多边形的内角和 教学设计示例

2024-07-09

多边形的内角和 教学设计示例(精选12篇)

1.多边形的内角和 教学设计示例 篇一

教学难点:

探索多边形的内角和定理的推导

教学过程:

一、创设情境,导入新课

1、请看:我身后的建筑物是什么?─水立方。我看到水立方时发现它的膜结构的结合处都是多边形,你们想知道这些多边形的内角和吗?(多媒体展示)

这节课咱们一起来探究《多边形的内角和》。

二、合作交流,探究新知

1、多边形的内角和

问:要求内角和你联想到什么图形的内角和?(示三角形的内角和定理)。如果两个三角形能够拼成四边形,你能求出四边形的内角和是多少度呢?

预设回答:三角形的内角和360°。四边形的内角和360°

知道四边形的内角和为360°,现在你能利用三角形的内角和定理证明吗?自主学习教材第34页“动脑筋”

【教学说明】“解放学生的手,解放学生的大脑”,鼓励学生积极参与合作交流,寻找多种图形形式,深入全面转化的本质——将四边形转化为三角形问题来解决.

2、是否所有的多边形的内角和都可以“转化”为两个三角形的内角和来求得呢?如何“转化”?

预设回答:能,可以引对角线,将多边形分成几个三角形。

让学生合作交流讨论,展示探究成果。教材第35页“探究”

示图,取多边形上任意一个顶点,连接除相邻的两点,则多边形的内角和可转化为三角形内角和之间的关系,

多边形边数可分成三角形的个数多边形的内角和56 7┅┅┅┅n边形n

n边形有几个内角?是否可以“转化”为多个三角形的角来求得呢?如何“转化”?

预设回答:有n个内角,可以转化多个三角形来求,n边形可以引n-3条对角线,即有n-2个三角形。所有n边形的.内角和等于(n-2)x180°

【教学说明】通过五边形、六边形、七边形、八边形等特殊多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法.

例:教材第36页例1

【教学说明】让学生利用多边形的内角和公式求一个多边形的内角和或它的边数,加深知识的理解与运用.

三、课堂演练

1、若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是

A.十三边形B.十二边形

C.十一边形D.十边形

2、十二边形的内角和为,已知一个多边形的内角和是1260°,则这个多边形的边数是。

【教学说明】由学生自主完成,教师及时了解学生的学习效果,让学生经历运用知识解决问题的过程.对需要帮助的学生及时点拨并加以强化.在完成上述题目后,让学生完成练习册中本课时的对应训练部分.

四、课时小结

1、这节课你有什么新的收获?

五、布置作业:

教材第36页练习1、2题。

六、板书设计多边形的内角和n边形内角和等于(n-2)×180°。

2.多边形的内角和 教学设计示例 篇二

1.知识与技能:掌握多边形内角和和外角和的计算方法,并能用内角和与外角和知识解决一些较简单的问题;

2.过程与方法:通过多边形内角和计算公式和外角和的推导过程,让学生感受到数学知识间的互联互通.

二、教学重点:多边形的内角和公式与外角和度数推导过程.

三、教学难点:如何把多边形转化成三角形,用分割多边形法推导多边形的内角和与外角和.

四、教学准备:教具,直尺(三角尺).

五、教学过程(师生活动)

(一)创设情境引入新课

教师提问:1.(1)你知道三角形的内角和是多少度吗?【三角形的内角和等于180°】

(2)长方形的内角和是多少?正方形的内角和是多少?

2. 你知道任意一个四边形的内角和是多少吗?通过今天的学习我们就能明白其中的一些道理(引出课题).

设计理念:利用学生的好奇心设疑,激发学生的求知欲,使他们能自觉地参与到下面多边形内角和的探索活动中去.

(二)新课教学

1. 探索四边形的内角和

教师直接通过数学转化思想引出四边形内角和推导的一种方法(即从多边形一顶点向其他不相邻顶点引对角线切割多边形的方法).

小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和.

2. 利用上述方法直接推导五边形的内角和

3. 探索多边形内角和问题

教师提出阶梯式问题:(1)你能用刚才类似的方法计算出六边形的内角和吗?(2)十边形、n边形呢?

结论:多边形内角和为(n-2)×180°.

设计理念:通过对本节知识点的融合与理解进行精讲、细练.

教师直接引出多边形的外角和:在总结出内角和的公式后直接探究多边形的外角和为360°.

n·180-(n-2)·180=360°

设计理念:用内角和公式解决外角和度数,体现知识体系.

(三)知识应用与合作探究

例如果一个四边形的一组对角互补,那么另一组对角有什么关系?

已知:四边形ABCD中的∠A+∠C=180°,求∠B与∠D的关系.

分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以从四边形的内角和入手,就可得到完满的答案.

设计理念:检测并应用本节课所学知识解决问题.

(四)课堂小结

学生回顾本节课所学内容(包括数学思想方法).

(五)新知检测

自拟习题(略).

设计理念:巩固新知识.

六、教学反思

究竟应采取什么样的授课方式取决于学情,针对我班学生的能力水平,我选择了讲授法进行教学.

1.讲授法有利于大幅度提高课堂教学的效果和效率.

讲授法具有两个特殊的优点,即通俗化和直接性.教师的讲授能使深奥、抽象的课本知识变成具体形象、浅显通俗的东西,从而排除学生对知识的神秘感和畏难情绪,使学习真正成为可能和轻松的事情;讲授法采取定论的形式直接向学生传递知识,避免了认识过程中许多不必要的曲折和困难.

2.讲授法有利于帮助学生全面、深刻、准确地掌握教材,促进学生学科能力的全面发展.

教材作为学生学习学科知识体系的一个蓝本,不仅汇集系统的学科知识,还蕴藏着许多其他有价值的内容,如学科的思想观点、思维方法以及情感因素.但是,由于教材的编写要受到书面形式等因素的限制,对学生来说,不仅知识本身不好读懂,其所潜藏的内涵更是不易发现.借助教师的系统讲授和透彻分析,学生能比较深刻准确地掌握教材,从而不仅学到学科的系统知识,而且还领会和掌握了蕴含在学科知识体系中的学科思想观点、思维方法和情感因素,使学科能力得到全面提高.

3.讲授法有利于充分发挥教师自身的主导作用,使学生得到远比教材多得多的东西.

任何真正有效的讲授都必定融入了教师自身的学识、修养、情感,流露出教师内心的真、善、美.所以,讲授对教师来说,不仅是知识方法的输出,也是内心世界的展现.它潜移默化地影响、感染、熏陶着学生的心灵.

4.讲授法有利于强化基础知识和基本技能的训练.

3.对多边形内角和公式的探究 篇三

“小亮,我们今天又学习了什么新内容?”小亮一进门小刚就问道.

“我们学习了‘多边形及其内角和’这一节,李老师引导我们探究了多边形的内角和公式.”小亮答道.

“多边形的内角和公式?快说说,怎么回事?”

“这个公式是这样推导得出的.”小亮边说边在练习本上画出了图形(如图1),“从n边形的一个顶点出发引对角线,可连(n-3)条对角线,把n边形分割成(n-2)个三角形.这样,n边形的内角和恰好等于这(n-2)个三角形的内角和之和,即(n-2)·180°.”

小刚想自己再探究一下试试,一不留神,在画图时,却画成了图2. 小亮发现了,说道:“你画错了.”

看着图形,小亮又突发奇想,利用图2是否也能推导出n边形内角和公式呢?小亮发现从点P出发与n边形的各个顶点连线,除n边形的边外可连(n-2)条线,将n边形分割成(n-1)个三角形.此时,n边形的内角和就等于这(n-1)个三角形的内角和之和再减去点P处的平角,即(n-1)·180°-180°=(n-2)·180°.显然,这个结论与原来推导出的结论相同,小亮欣喜若狂,小刚也非常高兴.

小亮受此启发,对小刚说:“咱们再探讨一下,看看是否还有其他方法.你看,第一种方法出发点P在顶点,第二种方法出发点P在顶点之外的边上,可见,点P的位置与推导的方法有一定的关系.”

“若出发点P在多边形的内部行不行呢 ?”小刚问.

“那我们画图试试吧. 如图3,从点P出发与n边形各顶点可连n条线,将n边形分割成n个三角形,n边形的内角和等于这n个三角形的内角和之和再减去点P处的周角,即n·180°-360°=(n-2)·180°.你看,也可以.”小亮高兴地说.

第二天,他们把探究的情况告诉了老师.老师表扬了他们这种刻苦钻研的精神和创新意识,并说:“你们的方法称为割形法,事实上,还可以利用补形法来推导这个公式.它的思路是:适当延长一些边,可将n边形补成一个大三角形,同时在n边形外部新增(n-3)个三角形,共可得到(n-2)个三角形,再利用三角形的外角等于与它不相邻的两内角之和,把多边形的内角之和转化为这(n-2)个三角形内角的和.”

“那您能证明给我们看看吗?”

“好吧,我们用探究规律的方式来证明它.如图4,将四边形ABCD补成三角形,得到△PBC、△PAD,图中∠1=∠4+∠P,∠2=∠3+∠P,所以四边形ABCD的内角和为 ∠1+∠2+∠B+∠C=∠4+∠P+∠3+∠P+∠B+∠C=360°(两个三角形的内角和之和);如图5,将五边形补成三角形,可得到3个三角形,同样地,五边形的内角和为(5-2) × 180°=540°;如图6,将六边形补成三角形,可得到4个三角形,六边形的内角和为(6-2) × 180°=720°……依次类推,可得到n边形的内角和为(n-2)·180°.”

4.多边形的内角和 教学设计示例 篇四

(2)小组讨论可以说是新教材框架中的一个重要部分,教师事先一定要有详细的计划。这也是本堂课暴露缺陷较多的环节。比如:组员的设置(七、八人一组加上发下的表格较少使得讨论未能有效的开展),以4、5人为一组较为合适,且要分工明确,如谁记录,谁发言等等,避免某些小组成员流离于合作之外。教师还应精心策划:讨论如何有效地开展;时间多长;采取何种讨论方法;教师在讨论过程中又该担当何种角色等。

(3)在小组交流过程中学生的发言过分地注重于探索的结果,而忽视了学生探索过程的展示。同时教师有些总结性的话,限制了学生的思维,不能最大限度的发挥学生自主探究的能力。

5.《四边形的内角和》教学反思 篇五

一,小组合作,自主探究是数学学习的一种良好的学习方法,本节课,我根据学生已有的“三角形的内角和是180度”这个知识点的基础上,组织学生类比验证四边形的.内角和,留给学生大量的时间,让学生通过量一量、算一算、拼一拼等大量的动手操作活动,验证了四边形的内角和为360度的结论,使学生亲历知识的形成过程,有效地渗透了猜想和验证的数学思想,有效地渗透了自主学习的良好学习方法,充分体现了“学生是学习的主人”这一新的教育理念。

二、巧用转化,轻松验证

“转化”同样是数学学习的良好方法。本节课的教学中,我结合学习三角形的内角和的学习方法,引导学生巧妙地把四边形,甚至多边形转化成已学过的三角形,轻松地验证了四边形的内角和是360度这一结论,使学生更好地理解”四边形的内角和是360度”这个知识点,为学生的后续学习和自主学习打下基础。

三、合理运用信息技术,顺利突破教学难点

在教学中如何突出教学重点,突破教学难点是至关重要的,多媒体技术的辅助就成为突出教学重点,突破教学难点的有效手段.本节课的教学中,我借助多媒体直观、形象的特点,将每一种四边形的内角和的验证过程演示的清晰而形象,顺利地突破了教学难点,帮助学生更好地理解了四边形的内角和为什么是360度。

四、合理拓展,注重知识应用

数学具有严密的逻辑性和抽象性。而学生学习内容的呈现是从简单到复杂,思维方式是从具体到抽象的一个循序渐进的过程,前面学习的知识往往是后面进一步学习的基础。要培养学生思维的灵活性,可以先让学生学会对知识的迁移。本课最后设计一些相关的练习题不但与实际生活紧密相连,而且紧扣本节课的教学内容,让学生在练习中内画知识取得了良好的教学效果。另外,还将四边形的内角和拓展到了五边形、六边形等多边形的内角和,既能对学生进行思维训练,又能培养学生应用知识的能力,更能培养学生的创新意识和创新。常言说:“教学是门遗憾的艺术”,通过反思,我觉得本节课的不足之处首先是情课后有老师和我交流时说我的课堂多媒体资源还不够丰富。

6.多边形的内角和的探究 篇六

1. 三角形的内角和

我们已经知道: 三角形的内角和是180°. 可是你能说明为什么吗? 我和同学们一起动手任意的画了很多三角形.

经过我们 的测量发 现每个三 角形的内 角和都约 等于180°. 可是这个理由不能作为我们的结论 “三角形的内角和是180°” 的科学依据. 于是我们思考能不能用我们已有的知识来证明这个结论?

已知: 如图, 在△ABC中,求证:∠A + ∠B + ∠C = 180°.

证法1:延长BC到CD,在△ABC的外部, 以CA为一边,CE为另一边作∠1 = ∠A,于是CE∥BA (内错角相等,两直线平行).

∴ ∠B = ∠2 (两直线平行 ,同位角相等).

又 ∵∠1 + ∠2 + ∠ACB = 180°

∴∠A + ∠B + ∠ACB = 180°

证法2:延长BC到D,过C作CE∥BA,∴ ∠A = ∠1 ( 两直线平 行,内错角相等)

∠B = ∠2(两直线平行,同位角相等)

又 ∵ ∠1 + ∠2 + ∠ACB = 180°

∴ ∠A + ∠B + ∠ACB = 180°

证法3:过A作EF∥BA,

∴∠B = ∠2 (两直线平行 ,内错角相等)

∠C = ∠1 (两直线平行,内错角相等)

又∵∠2 + ∠1 + ∠BAC = 180°

∴∠B + ∠C + ∠BAC = 180°

证法4:过A作AE∥BC,

∴ ∠B = ∠BAE (两直线平行 ,内错角相等)

∠EAB + ∠BAC + ∠C = 180° (两直线平行,同旁内角互补)

∴∠B + ∠C + ∠BAC = 180°

于是,我们得到三角形内角和定理:三角形三个内角的和等于180°.

2. 四边形的内角和

既然我们已经知道三角形的内角和是一个定值180°,那么四边形的内角和是多少度? 也会是一个定值吗?

我们知道正方形,长方形的四个角都是90°,故正方形、长方形的内角和都是4 × 90° = 360°,梯形的内角和也是360°.

已知:梯形ABCD,AB∥CD

求证:∠A + ∠B + ∠C + ∠D = 360°

证明:∵AB∥CD ,∴∠A + ∠D = 180°.

∠B + ∠C = 180°(两直线平行,同旁内角互补)

∴∠A + ∠B + ∠C + ∠D = 360°.

于是,我们猜想四边形的内角和也是一个定值,四边形的内角和等于360°. 你能证明吗?

我们利用三角形的内角和定理来证明四边形的内角和等于360°.

已知:如图,四边形ABCD.

求证:∠A + ∠B + ∠C + ∠D = 360°.

证明:连接BD.

在△ABD和△CBD中,∵∠A + ∠ABD + ∠ADB = 180°

∠C + ∠CBD + ∠CDB = 180°, 而∠A + ∠ABC + ∠C + ∠ADC = ∠A + ∠ABD + ∠ADB + ∠C + ∠CBD + ∠CDB = 180 × 2 = 360°.

∴ 四边形的内角和是360°.

3. 五边形的内角和

类比前面的过程, 你能探索出五边形的内角和是多少度吗?

五边形从一个顶点可以引出2条对角线,将五边形分割成3个三角形,而这3个三角形的内角和正好是五边形的内角和所以我们得出五边形的内角和是3 × 180° = 540 °.

下面我们思考一个n边形从一个顶点可以引出几条对角线? 我们知道对角线是连接多边形不相邻的两个顶点的线段,n边形有n个顶点, 从一个顶点出发, 故剩余n - 1个顶点,再减去和它相邻的2个顶点,就剩余n - 3个顶点,所以可以作出n - 3条对角线, 此时正好可以将n边形分割成为(n - 2)个三角形.

4. 六边形的内角和

有以上规律,我们知道六边形从一个顶点可以引出6 - 3条对角线,将六边形分割成6 - 2个三角形,所以六边形的内角和就是(6 - 2) × 180° = 640°.

……

以上我们通过从多边形的一个顶点出发作对角线将多边形分割成几个三角形,从而探究出多边形的内角和.

7.公开课教案 多边形的内角和 篇七

多边形的内角和

[教学目标] 1.使学生了解多边形的内角、外角等概念.

2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.

[教学重点、难点] 1.重点:

(1)多边形的内角和公式.

(2)多边形的外角和公式.

2.难点:多边形的内角和定理的推导. [教学过程]

一、探究

1.我们知道三角形的内角和为180°.

2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.

3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?

画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.

从中你得到什么结论?

二、思考几个问题

1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?

2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?

3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?

综上所述,你能得到多边形内角和公式吗? 设多边形的边数为n,则

n边形的内角和等于(n一2)·180°. 想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?

由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)

分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°. 如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n边形内角和=n×l80°一2×180°=(n一2)×A E34ED1O2B5A D12O34C180°.C

B

分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠

1、∠

2、∠

3、∠4不是五边形的内角,应舍去.

∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°

用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°.

A B216F53CD4E

如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?

已知:∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角. 求:∠1+∠2+∠3+∠4+∠5+∠6的值.

分析:关于外角问题我们马上就会联想到平角,这样我们就得到六边形的6个外角加上它相邻的内角的总和为6×180°.由于六边形的内角和为(6—2)×180°=720°.

这样就可求得∠1+∠2+∠3+∠4+∠5+∠6=360°.

解:∵六边形的任何一个外角加上它相邻的内角和为180°.

∴六边形的六个外角加上各自相邻内角的总和为6×180°.

由于六边形的内角和为(6—2)×180°=720°

∴它的外角和为6×180°一720°=360°

如果把六边形横成n边形.(n为不小于3的正整数)同样也可以得到其外角和等于360°.即 多边形的外角和等于360°.

四、课堂练习

课本P89练习1、2、3题.

P90第2、3题

五、课堂小结

引导学生总结本节课主要内容

六、课后作业

课本P90第4、5、6题

多边形内角和说课稿

1、本节课的地位

本节课是人教版初一下学期第七章三节第二课时,主要是研究多边形内角和、外角和,将多边形问题转化为三角形的问题加以解决。

由繁到简、由特殊到一般,利用类比、转化,将抽象的多边形问题转化为具体的比较容易理解和更加直观的三角形问题,还可以起到巩固强化三角形部分的作用,并为下一步“镶嵌”作铺垫。

2、教学目标:

知识和技能:多边形定义,多边形内角和、外角、外角和、对角线定义及性质,多边形内角和定理及多边形外角和计算,能灵活运用上述知识解决多边形问题。目的与要求:使学生进一步掌握多边形的相关知识掌握并能运用多边形内角和定理及外角和定理解题。

情感态度与价值观:利用三角形的有关知识探究多边形的性质,使学生体会转化思想在数学研究中的重要作用,从多边形内角和与外角和的对比体会不同不同角度思考问题的巨大作用。

3、重点:公式的探索、推导。

难点:多边形的问题多次转化为三角形问题的方法。

4、教学环节:

(1)复习提问:巩固旧有知识

回顾三角形四边形内角和

回顾多边形相关知识

(2)通过对角线,分解多边形为三角形等三种方法,拆分多边形,导出多边形的内角和公式。(3)归纳公式,并填表,强化对公式的认识和理解。(4)例题:教材49页例一(5)练习:6道题详授 12道题练习

5、总结 本节课所学内容

6、课后练习

8.多边形的内角和初中数学教案范文 篇八

(1)知识结构:

(2)重点和难点分析:

重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。

2.教法建议

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。

教学目标:

1.使学生掌握四边形的有关概念及四边形的内角和定理;

2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;

3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;

4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.教学重点:

四边形的内角和定理.教学难点:

四边形的概念

教学过程:

(一)复习

在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.(二)提出问题,引入新课

利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)

问题:你能类比三角形的概念,说出四边形的概念吗?

(三)理解概念

1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.练习:课本124页1、2题.4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.5.四边形的对角线:

(四)四边形的内角和定理

定理:四边形的内角和等于.注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.(五)应用、反思

例1 已知:如图,直线,垂足为b, 直线 , 垂足为c.求证:(1);(2)

证明:(1)(四边形的内角和等于),(2)

.练习:

1.课本124页3题.2.如果四边形有一个角是直角,另外三个角之比是1:3:6,那么这三个角的度数分别是多少?

小结:

9.第三册探索多边形内角和 篇九

360°

540°

720°

1080°

正多边形每个内角的度数

60°

90°

108°

120°

135°

四、小结:主要表扬本节课同学们很善于思考,对所学知识应用得很好,做得好的小组及他们做得好的地方。

五、布置作业 :

课本P110、习题4、10  第1、2、3题。

附:选用随堂练习:

1、一个多边形的每个内角都是140,它是(   )边形?

2、过四边形一顶点的对角线把它分成两个三角形,过五边形一个顶点的对角线把它分成(       )个三角形。

3、过六边形的一个顶点的对角线把它分成(       )个三角形,过n边形的一个顶点的对角线把n边形分成(      )个三角形。

4、一个多边形的每个内角都是140°,这个多边形是(       )边形。

5、如果一个多边形的边数增加1,那么这时它的内角和增加了(      )度。

6、下列角能成为一个多边形的内角和的是(       )

A、270°       B、560°       C、1800°       D、1900°

思考题:如图(1),求∠A+∠B+∠C+∠D+∠E+∠F等于多少度?

F

E

C

A

G

如图(2),求∠A+∠B+∠C+∠D+∠E+∠F+∠G等于多少

F

E

D

A

B

C

图(1)                                  图(2)

10.多边形的内角和 教学设计示例 篇十

第1课时

教学目标 知识与技能:

表述多边形的有关概念(内角、外角、对角线、凸多边形、凹多边形); 情感态度价值观:

1、通过探索过程进一步体会知识点之间的联系;

2、通过本节的学习进一步体会数学与现实生活的紧密联系. 教学重难点

表述多边形的有关概念(内角、外角、对角线、凸多边形、凹多边形). 教学过程

(一)引入

你能从图1中找出几个由一些线段围成的图形吗?

图1

(二)知识点

我们学过三角形,类似地,在平面内,由一些线段首尾顺次相接组成的图形叫做多边形(polygon).

多边形按组成它的线段的条数分成三角形、四边形、五边形……三角形是最简单的多边形.如果一个多边形由n条线段组成,那么这个多边形就叫做n边形.如图2,螺母底面的边缘可以设计为六边形,也可以设计为八边形.

图2 多边形相邻两边组成的角叫做它的内角.图3中的∠A、∠B、∠C、∠D、∠E是五边形ABCDE的5个内角.多边形的边与它的邻边的延长线组成的角叫做多边形的外角.图4中的∠1是五边形ABCDE的一个外角.

图3 图4 图5 连接多边形不相邻的两个顶点的线段,叫做多边形的对角线(diagonal).图5中,AC、AD是五边形ABCDE的两条对角线.

特别提醒:n边形(n≥3)从一个顶点可引出(n-3)条对角线,把n边形分割成(n-2)个三角形,共有对角线n(n3)条. 2例如:十边形有________条对角线.在这里n=10,就可套用对角线条数公式n(n3)10(103)35(条). 22

图6 如图6(1),画出四边形ABCD的任何一条边(例如CD)所在直线,整个四边形都在这条直线的同一侧,这样的四边形叫做凸四边形.而图6(2)中的四边形ABCD就不是凸四边形,因为画出边CD(或BC)所在直线,整个四边形不都在这条直线的同一侧.类似地,画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.本节只讨论凸多边形.

我们知道,正方形的各个角都相等,各条边都相等.像正方形那样,各个角都相等,各条边都相等的多边形叫做正多边形.图7是正多边形的一些例子.

图7 特别提醒:(1)正多边形必须两个条件同时具备:①各内角都相等;②各边都相等.例如: 矩形各个内角都相等,它就不是正四边形.再如:菱形各边都相等,它却不是正四边形.

第2课时

教学目标 知识与技能:

1、探索并说出多边形的内角和与外角和公式;

2、进一步发展说理能力和简单的推理能力. 过程与方法:

经历探索多边形内角和与外角和公式的过程,实际测量,推理. 情感态度价值观:

1、通过探索过程进一步体会知识点之间的联系;

2、通过本节的学习进一步体会数学与现实生活的紧密联系. 教学重难点

重点是多边形的内角和与外角和定理.

难点是学会善于运用三角形的有关知识来研究多边形的问题,能够灵活运用多边形内角和与外角和解决相关问题. 教学过程

(一)思考

三角形的内角和等于180°.正方形、长方形的内角和都等于360°,其他四边形的内角和等于多少?

(二)探究

任意画一个四边形,量出它的4个内角,计算它们的和.

再画几个四边形,量一量,算一算.你能得出什么结论?能否利用三角形内角和等于180°得出这个结论?

如图8,画出任意一个四边形的一条对角线,都能将这个四边形分为两个三角形.这样,任意一个四边形的内角和,都等于两个三角形的内角和,即360°.

图8 从上面的问题,你能想出五边形和六边形的内角和各是多少吗?观察图9,请填空: 图9 从五边形的一个顶点出发,可以引_______条对角线,它们将五边形分为_______个三角形,五边形的内角和等于180°×_________.

从六边形的一个顶点出发,可以引______条对角线,它们将六边形分为________个三角形,六边形的内角和等于180°×__________.

通过以上问题,你能发现多边形的内角和与边数的关系吗? 一般地,怎样求n边形的内角和呢?请填空:

从n边形的一个顶点出发,可以引______条对角线,它们将n边形分为________个三角形,n边形的内角和等于180°×______.

总结:过n边形的一个顶点可以做(n-3)条对角线,将多边形分成(n-2)个三角形,每个三角形内角和180°.

所以n边形内角和(n-2)×180°.

把一个多边形分成几个三角形,还有其他分法吗?由新的分法,能得出多边形内角和公式吗?

方法2:如图:10过n边形内任意一点与n边形各顶点连接,可得n个三角形,其内角和n×180°.再减去以O为顶点的周角.

即得n边形内角和n·180°-360°.

图10 得出了多边形内角和公式:n边形内角和等于(n-2)·180°.

(三)例题

例1:如果一个四边形的一组对角互补,那么另一组对角有什么关系?

图11 解:如图11,四边形ABCD中,∠A+∠C=180°.

因为∠A+∠B+∠C+∠D=(4-2)×180°=360°,所以∠B+∠D=360°-(∠A+∠C)=360°-180°=180°.

这就是说,如果四边形的一组对角互补,那么另一组对角也互补.

例2:如图12,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?

图12 分析:考虑以下问题:

(1)任何一个外角同与它相邻的内角有什么关系?

(2)六边形的6个外角加上与它们相邻的内角,所得总和是多少?(3)上述总和与六边形的内角和、外角和有什么关系? 联系这些问题,考虑外角和的求法.

解:六边形的任何一个外角加上与它相邻的内角,都等于180°.6个外角连同它们各自相邻的内角,共有12个角.这些角的总和等于6×180°.

这个总和就是六边形的外角和加上内角和.所以外角和等于总和减去内角和,即外角和等于6×180°-(6-2)×180°=2×180°=360°.

(四)探究

如果将例2中六边形换为n边形(n的值是不小于3的任意整数),可以得到同样结果吗? 思路:(用计算的方法)

设n边形的每一个内角为∠1,∠2,∠3,……,∠n,其相邻的外角分别为180°-∠1,180°-∠2,180°-∠3,……180°-∠n.外角和为(180°-∠1)+(180°-∠2)+……+(180°-∠n)=n×180°-(∠1+∠2+∠3+……+∠n)=n×180°-(n-2)×180°=360°

注意:以上各推导方法体现将多边形问题转化为三角形问题来解决的基本思想. 由上面的探究可以得到: 多边形的外角和等于360°.

你也可以像以下这样理解为什么多边形的外角和等于360°.

如图13,从多边形的一个顶点A出发,沿多边形的各边走过各顶点,再回到点A,然后转向出发时的方向.在行程中所转的各个角的和,就是多边形的外角和.由于走了一周,所转的各个角的和等于一个周角,所以多边形的外角和等于360°.

11.《三角形的内角和》教学反思 篇十一

一、优点:

1、教学设计不错,环节紧凑,思路清晰。

2、重视操作过程,时间把握得好。本节课用了大量的时间来让学生做小组实验,从而让他们自己感知三角形内角和是180°,印象深刻。

3、能注意前后照应,解决了前面的疑问。在讲授新课前,设置一个疑问“为什么同一个三角形不能有两个直角?”以此来吸引学生,找出三角形内角和的特性。在掌握了三角形内角和是180°后,再次把问题提出来,让学生解决。

4、板书巧妙,一步步引入课题。先是让学生复习“三角形”的.定义,接着简单说明什么是“三角形内角”,最后再讲授三角形三个内角度数的和叫做“三角形内角和”。

5、课堂纪律好,气氛活跃,学生踊跃积极。学生在小组活动时,活跃而有序,上课时能认真听讲,积极举手。同时,实行小组评价更是发挥了学生的主动性。

6、求三角形内角和的方法,一个比一个直观、生动。从量一量、算一算,到剪一剪、折一折,让学生更容易感受到三角形内角和是180°。

7、练习题设计得比较好,特别是判断题,都是学生平时容易出错的题目,在课堂上用比较直观的课件显示出来,让学生的印象深刻。组合题也很有灵活性,先是找出能组成三角形的度数,然后根据度数判断出是什么三角形。

8、能尊重学生的意见,有的小组没有在算一算的时候,没有得出180°的结果,老师能够分析其中的原因。

二、不足之处:

1、在老师给出“画有2个内角是直角的三角形”的任务时,学生明显是画不出来。但是教师也可以把学生失败的作品展示出来,照应之后的讲解。而不能一带而过。

2、如果量一量的方法,不能让人信服,要在后面打个“?”,等到解决疑问后,再去掉。

3、在进行剪一剪、折一折的活动时,老师应该先用板书上的三角形来示范一次,告诉学生应该怎么做。因为有些学生折不出来。拼的时候,也有出错。

4、把三角形拼成平角后,要用直尺或者是量角器测量一下,看看得出的图形是不是平角,要用严谨的态度对待,不能光用眼睛来判断。

5、老师注意提醒学生读题的时候要规范,要读出度数单位,这很好。但是,在做题练习时,应该请一两个学生在黑板上做,这样也便于教师提醒学生,在书写时,也要注意写上度数单位,强调格式。

12.《多边形的内角和》说课稿 篇十二

一、背景分析

1、学习任务分析:

《三角形》这一章章节结构是“与三角形有关的线段”、“与三角形有关的角” 、“多边形及其内角和”、“课题学习镶嵌”。按照传统的教材编写程序,受三角形、多边形、圆顺次展开的限制,这些内容分别设置在不同年级,而新教材是一种专题式设计,以内角和为主题,先三角形内角和,再顺势推广到多边形内角和,最后将内角和公式应用于镶嵌。这样看来“多边形及其内角和”就起到了将知识应用到生活中的桥梁作用。在前一节已经学习了多边形以及多边形的对角线、多边形的内角、外角等概念,三角形是多边形的一种,学生已经掌握了三角形和特殊的四边形(如长方形、正方形)内角和,所以这节课很适合于让学生自己去发现和总结多边形内角和公式。适合采用”教师引导下的自主探究”的教学方法。探索多边形内角和公式是本节课的重点。

2、学生情况分析:

(1)学生的年龄特点和认知特点:七年级学生大约十二三岁,思维活跃,求知欲强,容易接受新鲜事物,对于传统的课堂教学方式比较厌倦,本节课采取教师引导下的自主探究方法,符合学生的认知特点,容易调动学生的学习积极性,满足学生的学习愿望。

(2)学生对即将学习的内容的知识关联区:本节课让学生通过实验探索多边形内角和公式。在此之前学生对三角形、特殊四边形的内角和已经有了一定的理解和认识。估计学生在探究任意四边形内角和时会想到量、拼、分的方法,但是分割多边形为三角形这一过程会是学生学习的难点,所以在探究的过程中教师要想办法把难点分散,利于学生对本课知识的学习和掌握。

二、教学目标设计

依据新课标的要求,我设计本节课的教学目标为以下四个方面:

知识与技能:

通过实验探索多边形内角和公式。

数学思考:

1、经历归纳、猜想、推理等过程,发展合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。

2、通过把多边形转化为三角形的过程,体会转化思想在几何中的运用,感受从特殊到一般的认识问题的方法。

解决问题:

通过探索多边形内角和的公式,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验。

情感态度:

通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。同时,体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。

三、课堂结构设计

整个教学过程分为创设情景、建立模型、解释与应用、拓展与探究、反思与作业五个环节。

四、教学媒体设计

七年级学生思维活跃,容易接受新鲜事物,对直观的东西更容易接受,我采用了多媒体课件这一教学媒体,最大限度的调动学生的学习积极性,满足他们的学习愿望,并且为突出重点突破难点提供了帮助。另外利用实物展台可以节省时间以便更好的完成教学任务。

五、教学过程设计:

1、创设情景:

我设计了两个情景:

情景一:演示显示生活中的各种多边形模型,直接引出课题:您想知道任意一个多边形的内角和吗?今天我们就来进一步探讨多边形的内角和。直接导入,简洁明快,使学生更容易进入学习状态。

情景二:抛出问题三角形的内角和是多少度?长方形的内角和等于多少度?正方形的内角和等于多少度?学生积极动脑回顾并回答,目的是建立与学生的`已有知识的联系,有助于后继问题的解决。也易于学生接受。

2、建立模型:

活动1:

猜一猜:任意四边形的内角和等于多少度?引导学生从正方形、长方形这两个特殊的多边形的内角和,很容易猜测出四边形的内角和等于360度,

议一议:你是怎样得到的?你能找到几种方法?学生可能找到以下几种方法:①“量”——即先测量四边形四个内角的度数,然后求四个内角的和。学生的度量过程可能会产生误差,所以利用几何画板演示,易于学生理解②“拼”——即把四边形的四个内角剪下来,拼在一起,得到一个周角;③“分”——即通过添加辅助线的方法,把四边形分割成三角形。这一环节要给予学生充分的探究时间,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。让学生体验数学活动充满探索,体验解决问题策略的多样性。然后由各小组成员汇报探索的思路与方法,讲明理由。此环节为了节省学生在黑板前重新画图的时间,可以让学生利用实物展台展示图形,亮出观点,鼓励学生接受别人观点的同时,乐于表达自己的观点,发展学生的语言表述能力。

想一想:这些分法有什么异同点。学生积极思考,大胆发言,教师给予正确的评价和鼓励。教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和,这是数学学习中的一种常用转化的思想方法。

活动2:

选一种你喜欢的上述分割的方法,求出五边形、六边形、七边形的内角和。学生先独立思考,再分组活动。教师深入小组,参与小组活动,及时了解学生探索的情况。然后由各小组成员利用实物展台汇报探索的思路与方法,讲明理由。通过增加图形的复杂性,再一次经历转化的过程,加深对转化思想方法的理解,体会由简单到复杂,由特殊到一般的思想方法。同时,在四边形的基础上,探索连续整数边数的多边形的内角和与边数间的关系。为活动3归纳n边形的内角和准备素材。让学生选择一种方法求内角和的目的也是为活动3奠定基础,便于公式的总结。但是还是有可能出现其它的解决问题的办法,比如:由四边形内角和求五边形内角和,由五边形内角和再求六边形内角和,依次类推,但是这种方法给活动3公式的得出带来困难。所以教师要因势利导,给学生正确的评价。在探索的过程中再一次培养学生的推理能力和表达能力,以及选择解决问题的最佳方法的能力。

活动3:

想一想、议一议:n边形的内角和怎样表示呢?学生独立思考的基础上分组活动,解决问题。也有可能出现刚才那种解决问题的办法,教师要因势利导,给予学生正确的评价。学生可能会归纳总结得出多边形的内角和等于以下不同形式的公式

①(n-2)•180° ②180°•n-360° ③180°•(n-1)- 180°

通过任意多边形转化为三角形的过程,发展学生的空间想象能力。通过多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法。在探索的过程中,再一次发展学生的推理能力和表达能力,在交流与合作的过程中,感受合作的重要性。

3、解释与应用

(1)智慧大比拼。通过新颖的形式激发学生的竞争意识和主动参与活动的热情。学生利用当堂所学的知识解决问题,巩固本节知识。目的是检验学习效果,让学生经历运用知识解决问题的过程,发展学生的推理能力和语言表述能力,给学生获得成功体验的空间,激发学习的积极性,建立学好数学的自信心。

(2)情系奥运。引导学生利用多边形的内角和公式解释小明的设想能否实现。让学生感受到数学的趣味性,以及与实际生活之间的密切联系,并激发学生的爱国之情。

4、拓展与探究

小组合作探究,引导学生分析可能的每一种截取情况,根据不同截法得出不同结论。鼓励学生积极参与思考、大胆尝试、主动探讨、勇于创新。让学生深刻的感受到合作交流的重要性,体会成功的喜悦。

5、反思与作业

请学生谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,同时也是给学生正确地评价自己和他人表现的机会,这也是给教者本身一个反思提高的机会。

分层次留作业,尊重学生的个性差异,让不同的学生在数学学习上都有收获和进步。

六、教学评价设计:

学生学习水平评价:学生是否积极参与;是否独立思考;是否富于想象;是否敢于否定;是否兴趣浓厚;是否善于合作;能否主动探索;能否自由表达。

学生学习效果评价:通过解释与应用,拓展与探究两个环节初步了解部分学生对本节知识的掌握情况,课后通过分层次作业,三天后进行的小测验,了解学生对本节内容的掌握情况,及时发现问题,对教学中的疏漏进行弥补。

上一篇:2023年暑期小桔灯快速阶梯作文一试卷下一篇:幼儿园智力游戏集锦