、滞育、决定行为方向等都有重要作用。

复眼只有在成虫和不全变态的若虫和稚虫才有。单眼又分为背单眼和侧单眼,在幼虫和成虫期都可存在。

一、昆虫视觉器的基本结构

昆虫的视觉器差异很大,但都由集光部分和感光部分组成。集光部分是由特化的皮细胞及其分泌物形成的透明结构,包括角膜透镜(cornea)和晶体(crystalline body),其作用是传递和聚集光波;感光部分由感觉神经细胞集成的视杆(视觉柱)(retinula),其轴突集成的视神经(optic nerve),以及微气管构成的反光层(tapetum)所组成,此外角膜和视杆外面,还包围着色素细胞(pigment cell),其作用是感受光波能量和产生神经冲动。

二、复眼的结构和视觉

复眼是昆虫的主要视觉器,它是由数目不同的小眼(ommatidia)组成,小眼由角膜、角膜细胞、晶体、视杆组成。

三、单眼的结构和视觉

上一篇:金婚答谢贺词下一篇:熟悉的地方也有风景的作文500字