课时31 等比数列及其前n项和(共12篇)
1.课时31 等比数列及其前n项和 篇一
自强学校高一数学
等比数列及其前n项和
1.等比数列的定义
如果一个数列从
A.2B.2C.2D.24.设{an}是首项大于零的等比数列,则“a1<a2”是“数列{an}是递增数列”的()
A.充分而不必要条件C.充分必要条件
B.必要而不充分条件 D.既不充分也不必要条件
5.各项均为正数的等比数列{an}的前n项和为Sn,若S10=2,S20=8则S30=________.等比数列中基本量的运算
【例1】 等比数列{an}满足:a1+a6=11,a3·a49q∈(0,1).
(1)求数列{an}的通项公式;(2)若该数列前n项和Sn=21,求n的值.
总结:在使用等比数列的前n项和公式时,应根据公比q的情况进行分类讨论,切不可忽视q的取值而盲目用求和公式.
练习1.记等差数列{an}的前n项和为Sn,设S3=12,且2a1,a2,a3+1成等比数列,求Sn.等比数列的判定及证明
【例2】 已知数列{an}的前n项和Sn=2an+1,求证:{an}是等比数列,并求出通项公式.
总结:证明一个数列是等比数列的主要方法有两种:一是利用等比数列的定义,即证明an+1*2*
=q(q≠0,n∈N),二是利用等比中项法,即证明an+1=anan+2≠0(n∈N). an
练习2.设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2.(1)设bn=an+1-2an,证明数列{bn}是等比数列;(2)求数列{an}的通项公式.
等比数列的综合应用
【例3】(2010·上海卷)已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*.(1)证明:{an-1}是等比数列;
(2)求数列{Sn}的通项公式,并求出使得Sn+1>Sn成立的最小整数n.总结:数列是特殊的函数,以数列为背景的不等式证明问题及以函数为背景的数列的综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,从而一直成为高考命题者的首选.
练习3.数列{an}的前n项和为Sn,且a1=1,an+1=3Sn,n=1,2,3,„,求:
(1)a2,a3,a4的值及数列{an}的通项公式;(2)a2+a4+a6+„+a2n的值.作业:
一、选择题
1.已知{an}是等比数列,a2=2,a5=4q=()
111A.-2B.2C.2D.22.已知各项均为正数的等比数列{an}中,a1a2a3=5,a7a8a9=10,则a4a5a6=()
A.42B.7C.6D.52
13.已知等比数列{an}的前n项和Sn=t·5n-2-5t的值为()
A.4B.5C.5D.54.已知等比数列{an}中,若a1 005·a1 007=4,则该数列的前2 011项的积为()
A.42 011B.±42 011C.22 011D.±22 011
225.若a1=1,对于任何n∈N*,都有an>0,且nan+1=(2n-1)an+1an+2an.设M(x)表示
整数x的个位数字,则M(a2 011)=()
A.2B.3C.4D.5
二、填空题
6.数列{an}满足a1=1,an+1=2an+1,若数列{an+c}恰为等比数列,则c的值为________. 7. 等比数列{an}的公比q>0,已知a2=1,an+2+an+1=6an,则{an}的前4项和S4=____.8.等比数列{an}的前n项和为Sn,若S3=2,S6=6,则a10+a11+a12=________.9.设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,„),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则6q=________.三、解答题
10.设等比数列{an}的前n项和为Sn,已知S4=1,S8=17,求{an}的通项公式.
11.已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N*).
(1)证明:数列{an+1-an}是等比数列;(2)求数列{an}的通项公式.
12.在数列{an}中a1=1,an=2(an-1-1)+n(n≥2,n∈N*).
(1)求a2,a3的值;
(2)证明:数列{an+n}是等比数列,并求{an}的通项公式;(3)求数列{an}的前n项和Sn.
2.课时31 等比数列及其前n项和 篇二
提出问题: 已知等比数列{ an} 的首项为a1, 公比为q, 求它的前n项和Sn.
问题分析: 这个问题中给出的已知条件就是等比数列、首项和公比, 要求的是前n项和. 我们已经学习过等差数列的相关概念和公式, 那么等比数列是否也可以用类似于等差数列前n项和公式的推导方法进行推导呢? 经过思考和实践, 主要总结出了以下的几种推导思路.
一、以等差数列前n项和公式的推导为参考
当{ an} 为等比数列时, 这样就表示出了Sn, 但这个式子里面共有n项相加, 必须要化简, 消除其中的一些项, 只用某几项来表示. 从上面的式子我们可以观察到, 从第二项起, 每一项都是前一项的q倍, 那么我们可以采用类似于等差数列前n项和的方式, 对该式的两边同时乘q得到一个新的式子:, 用这个式子减去Sn, 就可以把大部分的项都消除掉, 得到, 整理得:且当q≠1时, 当 q = 1 时, Sn= na1.
反思这种方式类似于等差数列前n项和的推导过程, 主要就是通过适当的变形和相减, 把大部分项都消除掉, 达到化简的目的, 使Sn能够写成用a1, q和n表示的形式.
二、以等差数列的通项公式推导方式为参考
在等差数列中, 当n≥2时, 有a2- a1= d, a3- a2= d, …将这些等式的两边分别相加起来, 就可以消除掉等式左边的中间项, 得到an- a1= ( n - 1) d, 且当n = 1时, 这个等式也成立. 那么把这个推导方法运用到等比数列中得:也就是同样的, 把这些等式都加起来, 就得到了等式的左边少了加上a1可以凑成Sn等式的右边括号内加上an也可以凑成Sn, 所以等式可以写成Sn- a1= ( Sn- an) ·q且当q≠1 时, 当 q = 1 时, Sn= na1
反思这种方法是根据等比数列的定义推导出来的, 把每一项表示出来, 用累加的方式就可以得到与Sn相关的式子, 再进行适当的变换, 用已知把Sn表示出来就得到了我们需要的目标公式. 这种推导方式的实质就是建立一个有关于Sn的方程, 解出这个方程, 就是用相关的已知量来表示Sn, 因此, 这可以说是一种方程思想的应用.
三、以等比数列的定义结合比例式的性质进行推导
根据等比数列的定义,与方法二中相似的方法, 要使得式子中出现要求的Sn, 就要凑出通过观察可以发现这个式子的特点是分子中含有除a1外的其他项, 那么, 我们结合 比例式的 性质, 可以得到也就是同样可以得到有关于Sn的方程.
反思这种思路直接从定义出发, 结合等比例的性质, 更容易理解, 思路方面比第二种方法更加清晰自然. 相同之处都是运用了方程的思想, 用解方程的方式把所求的公式表达出来.
等比数列是高中数学的重点和难点, 特别是有关公式的推导, 教师在教学中一定要重视, 只有经过认真思考和推导之后, 学生们对公式的理解才比较彻底, 在实际运用中才能更加灵活.
参考文献
[1]吴静, 祝世清 (指导教师) .方程法变形数列递推公式.中学生数学:高中版, 2013 (9) .
[2]汪元健.求数列通项公式的技巧.中国文房四宝, 2013 (6) .
3.课时31 等比数列及其前n项和 篇三
教学是师生共同参与的活动过程,在这个过程中,教师是活动的主导,学生是活动的主体,教师的主导要为学生主体达到学习目标服务,也就是就教师在使用讲授法的同时,必须辅之以指导学生亲自探究、发现、应用等活动,为学生思维指路搭桥。通过学生自主的尝试活动,使他们在感知的基础上有效地揭示知识的内在联系,从而使学生获取知识,提高能力,本堂课的设计正是以这个原则为主旨的。
二、学生情况与教材分析
1.学生通过上一节的学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点。
2.几何能直观地启迪思路,帮助理解,特别是对于职中类学生,他们对知识的理解还是处于模糊阶段,因此,借助几何直观学习来理解数学,是数学学习中的重要方面。
3.本课要求学生通过自主地观察、讨论、归纳、反思来参与学习,认识和理解数学知识,学会发现问题并尝试解决问题,在学习活动中进一步提升自己的能力。
三、教学目标
1.知识目标
(1)了解等差数列前n项和的定义,了解逆项相加的原理,理解等差数列前n项和公式推导的过程,记忆公式的两种形式。
(2)用方程思想认识等差数列前n项和的公式,利用公式求和;等差数列通项公式与前n项和的公式两套公式涉及五个字母,已知其中三个量求另两个值。
(3)会利用等差数列通项公式与前n项和的公式研究前n项和的最值。
2.能力目标
(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。
(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比的思维能力。
(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。
3.情感目标
(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。
(2)通过公式的运用,树立学生“大众教学”的思想意识。
(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。
四、教学重点、难点
重点:等差数列前n项和公式。
难点:获得等差数列前n项和公式推导的思路。
五、教学方法
启发引导、交流讨论、合作探究。
六、教具准备
现代教育多媒体技术。
七、教学流程图
八、教学过程
1.引入新课
(1)复习
师:上一节课中,我们学习了等差数列的定义及通项公式,知道了“公差d=______,通项公式an=______”(见黑板)
生1:(回答黑板上的问题)
(2)故事引入
师:那等差数列的前n项和怎样求?今天,我们主要探讨等差数列的前n项和公式。说起数列求和,我由地想起德国伟大的数学家高斯“神述求和”的故事。高斯在上小学四年级时,老师出了这样一道题“1+2+3…+99+100”高斯稍微想了想就得出了答案。下面给同学们一点时间来挑战高斯。
生2:5050
师:看来我们班还是有不少高斯的。继续努力,说不定将来也成了数学家。下面请这位同学说一说是怎样算出来的。
生3:(说明如何进行首尾配对进行求和的。)
师:根据等差数列的特点,首尾配对求和的确是一种巧妙的方法。不过,对于以下的题,“例:求等差数列8、5、2…的前20项的和(见课件)”这种方法可就没那么方便了。因此我们非常迫切地需要推导出等差数列的前n项和公式。
2.合作学习,探求新知
师:下面我们从一个稍稍简单一点的等差数列来推导探讨等差数列的前n项和公式。
(学生观察幻灯片上以等差数列逐层排列的一堆钢管。)
师:如何求?
生4:利用刚才的方法.(略)
师:想一想,除了刚才的首尾配对求和的方法外,还有没有其他的方法呢?
(课件演示:引导学生设想,如果将钢管倒置,能得到什么启示)
生5:每一层都和上一层是一样多的。一共有8层,所以为8×(4+11),但一共有两堆,所以为S8=
师:那如果如下图所示共有n层,第一层为a1,第n层为an,请大家来猜想一下这个呈等差数列排列的钢管的总和Sn等于多少?
生6:Sn=
解:钢管的数量为:S8=
等差数列前n项求和公式:Sn=
师:这个猜想对不对呢?下面我们用所学过的知识一起来证明一下。
板书:Sn=a1+a2+a3+…+an
即Sn=a1+(a1+d)+(a1+2d)+…+[a1+(n-1)d]
把上式的次序反过来又可以写成:
Sn=an+(an-d)+(an-2d)+…+[an+(n-1)d]
两式相加:
2Sn=(a1+an)+(a1+an)+…(a1+an)=n(a1+an)
所以Sn=
看来,我们的猜想是正确的。下面我们做几道练习来熟悉一下公式。
3.合作学习,巩固并探求新知
学生练习一:(1)在等差数列{an}中,已知a1=1,a10=8,求S10.
(2)求正整数列是前1000个数的和;
学生小组合作练习,分组进行交流。
师:看来,大家对公式的掌握还是不错的。下面,我们再来看一道练习。
学生练习二:在等差数列{an}中,a1=1,d=-2已知a1=1,d=-2,求S10;
学生思考,并讨论解答。
学生讲解如何进行求解这题。
师:刚才那道题给出了a1,d和n=10,a10没有给出,但我们一样可以将S10求出,
那我们能不能直接由a1,d和n,得到an呢?
学生根据求和公式一和通项公式导出公式二:Sn=na1+d
学生练习三:求正整数中前500个偶数的和(用多种方法求解)。
学生讨论解答此题,并请学生上台讲解。
4.总结
师:今天,大家学得不错。下面我们再来回顾一下本堂课的内容。今天我们主要倒序相加的方法推导了等差数列前n项和公式一,并结合等差数列通项公式二推导出等差数列前n项和公式二,希望同学们在今后的解题要灵活运用这两个公式。
5.教学反思
4.等比数列前n项和公式教案 篇四
n项和
[分析问题]如果把各格所放的麦粒数看成是一个数列,我们可以得到一个等比数列,它的首项是1,公比是2,求第一个格子到第64个格子各格所放的麦粒数总合就是求这个等比数列的前64项的和。下面我们先来推导等比数列的前n项和公式。
1、等比数列的前n项和公式:
当q1时,Sna1(1q)1qn ①
或Sna1anq1q
②
当q=1时,Snna1
当已知a1, q, n 时用公式①;当已知a1, q, an时,用公式②.公式的推导方法一:
一般地,设等比数列a1,a2a3,an它的前n项和是
Sna1a2a3an
Sna1a2a3an由 n1aaq1n2n2n1a1qSna1a1qa1qa1q得
23n1na1qqSna1qa1qa1qa1qn(1q)Sna1a1q
∴当q1时,Sna1(1q)1qn ①
或Sna1anq1q
②
当q=1时,Snna1
公式的推导方法二:
有等比数列的定义,a2a1a3a2anan1q
根据等比的性质,有a2a3ana1a2an1Sna1Snanq
即 Sna1Snanq(1q)Sna1anq(结论同上)
围绕基本概念,从等比数列的定义出发,运用等比定理,导出了公式. 公式的推导方法三:
Sna1a2a3an=a1q(a1a2a3an1)
=a1qSn1=a1q(Snan)
(1q)Sna1anq(结论同上)
课题: §2.5等比数列的前●教学过程 Ⅰ.课题导入
首先回忆一下前一节课所学主要内容: 等比数列的前n项和公式: 当q1时,Sna1(1q)1qnn项和
①
或Sna1anq1q
②
当q=1时,Snna1
当已知a1, q, n 时用公式①;当已知a1, q, an时,用公式②
课 题:数列复习小结
教学过程:
一、本章知识结构
二、知识纲要
(1)数列的概念,通项公式,数列的分类,从函数的观点看数列.(2)等差、等比数列的定义.(3)等差、等比数列的通项公式.(4)等差中项、等比中项.
(5)等差、等比数列的前n项和公式及其推导方法.
三、方法总结
1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想.
2.等差、等比数列中,a1、an、n、d(q)、Sn “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法.
3.求等比数列的前n项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想. 4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等.
四、知识精要:
1、数列
[数列的通项公式] an2、等差数列 [等差数列的概念] [定义]如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示。[等差数列的判定方法]
1. 定义法:对于数列an,若an1and(常数),则数列an是等差数列。2.等差中项:对于数列an,若2an1anan2,则数列an是等差数列。[等差数列的通项公式]
如果等差数列an的首项是a1,公差是d,则等差数列的通项为ana1(n1)d。[说明]该公式整理后是关于n的一次函数。[等差数列的前n项和] 1.Snn(a1an)2a1S1(n1)SnSn1(n2)[数列的前n项和] Sna1a2a3an
2.Snna1n(n1)2d
[说明]对于公式2整理后是关于n的没有常数项的二次函数。[等差中项] 如果a,A,b成等差数列,那么A叫做a与b的等差中项。即:Aab2或2Aab
[说明]:在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项。[等差数列的性质]
1.等差数列任意两项间的关系:如果an是等差数列的第n项,am是等差数列的第m项,且mn,公差为d,则有anam(nm)d
2.对于等差数列an,若nmpq,则anamapaq。
3.若数列an是等差数列,Sn是其前n项的和,kN*,那么Sk,S2kSk,S3kS2k成等差数列。
3、等比数列 [等比数列的概念] [定义]如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q0)。[等比中项] 如果在a与b之间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。即G2ab。[等比数列的判定方法] 1. 定义法:对于数列an,若an1anq(q0),则数列an是等比数列。
22.等比中项:对于数列an,若anan2an,则数列an是等比数列。1[等比数列的通项公式]
n1如果等比数列an的首项是a1,公比是q,则等比数列的通项为ana1q。
[等比数列的前n项和] Sna1(1q)1qn(q1)Sna1anq1q(q1)当q1时,Snna1
[等比数列的性质] 1.等比数列任意两项间的关系:anamqnm
2. 对于等比数列an,若nmuv,则anamauav
4.若数列an是等比数列,Sn是其前n项的和,kN*,那么Sk,S2kSk,S3kS2k成等比数列。如下图所示:
4、数列前n项和(1)重要公式:
123n123n222n(n1)22;
; n(n1)(2n1)612n333[121n(n1)] 2(2)裂项求和:
5.课时31 等比数列及其前n项和 篇五
[摘要]如何根据新课标要求进行教学设计,是每个教师课前思考的问题.以“等比数列前n项和”为一课例进行教学设计与思考.[关键词]等比数列 前n项和 教学
[中图分类号] G633.6 [文献标识码] A [文章编号] 16746058(2015)080012
一、教学内容分析
本节课是《普通高中课程标准实验教科书?数学
(五)》(人教A版)第二章第五节第一课“2.5.1等比数列前n项和”(P55-58).本节内容是由一个故事启发得出一般求等比数列前n项和的思路,它是基于等比数列的“等比”特性的一种特殊求和方法.在教学中,应着重引导学生观察、分析、归纳、猜想,使学生善于“发现规律――归纳规律――应用规律”.二、教学目标
1.基础知识目标:理解等比数列前n项和公式的推导方法,掌握等比数列的前n项和公式并能运用公式解决一些简单问题.2.能力训练目标:(1)培养学生由特殊到一般的化归思想以及对式子变形的各种手段方法的应用能力,渗透方程思想、分类讨论思想,优化学生的思维品质;(2)通过探究与活动,让学生明白考虑问题要细致,说理要明确.3.创新素质目标:发挥学生主体作用,让学生在探究活动中学会思考,自觉地把所学知识应用于实际问题.三、教学重难点
重点:等比数列前n项和公式以及对公式的理解与运用.难点:等比数列前n项和公式的推导.四、教学过程
(一)创设情境,提出问题――激发求知欲
创设问题情境:有一穷人向富翁借钱,借钱方案如下:从第一天起借出1万,第二天借出2万,第三天借出3万……以此类推,每一天借的钱数都比前一天多一万,直到第30天,富人总共向穷人借出多少钱?穷人还钱方案如下:从借钱的第一天开始,穷人就开始向富翁还钱,第一天还1分,第二天还2分,第三天还4分,第四天还8分……以此类推,每一天还的钱数都是前一天的两倍,直到第30天.试问同学们,假设你依据这个方案向富翁借这笔钱,你们愿意吗?
学情预设:大多数学生可能算不出具体数目,只是凭直观判断表示“愿意”.教师引导:愿不愿意借这笔钱,关键是看借钱和还钱的总和各是多少.师生共同用计算器计算这个数,大家会发现这个数大得惊人,大于1073万元,穷人是无法满足富翁的要求的.师:如果你们不假思索地答应,将会导致一个很不幸的后果发生,这都是不具备基本的数学知识所造成的.而避免这个不幸的后果发生的知识,正是我们这节课所要探究的知识.此时学生跃跃欲试,纷纷想求出这个数列的前30项和,但因知识受限,无法一次求出,课题的引入水到渠成.[设计意图]用一个看似简单的生活实例,不仅复习了等差数列的求和,而且为引出等比数列前n项和作准备;同时通过与等差数列的对比让学生感受等比数列的爆炸增长,激起学生学习新知识的兴趣和欲望.(二)师生互动,探究新知――等比数列前n项和公式的推导
一般的,设等比数列{an},公比为q,则它的前n项和是Sn=a1+a2+a3+…+an.等比数列前n项和公式是求等比数列的前n项和的一个化简式,它的推导有很多方法,我们先研究教科书所采用的方法.推导方法一:错位相减法
1.由问题情境中S30=1+2+22+23+…+229的求解我们很自然地由特殊到一般,可以先让学生思考一个特殊的简单情形,即
Sn=1+q+q2+q3+…+qn-1.①
教师引导:首先复习推导等差数列前n项和公式,形式上采用倒序相加法,本质上是根据等差数列的定义an+1-an=d,从“公差为d”这一特性出发,抓住倒序后两式中上下对应项的和均为“a1+an”这个特点,构造相同项,进而化繁为简,推得公式.师:请同学们注意观察、联想,等比数列是不是也可以用倒序相加法求和?
(学生进行尝试,发现行不通)
在此情境下,教师引领学生透过现象看本质,类比等差数列前n项和公式求法.在等比数列前n项和中构造相同项,从而化繁为简是解决问题的关键.师:等差数列求和是根据定义,由公差d切入.自然,等比数列求和同学们也应抓住定义,由公比q来探究.关注等比数列定义和①式,你们能发现什么?
(四)课堂小结
本节学习了如下内容:
1.等比数列前n项和公式及其推导;特别是在推导过程中,学到了“错位相减法”,这一方法是解决一类求和问题的重要基础和有力工具,要引起高度重视.2.等比数列前n项和公式的应用.因为公式涉及等比数列的基本量中的4个量,一般需要知道其中的3个,才能求出另外一个量.另外应该注意的是,由于公式有两个形式,在应用中应该根据题意所给的条件,选择适当的公式.3.在使用等比数列求和公式时,注意q的取值是至关重要的一个环节,需要放在第一位来思考,必要时要分类讨论.4.体现的数学思想有:类比思想、分类讨论思想和方程思想.(五)课后作业
基础题:课本P61习题2.5(A组)第1、2、3题.提高题:求和(1+a)+(2+a2)+…+(2n-1+an).探究与发现:查阅网络,思考等比数列前n项和公式还有无其他推导方法?
五、教学反思
6.等差数列前n项和教案设计 篇六
设计人:杨峰烁
【背景分析】
本节课教学内容是高中课程标准实验教科书必修5(人教B版)中第二章的第二节第二课时的内容.本节课主要研究如何应用倒序相加法求等差数列的前n项和以及该求和公式的应用.等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题.同时,求数列前n项和也是数列研究的基本问题,通过对公式推导,可以让学生进一步掌握从特殊到一般的研究问题方法.
【学情分析】
学生已经学习了等差数列的定义及通项公式,有了一定的准备知识,但对等差数列的求和的方法和公式还是一无所知。针对学生的认知规律,本节课采取了自主、合作、探究的教学方式,以问题解答的形式,通过分析、讨论、归纳、探索而获得知识,为学生积极思考、自主探究搭建了理想的平台,让学生去感悟倒序相加法的使用范围.【设计理念】
让学生在具体的问题情境中经历知识的形成和发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构,因为建构主义学习理论认为,学习是学生积极主动地建构知识的过程.在教学过程中,根据教学内容,从介绍高斯的算法开始,探究这种方法如何推广到一般等差数列的前n项和的求
法.通过设计一些从简单到复杂,从特殊到一般的问题,层层铺垫,组织和启发学生获得公式的推导思路,并且充分引导学生展开自主、合作、探究学习,通过生生互动和师生互动等形式,让学生在问题解决中学会思考、学会学习.
【教学目标分析】
1.理解等差数列前n项和公式的推导过程;掌握并能熟练运用等差数列前n项和公式;了解倒序相加法的原理;
2.通过公式的推导过程,体验从特殊到一般的研究方法,渗透函数思想与方程(组)思想,培养观察、归纳、反思的能力;通过小组讨论学习,培养合作交流、独立思考等良好的个性品质.【教学重点和难点】
本节教学重点是探索并掌握等差数列前n项和公式,学会用公式解决一些实际问题;难点是等差数列前n项和公式推导思路的获得.【教学过程】
一、【古文共赏】
让学生们猜测问题与本节课的联系,此问题如果不能解决,学完本节后,看是否能解决。
[设计意图]:
引入一个中国古代的数列求和问题,通过悬疑的方式调动学生的好奇心,激发学生的学习兴趣。
[简要实录]:
学生思考这个问题与这节课学习内容的联系,教师简略介绍一下
北朝张丘建。引导同学们可先粗略发言发表自己的意见。
二、【温故知新】
学生准备好作业本,让两个学生在黑板上板演,教师说检测内容。①等差数列的通项公式②等差中项③等差数列的性质 [设计意图]:
检查学生上节知识的掌握情况,为新课的学习做好铺垫.[简要实录]:
2分钟后,一起批阅黑板同学的默写情况,下面的小组成员间互相检查、更正。老师视情况指正。
三、【高斯王子】
讲述数学王子高斯的故事,并自然提出高斯九岁时做出的题目。让同学们思考解决这个题目的方法有哪些?那个是最简便的呢?
[设计意图]:
用伟人的故事,让他们积极参与到课堂中来,同时培养他们的发散思维,培养他们一题多解的解题习惯。
[简要实录]:
学生们踊跃回答这个问题,并给出了两种解决这个问题的方法。老师再深入问学生哪种方法更简便呢?然后再引导学生,这个数列是不是我们刚学习的等差数列呢?学生经过观察发现,这是一个首项为1,公差为1,末项为100的等差数列。于是老师提出下一个问题。
四、【自主尝试】
求下面的这些钢管的数量总数,让同学们用刚才的计算方法来求
解。让学生先做好充足的准备,然后到黑板叙述板演计算过程。
[设计意图]:
进一步熟悉首尾相加的方法,慢慢为引入倒序相加作更进一步的准备。
[简要实录]:
学生先思考3分钟。然后让学生上黑板板演,然后和下面学生一起讲解自己的思考和计算思路。后一起评价,更正。鼓励学生,大胆面对成功和失败,大胆上台表现自己。
五、【知识迁移】
通过以上两个题目的解答,先让学生自己思考求等差数列前n项和的方法。并说明本节的一个重点学习内容倒序相加法。
[设计意图]:
独立推导等差数列的前n项和,加强对公式的记忆,熟练倒序相加的方法,让同学们在独立,讨论中提升自己。
[简要实录]如果有同学不能独立思考出,过3分钟后,可小组讨论。后让学生到黑板板演过程。并等同学们基本解决完毕,一起由学生解析讲解该问题。同学们提出自己的意见并对黑板学生作出更正。老师可视情况作出更精确的评价。
六、【公式记忆】
对比梯形公式,记忆等差数列的前n项和公式。通过联系的方法,用熟悉的旧知识快速记住新内容。
[设计意图]:
用新旧知识的联系来达到记忆公式的目的。通过图形的直观性来加强公式记忆。
[简要实录]:
同学们推导完等差数列的前n项和公式后,再仔细观察,引导他们察看公式的形式,引出梯形的面积公式与其所有的异曲同工之妙。并再书写公式,记住公式。老师作重点符号,强调两公式的重要性。
七、【始题释疑】
回头将最开始引入的问题再来解决。看看是否能用刚学习的知识来解答出来。并鼓励学生向古代的人学习,要善于观察生活,用数学解决生活中出现的问题。
[设计意图]:
这样做到首尾回应,整个课堂不偏离且围绕教学的主要内容,但又具有故事性和创造性。
[简要实录]:
先给学生3分钟时间考虑,然后由学生说出解答的思路,后学生在作业本上写出整个问题的步骤,后再师生一起更正修订。让学生思考,就得给学生时间,然后课下,再上交作业本,看学生在课上的习题完成情况。
八、【公式小结】
让学生自主完成等差数列前n项和sn的第二个公式的推导。观察这两个公式的相同点和不同点。找出相关量。弄明白这两公式之间的联系。并记住和能应用该公式。
[设计意图]:
通过联系的记忆方法,帮助同学们达到快速记忆的效果。找到相关量,面对不同的已知条件选择不同的公式。达到公式的熟练记忆和应用。
[简要实录]:
同学们已经学了等差数列的通项公式。可是,在通项中,我们的书已知条件是首项,公差或是其中的某一项。那么在这个公式中,只有末项,如何将其变形,然后直接运用公式求解呢?学生会想通项公式与些数列的联系,自然地将另一求和公式推导出来。并且看到了这两个公式的区别。
由同学们自己在作业本上推导,并找一同学黑板板演。在3分钟的时间内,仔细观察出现的四个量。对黑板的同学更正修订。老师再作小结,记忆公式。
九、【习题设计】
本课习题设计分了三等。是课本习题的精选。
一是基本知识。通过直接套用公式,来熟悉和使用公式。这里设计了两个题目,分别用了两个公式求和法。
二是自主尝试。这是对公式有个大致应用后的一个针对练习。这里加了与通项相联系的题目,达到对这三个公式间的互换和选择。
三是问题提升。这里综合考查学生对数列的整体把握情况。对求通项、项数、数列和的能力的训练。
[设计意图]:
1、通过不同梯度的习题,让学生有一个掌握问题的逐步适应过程,也能够从习题中更明白两个求和公式的应用。
2、通过解决问题,学会方程思想解决数列问题。
3、培养学生通过给出的问题,来观察问题中的已知条件并能快速判断选择哪个公式的能力。
[简要实录]:
先由学生在作业本上自行解出合作探究部分。做完后小给间讨论然后学生起来说出正确答案。老师给予指正和评价。并要注意具体的详解步骤。然后再由学生板演自主尝试部分的习题。下面的学生在作业本上一并做出。教师在教室内环转,以发现学生的不足和优点。并在给指正时,给予重点指出或是鼓励。然后学生下台,一起更正。最后的问题升华,给学生的时间要多一些,同学们先读题目,然后再自己思考3分钟,然后再讨论,再可以自行解决,在作业本上写上详细过程。后再将学生的作业投影,发现问题,解决问题。发现优点,放大优点。
教师小结这些题中存在的问题。并再由学生叙述解决这类问题的规律。帮他们确定知三求二的规律。
十、【课堂小结】
用框架的形式整理本节内容,重点突出,关系明确。[设计意图]:
将本节内容整理:将厚书读薄,将问题梳理,将知识联系。[简要实录]:
学生回忆本节内容作大致阐述。然后精抓问题实质,突出本节重
点。力求不累赘,不拖沓,力求明明白白,清清楚楚。
十一、【课后作业】
课后作业分选做和必做两种。针对学生的学习差异而设计。[设计意图]:
加上了趣味小故事,让学生在思考中学习,在学习中成长,在成长中,树立正确的学习观和对数学史的认识。思考题目,是为了下节课的学习而做的准备。让他们大致了解老师下节要讲的内容主向。
【教学反思】
“等差数列前n项和”的推导不只一种方法,本节课是通过介绍高斯的算法,探究这种方法如何推广到一般等差数列的求和.该方法反映了等差数列的本质,可以进一步促进学生对等差数列性质的理解,而且该推导过程体现了人类研究、解决问题的一般思路.本节课教学过程的难点在于如何获得推导公式的“倒序相加法”这一思路.为了突破这一难点,在教学中采用了以问题驱动的教学方法,设计的问题体现了分析、解决问题的一般思路,即从特殊问题的解决中提炼方法,再试图运用这一方法解决一般问题.在教学过程中,通过教师的层层引导、学生的合作学习与自主探究,尤其是借助图形的直观性,学生“倒序相加法”思路的获得就水到渠成了.
《等差数列前n项和》教学设计二
设计人:杨峰烁
教材分析
等差数列的前n项和是数列的重要内容,也是数列研究的基本问题.在现实生活中,等差数列的求和是经常遇到的一类问题.等差数列的求和公式,为我们求等差数列的前n项和提供了一种重要方法. 教材首先通过具体的事例,探索归纳出等差数列前n项和的求法,接着推广到一般情况,推导出等差数列的前n项和公式.为深化对公式的理解,通过对具体例子的研究,弄清等差数列的前n项和与等差数列的项、项数、公差之间的关系,并能熟练地运用等差数列的前n项和公式解决问题.这节内容重点是探索掌握等差数列的前n项和公式,并能应用公式解决一些实际问题,难点是前n项和公式推导思路的形成. 教学目标
1.通过等差数列前n项和公式的推导,让学生体验数学公式产生、形成的过程,培养学生抽象概括能力.
2.理解和掌握等差数列的前n项和公式,体会等差数列的前n项和与二次函数之间的联系,并能用公式解决一些实际问题,培养学生对数学的理解能力和逻辑推理能力.
3.在研究公式的形成过程中,培养学生的探究能力、创新能力和科学的思维方法. 任务分析
这节内容主要涉及等差数列的前n项公式及其应用.
对公式的推导,为便于学生理解,采取从特殊到一般的研究方法比较适宜,如从历史上有名的求和例子1+2+3+……+100的高斯算法出发,一方面引发学生对等差数列求和问题的兴趣,另一方面引导学生发现等差数列中任意的第k项与倒数第k项的和等于首项与末项的和这个规律,进而发现求等差数列前n项和的一般方法,这样自然地过渡到一般等差数列的求和问题.对等差数列的求和公式,要引导学生认识公式本身的结构特征,弄清前n项和与等差数列的项、项数、公差之间的关系.为加深对公式的理解和运用,要强化对实例的教学,并通过对具体实例的分析,引导学生学会解决问题的方法.特别是对实际问题,要引导学生从实际情境中发现等差数列的模型,恰当选择公式.对于等差数列前n项和公式和二次函数之间的联系,可引导学生拓展延伸. 教学设计
一、问题情景
1.在200多年前,有个10岁的名叫高斯的孩子,在老师提出问题:“1+2+3+…+100=?”时,很快地就算出了结果.他是怎么算出来的呢?他发现1+100=2+99=3+97=…=50+51=101,于是1+2+…+100=101×50=5050.
2.受高斯算法启发,你能否求出1+2+3+…+n的和. 3.高斯的方法妙在哪里呢?这种方法能否推广到求一般等差数列的前n项和?
二、建立模型
1.数列的前n项和定义
对于数列{an},我们称a1+a2+…+an为数列{an}的前n项和,用Sn表示,即Sn=a1+a2+…+an. 2.等差数列的求和公式
(1)如何用高斯算法来推导等差数列的前n项和公式? 对于公差为d的等差数列{an}:
Sn=a1+(a1+d)+(a1+2d)+…+[a1+(n—1)d],①
依据高斯算法,将Sn表示为Sn=an+(an—d)+(an—2d)+…+[an—(n—1)d].
②
由此得到等差数列的前n项和公式
小结:这种方法称为反序相加法,是数列求和的一种常用方法.(2)结合通项公式an=a1+(n—1)d,又能得怎样的公式?
(3)两个公式有什么相同点和不同点,各反映了等差数列的什么性质?
学生讨论后,教师总结:相同点是利用二者求和都须知道首项a1和项数n;不同点是前者还须要知道an,后者还须要知道d.因此,在应用时要依据已知条件合适地选取公式.公式本身也反映了等差数列的性质:前者反映了等差数列的任意的第k项与倒数第k项的和都等于首、末两项之和,后者反映了等差数的前n项和是关于n的没有常数项的“二次函数”.
三、解释应用 [例 题]
1.根据下列各题中的条件,求相应的等差数列{an}的前n项和Sn.
(1)a1= —4,a8= —18,n=8.(2)a1=14.5,d=0.7,an=32. 注:恰当选用公式进行计算.
2.已知一个等差数列{an}前10项的和是310,前20项的和是1220.由这些条件能确定这个等差数列的前n项和的公式吗? 分析:将已知条件代入等差数列前n项和的公式后,可得到两个关于a1与d的关系式,它们都是关于a1与d的二元一次方程,由此可以求得a1与d,从而得到所求前n项和的公式. 解:由题意知
注:(1)教师引导学生认识到等差数列前n项和公式,就是一个关于an,a1,n或者a1,n,d的方程,使学生能把方程思想和前n项和公式相结合,再结合通项公式,对a1,d,n,an及Sn这五个量知其三便可求其二.
(2)本题的解法还有很多,教学时可鼓励学生探索其他的解法.例如,3.2000年11月14日教育部下发了《关于在中小学实施“校校通”工程的通知》.某市据此提出了实施“校校通”工程的总目标:从2001年起用10年的时间,在全市中小学建成不同标准的校园网.据测算,2001年该市用于“校校通”工程的经费500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少? 教师引学生分析:每年“校校通”工程的经费数构成公差为50的等差数列.问题实质是求该数列的前10项的和.
解:根据题意,从2001~2010年,该市每年投入“校校通”工程的经费都比上一年增加50万元.所以,可以建立一个等差数列{an},表示从2001年起各年投入的资金,其中,a1=500,d=50. 那么,到2010年(n=10),投入的资金总额为
答:从2001~2010年,该市在“校校通”工程中的总投入是7250万元.
注:教师引导学生规范应用题的解题步骤.
4.已知数列{an}的前n项和Sn=n2+n,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么? 解:根据
由此可知,数列{an}是一个首项为,公差为2的等差数列.
思考:一般地,数列{an}前n项和Sn=An2+Bn(A≠0),这时{an}是等差数列吗?为什么? [练习]
1.一名技术人员计划用下面的办法测试一种赛车:从时速10km/h开始,每隔2s速度提高20km/h.如果测试时间是30s,测试距离是多长?
n2+2.已知数列{an}的前n项的和为Sn=个数列的通项公式.
n+4,求这3.求集合M={m|m=2n—1,n∈N*,且m<60}的元素个数,并求这些元素的和.
四、拓展延伸
1.数列{an}前n项和Sn为Sn=pn2+qn+r(p,q,r为常数且p≠0),则{an}成等差数列的条件是什么?
2.已知等差数列5,4,3,…的前n项和为Sn,求使Sn最大的序号n的值.
分析1:等差数列的前n项和公式可以写成Sn=n2+(a1-)n,所以Sn可以看成函数y=x2+(a1-)x(x∈N*).当x=n时的函数值.另一方面,容易知道Sn关于n的图像是一条抛物线上的一些点.因此,我们可以利用二次函数来求n的值.
解:由题意知,等差数列5,4,3,…的公差为-,所以
于是,当n取与最接近的整数即7或8时,Sn取最大值. 分析2:因为公差d= -<0,所以此数列为递减数列,如果知道从哪一项开始它后边的项全为负的,而它之前的项是正的或者是零,那么就知道前多少项的和最大了.即使点 评
然后从中求出n.
这篇案例从具体的实例出发,引出等差数列的求和问题,在设计上,设计者注意激发学生的学习兴趣和探究欲望,通过等差数列求和公式的探索过程,培养学生观察、探索、发现规律、解决问题的能力. 对例题、练习的安排,这篇案例注意由浅入深,完整,全面.拓展延伸的设计有新意,有深度,符合学生的认识规律,有利于学生理解、掌握这节内容.
7.课时31 等比数列及其前n项和 篇七
教学案例:
一、教学设计思想
本堂课的设计是以个性化教学思想为指导进行设计的。
本堂课的教学设计对教材部分内容进行了有意识的选择和改组,为了体现个性化教学的教学理念,在教法上,采用了以学生为主体,以问题为中心,以老师为引导,以小组的合作为主要学习方式。课堂结构个性化,让学生在探究中展现个性,在合作中促进学生的个性发展。
在教学中通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。
二、学生情况与教材分析
1、学生通过上一节的学习,已经了解了等差数列的定义,基本上掌握了通项公式,会运用等差数列的通项公式进行解题,因此只要简单地回顾上一节课的知识就可引入新课;
2、几何能直观地启迪思路,帮助理解,特别是对于职中类学生,他们对知识的理解还是处于模糊阶段,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。因此在教学中,要鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,从而渗透了数形结合的数学思想。
3、学习应该是学生积极主动的建构知识的过程,应该与学生熟悉的背景相联系。本课要求学生通过自主地观察、讨论、归纳、反思来参与学习,认识和理解数学知识,学会发现问题并尝试解决问题,在学习活动中进一步提升自己的能力。
三、教学目标
1、知识目标
(1)掌握等差数列前n项和公式,理解公式的推导方法;(2)能较熟练应用等差数列前n项和公式求和。
2、能力目标
经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思和逻辑推理的能力。
3、情感目标
通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学心理体验,产生热爱数学的情感,体验在学习中获得成功。
四、教学重点、难点
1、等差数列前n项和公式是重点。
2、获得等差数列前n项和公式推导的思路是难点。
五、教学流程图
六、教学过程
1、引入新课(1)复习
师:上一节课中,我们学习了等差数列的定义及通项公式,知道了“公差d=,通项公式an=”(见黑板)生:(回答黑板上的问题)
(2)故事引入
师:那等差数列的前n项和怎样求?今天,我们主要探讨等差数列的前n项和公式。说起数列求和,我由地想起德国伟大的数学家高斯“神述求和”的故事。高斯在上小学四年级时,老师出了这样一道题“1+2+3、、、、、+99+100”(见课件)高斯稍微想了想就得出了答案。高斯到底用了什么巧妙的方法呢?下面给同学们一点时间来挑战高斯。
生:5050 师:看来我们班还是有不少高斯的。继续努力,说不定将来也成了数学家。下面请这位同学说一说是怎样算出来的。
生:(说明如何进行首尾配对进行求和的。)
师:根据等差数列的特点,首尾配对求和的确是一种巧妙的方法。不过,对于以下的题,“例:求等差数列8、5、2、、、、的前20项的和(见课件)”这种方法可就没那么方便了。因此我们非常迫切地需要推导出等差数列的前n项和公式。
2、探究等差数列前n项和公式一
师:下面我们从一个稍稍简单一点的等差数列来推导探讨等差数列的前n项和公式。(学生观察幻灯片上以等差数列逐层排列的一堆钢管。)
师:如何求?
生:利用刚才的方法.(略)师:想一想,除了刚才的首尾配对求和的方法外,还有没有其他的方法呢?
(课件演示:引导学生设想,如果将钢管倒置,能得到什么启示)
生:每一层都和上一层是一样多的。一共有8层,所以为8×(4+11),但一共有两堆,所以为
师:那如果如下图所示共有n层,第一层为a1,第n层为an,请大家来猜想一下这个呈等差数列排列的钢管的总和sn等于多少? 生:
师:这个猜想对不对呢?下面我们用所学过的知识一起来证明一下。
板书:把上式的次序反过来又可以写成
两式相加:
所以
看来,我们的猜想是正确的。下面我们做几道练习来熟悉一下公式。
3、学生合作学习,运用公式一解题,并从练习中探索得到求和公式二。学生练习一:
1、在等差数列{an}中,已知a1=1,a10=8,求s10
2、求正整数列是前1000个数的和; 学生小组合作练习,分组进行交流。
师:看来,大家对公式的掌握还是不错的。下面,我们再来看一道练习。
学生练习二:在等差数列{an}中,已知a1=1,d=-2,求s10;
学生思考,并讨论解答。
学生讲解如何进行求解这题。
师:刚才那道题给出了a1,d和n=10,a10没有给出,但我们一样可以将s10求出,那我们能不能直接由a1,d和n,得到an呢?
学生根据求和公式一和通项公式导出公式二:
学生练习三:求正整数中前500个偶数的和(用多种方法求解)学生讨论解答此题,并请学生上台讲解。
4、总结
师:今天,大家学得不错。下面我们再来回顾一下本堂课的内容。今天我们主要倒序相加的方法推导了等差数列前n项和公式一,并结合等差数列通项公式二推导出等差数列前n项和公式二,希望同学们在今后的解题要灵活运用这两个公式。
【教学反思】:
综观本节课,存在有特点主要有以下几点:
1、合理地对教材进行了个性化处理,挖掘了教材中可探究的因素,促使学生探究、推导。例如:等差数列前n项和的公式一,是通过具体的例子,引到一般的情况,激励学生进行猜想,再进行论证得出;而第二个公式并不象书本上那样直接给出,而是让学生从习题中进行归纳总结得到的。这样处理教材,使学生的思维得到了很大的锻炼。
8.等比数列的前n项和 篇八
(板书) ③两端同乘以 ,得
④,
③-④得 ⑤,(提问学生如何处理,适时提醒学生注意 的取值)
当 时,由③可得 (不必导出④,但当时设想不到)
当 时,由⑤得 .
于是
反思推导求和公式的方法——错位相减法,可以求形如 的数列的和,其中 为等差数列, 为等比数列.
(板书)例题:求和: .
设 ,其中 为等差数列, 为等比数列,公比为 ,利用错位相减法求和.
解: ,
两端同乘以 ,得
,
两式相减得
于是 .
说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题.
公式其它应用问题注意对公比的分类讨论即可.
三、小结:
1.等比数列前 项和公式推导中蕴含的思想方法以及公式的应用;
2.用错位相减法求一些数列的前 项和.
四、作业:略.
9.《等比数列的前n项和》教学设计 篇九
从教材的编写顺序上来看,等比数列的前n项和是第三章“数列”第五节的内容,一方面它是“等差数列的前n项和”与“等比数列”内容的延续、与前面学习的函数等知识也有着密切的联系,另一方面它又为进一步学习“数列的极限”等内容作准备。
就知识的应用价值上来看,它是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法如分类讨论等在各种数列求和问题中有着广泛的应用;另外它在如“分期付款”等实际问题的计算中也经常涉及到。
就内容的人文价值上来看,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。
教师教学用书安排“等比数列的前n项和”这部分内容授课时间2课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导及简单应用,教学中注重公式的形成推导过程并充分揭示公式的结构特征和内在联系。
二、教学目标
依据课程标准,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:
知识与技能目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题。
过程与方法目标:通过公式的推导过程,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。
情感与态度目标:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美。
三、教学重点和难点
重点:等比数列的前项和公式的推导及其简单应用。从教材体系来看,它为后继学习提供了知识基础,具有承上启下的作用;从知识特点而言,蕴涵丰富的思想方法;就能力培养来看,通过公式推导教学可培养学生的运用数学语言交流表达的能力。
突出重点方法:“抓三线、突重点”,即(一)知识技能线:问题情境→公式推导→公式运用;(二)过程与方法线:特殊到一般、猜想归纳→错位相减法等→转化、方程思想;(三)能力线:观察能力→数学思想解决问题能力→灵活运用能力及严谨态度。
难点:等比数列的前项和公式的推导。从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高。从知识本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进行,它需要对等比数列的概念和性质能充分理解并融会贯通,而知识的整合对学生来说恰又是比较困难的,而且错位相减法是第一次碰到,对学生来说是个新鲜事物。
10.课时31 等比数列及其前n项和 篇十
河南省开封市第二十五中学 姜黎黎
《等比数列前n项和》是人教版必修5第二章数列中第五节第一课时的内容。下面,我从教材分析,情境创设、公式推导,公式应用,教学反思等几个方面,谈谈自己的管窥之见,与各位老师探讨。
教材分析
等比数列的前n项和是“等差数列的前n项和”与“等比数列”内容的延续、是进一步学习数列知识和解决一类求和问题的重要基础和有力工具。它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所蕴涵的类比、分类讨论、方程等思想方法,都是学生今后学习和工作中必备的数学素养。
学情分析
就学生而言,等差、等比数列的定义和通项公式,等差数列的前n项和的公式是学生在学习之前已经具备的知识基础。学生具体研究学习了等差数列前n项和公式的推导方法,具备了一定的探究能力。基于此,学生会产生思考,等比数列前n项和公式应该如何推导,公式是从什么新的角度建构?其重要性和普遍性体现在哪里?应该说学生从内心来讲,有想探究等比数列前n项和公式的欲望和驱动力。
教学目标 在知识方面:理解等比数列的前n项和公式的推导方法,掌握等比数列的前n项和公式并能运用公式解决一些简单问题。
在能力方面:提高学生的建模意识,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想,优化思维品质。
在情感方面:培养学生将数学学习放眼生活,用生活眼光看数学的思维品质。
重点难点
重点:使学生掌握等比数列的前项和公式,用等比数列的前n项和公式解决实际问题。
难点:由研究等比数列的结构特点推导等比数列的前n项和公式。
情境创设
《数学课程标准》中明确指出:教材应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉.是对课堂教学实践的要求.我选择的问题情景是国王赏麦的故事.国际象棋起源于古代印度,关于国际象棋有这样一个传说: 相传古印度宰相达依尔,发明了国际象棋。当时的国王大为赞赏,就问他想要什么。达依尔说:“请在棋盘的64个方格上,第一格放1颗麦粒,第二格放2颗麦粒,第三格放4颗麦粒,依次类推,每一格放的麦粒数都是前一格的两倍,直到第64格,请您给我足够的麦粒以实现上述要求。”选择这个故事作为问题情景首先是因为经典永远是经典,这正是基于数学教师对数学史知识的广泛认同.通过数学史料,可以扩展学生的数学视野,提高学生对数学的科学价值、应用价值、文化价值的认识.其次,将学生的角色设计成国王的谋士,更加激发了学生的探究热忱,同时也让学生明白数学和生活息息相关,把学以致用的思想渗透到课堂中。最后,通过让学生大胆预测麦粒的重量产生悬念,在公式推导后让学生运用公式解决问题,收尾呼应.在教师的引导下,学生根据自己掌握的知识和经验,很快建立起等比数列的数学模型。数列是以1为首项,2为公比的等比数列。当学生跃跃欲试要求这个数列的前64项和时,课题的引入水到渠成。
公式推导
丰富学生的学习方式,改进学生的学习方法是高中数学新课程的基本理念.《数学课程标准》明确指出:教学中,应鼓励学生积极参与教学活动,包括思维的参与和行为的参与.既要有教师的讲授和指导,也有学生的自主探索与合作交流.鼓励学生发现数学的规律和问题解决的途径,使他们经历知识形成的过程.公式推导是这节课的重难点突破的地方,是整节课的核心。我进行了深入的思考,以教学实践与经验为基础,设计的教学方案是通过复习类比等差数列求和方法寻求等比数列求和的突破,重点主要是为什么要在等比数列前n项和这一等式两边同乘以公比q。首先推导等差数列前n项和公式,形式上采用倒序相加法,本质上是根据等差数列的定义发,抓住倒序后两式中上下对应项的和均为,从公差为
这一特性出
这个特点,构造相同项,进而化繁为简,推得公式。由此学生自然会联想等比数列是不是也可以用倒序相加法求和?学生进行尝试发现时行不通的.在此情景下引领学生透过现象看本质,如何在等比数列前n项和中构造相同项,从而化繁为简是解决问题的关键。引导学生抓住等差数列求和是根据定义,由公差据定义,由公比来探究。
切入。自然,等比数列求和也应根关注等比数列的定义: 即等比数列中的每一项乘以,如果对其稍加变形,就会发现=
都等于其后项,由于这是每一项共有的特点,所
。这样一来,等式两边为何乘,迎以将这一特点应用在前n项和上,即刃而解。通过如上分析,学生也体会到:这两种数列求和公式的推导方法,从数学思想上来讲是一致的,将不同项转化为相同项,从而将不易求转化为易求,只是具体的处理形式略有差异。正是由于这些异同,学生数学思维深刻性、广阔性等品质就得到了提高,思维能力得到了锻炼。
下面如何对这一等式进一步的化简整理,由学生分析思考,合作完成。在整合的过程中,学生会出现两个问题。
第一: 由此,学生会发现②式中的前(n-1)项与①式中的后(n-1)项对应相同,这样一来就构造出了相同项。但是,在表征形式上的处理有差异。有些学生注意到如果将等式右边各项均往后错一位,那么两式中相同项的对应就更加清晰,在此基础上,用①式减②式,这些相同的(n-1)项立即抵消为0,得到,从而完美的达到了化繁为简的目的。因此,对于学生深入细致的思考应给予高度的肯定和赞赏。同时,强调指出,这样的处理方法被形象的喻为:错位相减法。
第二:进一步化简,有些学生容易忽视:等式两边同时除以(1—数要求不为0,因此要特别强调对1—数列为常数列,当1—
做分类讨论,当1—≠0即
=0即)时除=1时,≠1时,从而通过错位相减法推出公式。在此基础上,≠1时,引领学生由等比数列的通项公式推出求和公式的第二种形式:
在探究的过程中,学生还有其他的推导公式的想法,我们都给予了学生高度的肯定,并且让学生在课下整合自己的探究过程,在班级的学习园地中展示,同学们共享研究成果。同时,错位相减法是解决一类求和问题的重要基础和有力工具。要引起学生的高度重视。
数学探究是高中数学课程中引入的一种新的学习方式,它有利于学生形成功能良好的认知结构.在问题探究过程中,学生通过思考、操作、内化等学习过程,深化知识和方法的建构,同时也不断地促进学生主动参与学习,使课堂教学真正做到让学生“动起来”,让课堂“活起来”.公式应用
公式推出后,又通过对公式特征的分析帮助学生弄清公式形式和本质,明确其内涵和外延,为灵活运用公式打下基础。
首先回到国王赏麦的故事中,我给学生提供了相应的数据,让学生运用公式解决问题,从数据出发,用事实说话。同时再次使学生明确学习的意义在于学以致用。退去故事的外衣,就是等比数列求和的问题,所以在此基础上的变式练习就是公式的直接应用,目的是加强对公式的认识和记忆,帮助学生明确解题步骤,规范解题格式,提高运算能力。例2是关于“知三求二”的应用问题,目的是深化公式本质,渗透方程思想。
教学反思
结果因过程而精彩,现象因方法而生动.无论是情境创设,还是探究设计,都必须以学生为主体、教师为主导、训练为主线,设法从庞杂的知识中引导学生去寻找关系,挖掘书本背后的数学思想,建构基于学生发展的知识体系,教学生学会思考,让教学真正成为发展学生能力的课堂活动。因此,本课例在公式的推导及证明中舍得花大量时间,便是为了培养学生学会探究与创新,它就像一缕温暖的阳光,不一定能唤醒万物,却能催开人世间最绚丽的花朵。
整节课采取了“情境——问题”的教学模式,以实际问题作为背景创设教学情境。在具体问题上,抽象出解决一般问题的方法,由“特殊到一般,再由一般到特殊”,让学生亲历提出问题,解决问题,反思总结的全过程。在已有知识和经验的基础上主动建构新知识。同时,运用了学案,成果展示等新的教学理念。既保留了传统教学的优势,又增添了新式教学的辅助。新老结合,效果显著。
从学生的课堂积极性和学习成果来看,学生较好的完成了等比数列前n项和的学习,在获得知识的基础上提高了分析问题解决问题的能力。当然,一节课的知识与能力的提高时有限的,特别是数学思想的渗透。但是,我们能够从一节课中吸取精华,让一节又一节的课堂活动连贯起来,促进学生学习能力的提高,数学素养的提升。
在整个过程当中,从开始准备到此刻,我深刻的体会到了钻研教材的艰辛与快乐,解惑授业时的责任与幸福。学无止境,路漫漫其修远兮,吾将上下而求索。
11.《等差数列的前n项和》教学设计 篇十一
教学设计
教学内容分析
本节课教学内容是《普通高中课程标准实验教科书·数学(5)》(人教A版)中第二章的第三节“等差数列的前n项和”(第一课时).本节课主要研究如何应用倒序相加法求等差数列的前n项和以及该求和公式的应用.在教学中应注意以下两点:
1.本小节重点是等差数列的前n项和公式.学习中可能遇到的困难是获得推导公式的思路,克服困难的关键是通过具体例子发现一般规律.
2.本小节首先通过高斯算法,发现等差数列任意的第k项与倒数第n+1-k项的和等于首项、末项的和,从而得出求和的一般思路. 等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题.同时,求数列前n项和也是数列研究的基本问题,通过对公式推导,可以让学生进一步掌握从特殊到一般的研究问题方法. 学生情况分析 在本节课之前学生已经学习了等差数列的通项公式及基本性质,也对高斯算法有所了解,这都为倒序相加法的教学提供了基础;同时学生已有了函数知识,因此在教学中可适当渗透函数思想.高斯的算法与一般的等差数列求和还有一定的距离,如何从首尾配对法引出倒序相加法,这是学生学习的障碍. 设计思想
建构主义学习理论认为,学习是学生积极主动地建构知识的过程,因此,应该让学生在具体的问题情境中经历知识的形成和发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构.在教学过程中,根据教学内容,从介绍高斯的算法开始,探究这种方法如何推广到一般等差数列的前n项和的求法.通过设计一些从简单到复杂,从特殊到一般的问题,层层铺垫,组织和启发学生获得公式的推导思路,并且充分引导学生展开自主、合作、探究学习,通过生生互动和师生互动等形式,让学生在问题解决中学会思考、学会学习.同时根据本班学生的特点,为了促进成绩优秀学生的发展,还设计了选做题和探索题,进一步培养优秀生用函数观点分析问题、解决问题的能力,达到了分层教学的目的. 教学目标
1、知识目标
(1)掌握等差数列前n项和公式,理解公式的推导方法;(2)能较熟练应用等差数列前n项和公式求和.
2、能力目标 经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思和逻辑推理的能力.
3、情感目标
通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功. 教学重点和难点
教学重点是探索并掌握等差数列前n项和公式,学会用公式解决一些实际问题;
教学难点是等差数列前n项和公式推导思路的获得. 教学过程
第一环节 创设情境 引入新课
高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家出道题目:1+2+„100=?”
过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10„算得不亦乐乎时,高斯站起来回答说: “1+2+3+„+100=5050.”
教师问:“你是如何算出答案的?”
高斯回答说:“因为1+100=101;2+99=101;„50+51=101,所以(1+100)+(2+99)+„„+(50+51)=101×50=5050.” 这个故事告诉我们:(1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西.
(2)该故事还告诉我们求等差数列前n项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法. 第二环节 推进新课 探究新知 提问:在公差为的等差数列如何求?
中,定义前项和,由前面的大量铺垫,学生容易得出如下过程: ∵
∴ ∴
从而我们可以验证高斯十岁时计算上述问题的正确性. 组织学生讨论:在公式1中若将式? 即
此公式要求
(公式2)
必须已知三个条件:
(有时比较有用).
代入又可得出哪个表达
(公式1)第三环节 应用举例 巩固新知
例1 根据下列各题中的条件,求相应的等差数列的.
解(2)解
练习如何求下列和?
①1+2+3+„+100 =
5050
; ②1+3+5+„+(2n-1)=
③2+4+6+„+2n =
;
.
.
.
例2 等差数列-10,-6,-2,2,„前多少项和是54? 解 设题中的等差数列是,公差为,前n项和为
=54
.,则
=-10,d=-6-(-10)=4,由等差数列前n项和公式,得
解得
n=9或n=-3(舍去).因此,等差数列的前9项和是54. 练习
已知例3 已知一个等差数列
前10项的和是310,前20项的和是的公式吗? 1220.由这些条件能确定这个等差数列的前项和分析:将已知条件代入等差数列前项和的公式后,可得到两个关于与的关系式,它们都是关于与的二元一次方程,由此可以求得与,从而得到所求前项和的公式. 解
设等差数列,将它们代入公式
得到 的公差为,由题意可得
解这个关于与的方程组,得到,所以
练习
一个等差数列前4项的和是24,前5项的和与前2项的和的差是27,求这个等差数列的通项公式与前项和公式.
第四环节 课时小结
本节课主要学习了:1.等差数列的前项和公式1:2.等差数列的前项和公式2:
在学习过程中,让学生能够体验倒序相加法的妙处以及能够正确运用等差数列的前n项和的两个公式. 第五环节 布置作业
1.课本P52习题2.3 第2、3、4题. 2.探索题
(1)数列的前项和,求; }(2)若公差为中,到的表达式?
第六环节 教学反思
d(d≠0)的等差数列{
,你能否由题(1)的启发,得
1、合理地对教材进行了个性化处理,挖掘了教材中可探究的因素,促使学生探究、推导.例如,等差数列前n项和的公式一,是通过具体的例子,引到一般的情况,激励学生进行猜想,再进行论证得出;而第二个公式并不象书本上那样直接给出,而是让学生从已知公式中推导得到的.这样处理教材,使学生的思维得到了很大的锻炼.
12.等差数列前n项和教学设计说明 篇十二
本课的教学设计反映了等差数列求和公式推导过程中数学思想方法——倒序相加法的生成过程,这是本节课教学设计的重中之重;设计中结合本班学生学习的实际情况,从而确定了教学活动的环节并以此来确定教学目标。下面从以下几个方面进行详细说明。
一、教学内容的本质、地位及作用分析
等差数列前n项和S n
a 1
a 2
a
,这是教材给出的前n项和的定n1an义,但需要说明的是这只是一个形式定义,表示求和是一般意义的加法运算,而本节课的数学本质是倒序相加法及其生成过程(即变不同“数”的求和为相同“数”的求和),进而推导和掌握等差数列的求和公式。
本节内容是必修五第二章第三节的第一课时,本节课对“等差数列前n 项和”的推导,是在学生学习了等差数列通项公式及性质的基础上进一步研究等差数列,其学习的平台是学生已掌握等差数列的性质以及高斯求和法等相关知识。对本节的研究,为以后学习数列求和提供了一种重要的思想方法——倒序相加求和法,具有承上启下的重要作用.
对求和公式的认识中,将公式1与公式2与梯形的面积公式建立了联系,从而起到延伸知识,提示事物间内在联系,更能激发学生学习兴趣,感受思考的魅力。
二、教学目标分析
本节课是等差数列的前n项和的第一课时,从知识点来说,掌握求和公式对每个学生来说并不困难,而难点是在于如何从求和公式的推导过程中体会倒序相加求和的思想方法及生成过程,渗透新课标理念,根据学情进行了具体分析,并结合学情制定本节课的教学目标。
学情分析:
1、学生已学习了函数、数列等有关基础知识,并且高二学生的抽象逻辑推理能力基本形成,能在教师的引导下独立地解决问题。
2、学生基础知识比较扎实、思维较活跃,学生层次差异不大,能够很好的掌握教材上的内容,能较好地做到数形结合,善于发现问题,深入研究问题。
3、学生对新知识很有兴趣,对用多媒体进行教学非常热爱,思维活跃。结合以上的学情分析,确定知识技能目标是:(1)理解等差数列前n项和的概念(2)掌握等差数列的前n项和公式的推导过程(3)会灵活运用等差数列的前n项和公式。过程与方法的目标是:(1)通过对等差数列前n项和公式的推导过程,渗透倒序相加求和的数学思想且自然生成的过程(2)通过灵活运用公式的过程,提高学生类比化归的能力及掌握方程的思想和方法。并且从教学过程渗透本课的情感态度目标:结合具体情景,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。
三、教学问题诊断
1、根据教学经验,在本课的学习中,学生对公式的掌握及简单应用并不困难,而难点在于在推导等差数列前n项和的过程中如何自然地生成倒序相加求和法,是本课教学环节中的一个重点内容。首先让学生回顾高斯求和法,学生容易进行类比,将首末两项进行配对相加,但是很快遇到问题,当项数为奇数的前n项和时配不成对,这里引导学生意识到奇数项与偶数项的问题影响了首尾配对法。为了改进首尾配对法的局限性,设计了两个探索与发现,分别对应项数为奇数和偶数时,根据动画引导学生发现颠倒顺序再相加变为上下配对,体现了倒序相加法自然的生成过程,避免了对项数是奇与偶的讨论,从而实现变不同“数”的求和为相同“数”的求和。
2、在对两个求和公式的认识中,学生不容易想到将两个公式与梯形面积公式建立联系,此时教师可做适当的动画来提示,学生便能迅速找到二者的关系。认识过程中再次强调倒序相加的思想方法且强化了对公式的记忆和理解。
3、本节课充分利用了多媒体技术的强大功能,多次设计动画帮助学生观察和思考,形象直观且高效地提升了课堂的效益和效率,把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意投入到现实的、探索性的教学活动中去。
4、等差数列求和的两个公式中涉及的量比较多,有a1、n,sn,d,an五个量,通过公式应用及练习引导学生体会方程的思想方法,具体来说就是熟练掌握“知三求二”的问题和方法。
四、教法特点及预期效果分析 根据教学内容和学生的学习状况、认知特点,本课采用“探究——发现”教学模式.引导学生在活动中进行探究,在师生互动交流中,发现等差数列前n项和的推导方法,教师的教法突出活动的组织设计与方法的引导,学生的学法突出探究与发现,通过创设情景激发兴趣,在与教师的互动交流中,获得本节课的知识与方法。
根据学生具体情况,我力求达到:1、形成学生主动参与,自主探究的课堂气氛。
【课时31 等比数列及其前n项和】推荐阅读:
等比数列前n项和题10-17
等比数列前n项和说课08-13
高中数学《2.4等比数列》第1课时评估训练 新人教A版必修11-10
2022高中数学教案 2.4 等比数列(第1课时)(人教A版必修5)08-14
等比数列09-04
等比数列经典故事07-22
等比数列求和教案10-18
等比数列例题及习题09-02
等比数列简单练习题06-25