三角函数式(精选8篇)
1.三角函数式 篇一
函数的形式
1、一对一,就是一个B值对应一个A值,反之,一个A值也对应一个B值(当然,此时B也是A的函数)。
2、一对多,就是多个B值对应一个A值。(此时一个A值对应多个B值,所以B不是A的函数)。
函数关系
当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,我们称这种关系为确定性的函数关系。马赫的要素一元论把科学和认识所及的世界归结为要素的复合,又把要素解释为感觉,认为这个世界以人的.感觉为转移。他指出,人的感觉是相同的,对于同一对象,不同的人乃至同一个人在不同的情况下会有不同的感觉,因此,世界上事物的存在只是相对的。
2.三角函数式 篇二
在高中阶段, 常见的抽象函数性质主要有下面几种 (下面问题中x, y都为实数) .
1.f (x+y) =f (x) +f (y) +a, x, y∈R, 求f (x) .
2.f (x+y) =f (x) +f (y) , 且f (0) =1, f′ (0) =a, 求f (x) .
3.f (xy) =f (x) f (y) , 且 f (1) =1, f′ (1) =n, 求f (x) .
4.f (xy) =f (x) +f (y) , 且f (1) =0, f′ (1) =a, 求f (x) .
5.f (x-y) +f (x+y) =2f (x) f (y) , 且f (0) =1, f′ (0) =0, f″ (0) =-1, 求f (x) .
6.f (x+y) = (f (x) +f (y) ) / (1-f (x) f (y) ) , f (0) =0, f′ (0) =1, 求f (x) .
现将以上6个问题一一解答:
问题1令x=y=0, 得f (0) =-a, 对f (x+y) =f (x) +f (y) +a
的两边分别关于x求导得
从以上解答结果可看出, 满足性质1的函数为线性函数, 给出不同初值, 可得不同一次函数.若f (0) =0, 则f (x) =cx.
问题2对f (x+y) =f (x) f (y) 两边分别关于x和y求导有
由结果可知, 符合性质2的函数为指数型函数, 这和指数的运算法则“ax+y=axay”在形式上是一致的.
问题3对f (xy) =f (x) f (y) 的两边分别关于x, y求导得
由上面结果可知, 若f′ (1) =a (a∈R) , x, y>0, 则f (x) =xa为幂函数, f (xy) =f (x) f (y) 与幂函数的运算法则 (xy) a=xaya在形式上是一致的.
问题4对f (xy) =f (x) f (y) 的两边关于x, y分别求导得
可看出性质4的结果为对数型函数, 当f′ (1) =1, x>0时, f (x) 为对数函数, 其形式和对数运算法则ln (xy) =lnx+lny (x, y>0) 是一致的.
问题5对f (x-y) +f (x+y) =2f (x) f (y) 两边关于x求导有
所以y=cosx, 知满足条件f′ (0) =0.
(ⅲ) 当p=±1时, f (x) =±x不合性质, 应舍去.
可以看出, 若去掉条件f′ (0) =0则 (ⅰ) 之结果也成立, 知给不同初值可得不同的函数, 并且f (x-y) +f (x+y) =2f (x) f (y) 在形式上和cos (x-y) +cos (x+y) =2cosxcosy是一致的.
问题6对f (x+y) (1-f (x) f (y) ) =f (x) +f (y) 的两边关于y求导得:
3.求解抽象函数解析式六法 篇三
四、利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式
【例6】 已知y=f(x)为奇函数,当x>0时,f(x)=lg(x+1),求f(x).
解:∵f(x)为奇函数,∴f(x)的定义域关于原点对称,故先求x<0时的表达式.
∵-x>0,∴f(-x)=lg(-x+1)=lg(1-x).
∵f(x)为奇函数,∴lg(1-x)=f(-x)=-f(x),
∴当x<0时,f(x)=-lg(1-x).
五、赋值法:给自变量取特殊值,从而发现规律,求出f(x)的表达式
【例8】 已知f(0)=1,对于任意实数x、y,等式f(x-y)=f(x)-y(2x-y+1)恒成立,求f(x).
解:对于任意实数x、y,等式f(x-y)=f(x)-y(2x-y+1)恒成立,
不妨令x=0,则有f(-y)=f(0)-y(-y+1)=y2-y+1,
再令-y=x得函数解析式f(x)=x2+x+1.
【例9】 函数f(x)对一切实数x,y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0.求f(x)的解析式.
解:令x=1,y=0,代入得f(1+0)-f(0)=(1+2×0+1)×1,整理得f(0)=2.
令y=0,得f(x+0)-f(0)=(x+0+1)x,
所以f(x)=x2+x+2.
六、方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式endprint
一、换元法:即用中间变量表示原自变量的代数式,从而求出f(x)
四、利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式
【例6】 已知y=f(x)为奇函数,当x>0时,f(x)=lg(x+1),求f(x).
解:∵f(x)为奇函数,∴f(x)的定义域关于原点对称,故先求x<0时的表达式.
∵-x>0,∴f(-x)=lg(-x+1)=lg(1-x).
∵f(x)为奇函数,∴lg(1-x)=f(-x)=-f(x),
∴当x<0时,f(x)=-lg(1-x).
五、赋值法:给自变量取特殊值,从而发现规律,求出f(x)的表达式
【例8】 已知f(0)=1,对于任意实数x、y,等式f(x-y)=f(x)-y(2x-y+1)恒成立,求f(x).
解:对于任意实数x、y,等式f(x-y)=f(x)-y(2x-y+1)恒成立,
不妨令x=0,则有f(-y)=f(0)-y(-y+1)=y2-y+1,
再令-y=x得函数解析式f(x)=x2+x+1.
【例9】 函数f(x)对一切实数x,y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0.求f(x)的解析式.
解:令x=1,y=0,代入得f(1+0)-f(0)=(1+2×0+1)×1,整理得f(0)=2.
令y=0,得f(x+0)-f(0)=(x+0+1)x,
所以f(x)=x2+x+2.
六、方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式endprint
一、换元法:即用中间变量表示原自变量的代数式,从而求出f(x)
四、利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式
【例6】 已知y=f(x)为奇函数,当x>0时,f(x)=lg(x+1),求f(x).
解:∵f(x)为奇函数,∴f(x)的定义域关于原点对称,故先求x<0时的表达式.
∵-x>0,∴f(-x)=lg(-x+1)=lg(1-x).
∵f(x)为奇函数,∴lg(1-x)=f(-x)=-f(x),
∴当x<0时,f(x)=-lg(1-x).
五、赋值法:给自变量取特殊值,从而发现规律,求出f(x)的表达式
【例8】 已知f(0)=1,对于任意实数x、y,等式f(x-y)=f(x)-y(2x-y+1)恒成立,求f(x).
解:对于任意实数x、y,等式f(x-y)=f(x)-y(2x-y+1)恒成立,
不妨令x=0,则有f(-y)=f(0)-y(-y+1)=y2-y+1,
再令-y=x得函数解析式f(x)=x2+x+1.
【例9】 函数f(x)对一切实数x,y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0.求f(x)的解析式.
解:令x=1,y=0,代入得f(1+0)-f(0)=(1+2×0+1)×1,整理得f(0)=2.
令y=0,得f(x+0)-f(0)=(x+0+1)x,
所以f(x)=x2+x+2.
4.函数解析式求法总结及练习题 篇四
一、待定系数法:在已知函数解析式的构造时,可用待定系数法.
它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。例
1设解:设
则
xx22xx42,解得:,点M(x,y)在yg(x)上,yxx. yyy6y32f(x)是一次函数,且f[f(x)]4x3,求f(x).
把xx42代入得:6y(x4)(x4).
y6yyx27x6,g(x)x27x6. f(x)axb(a0),则 f[f(x)]af(x)ba(axb)ba2xabb2整理得
a2a4,a2 或 . b3b1abb
3五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得
函数解析式.
f(x)2x1 或 f(x)2x3.
二、配凑法:已知复合函数f[g(x)]的表达式,求f(x)的解析式,f[g(x)]的表达式容易配成g(x)的运算形式f(x)的定义域不是原复合函数的定义域,而是g(x)的值域. 时,常用配凑法.但要注意所求函数
1f(x)满足f(x)2f()x,求f(x).
x11解 f(x)2f()x
①
显然x0,将x换成xxx2解① ②联立的方程组,得:f(x).
33x例
5设例6 设,得:
11f()2f(x)
②
xx11f(x)x22(x0),求 f(x)的解析式. xx11122解:f(x)(x)2,x2,f(x)x
2(x2).
xxx例2
已知
三、换元法:已知复合函数f[g(x)]的表达式时,还可以用换元法求f(x)的解析式.用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。例
3已知解:令t1,试求f(x)和g(x)的解析式 x11解 f(x)f(x),g(x)g(x),又f(x)g(x) ①,用x替换x得:
x111
1f(x)g(x),即f(x)g(x)②,解① ②联立的方程组,得f(x)1,g(x)22x1x1xxx11小结:消元法适用于自变量的对称规律。互为倒数,如f(x)、f();互为相反数,如f(x)、f(-x),通过对称代换
xf(x)为偶函数,g(x)为奇函数,又f(x)g(x)构造一个对称方程组,解方程组即得f(x)的解析式。
六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题
具体化、简单化,从而求得解析式.
例7
已知:f(x1)x2x,求f(x1).
x1,则t1,x(t1)2 .
f(0)1,对于任意实数x、y,等式f(xy)f(x)y(2xy1)恒成立,求f(x).
f(xy)f(x)y(2xy1)恒成立,f(x1)x2x,f(t)(t1)22(t1)t21,f(x)x21(x1),f(x1)(x1)21x22x(x0).
四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法. 例4已知:函数
解对于任意实数x、y,等式
不妨令x再令
0,则有f(y)f(0)y(y1)1y(y1)y2y1.
yx 得函数解析式为:f(x)x2x1.
yx2x与yg(x)的图象关于点(2,3)对称,求g(x)的解析式.
例5:已知
f(0)1,f(ab)f(a)b(2ab1),求f(x)。
解:设M(x,y)为yg(x)上任一点,且M(x,y)为M(x,y)关于点(2,3)的对称点.
解析:令a0,则
f(b)f(0)b(1b)b2b
1令bx
则f(x)x2x1
小结:①所给函数方程含有2个变量时,可对这2个变量交替用特殊值代入,或使这2个变量相等代入,再用已知条
件,可求出未知的函数,至于取什么特殊值,根据题目特征而定。②通过取某些特殊值代入题设中等式,可使问题具体化、简单化,从而顺利地找出规律,求出函数的解析式。
七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式. 例8
设求
8.(1)若
(五).特殊值代入法
9.若
f(x)f(x1)1x,求f(x).(2)若f(x)+f(1-x)=1+x,求f(x).xf(x)是定义在N上的函数,满足f(1)1,对任意的N a,b 都有f(a)f(b)f(ab)ab,f(x)
f(xy)f(x)f(y),且
f(1)2,求值 解f(a)f(b)f(ab)ab,a,bNf(x)f(1)f(x1)x,不妨令
ax,b1,得:
f(2)f(3)f(4)f(2005).f(1)f(2)f(3)f(2004)
10.已知:
(六).利用给定的特性求解析式.11.设 又f(1)1,故f(x1)f(x)x
1①
n(n1),2令①式中的x=1,2,„,n-1得:f(2)f(1)2,f(3)f(2)3,,f(n)f(n1)n 将上述各式相加得:
三、练习
(一)换元法1.已知f(3x+1)=4x+3, 求f(x)的解析式.2.若
(二).配变量法3.已知
(三).待定系数法5.设求
6.设二次函数
f(0)1,对于任意实数x、y,等式f(xy)f(x)y(2xy1)恒成立,求f(x)
f(n)f(1)23n,f(n)123nf(x)121xx,xN 22f(x)是偶函数,当x>0时, f(x)ex2ex,求当x<0时,f(x)的表达式.1xf()x1x,求
f(x).12.对x∈R,达式.例
6、已知函数11f(x)x22xxf(x)满足f(x)f(x1),且当x∈[-1,0]时, f(x)x22x求当x∈[9,10]时f(x)的表, 求
f(x)的解析式.4.若f(x1)x2x,求f(x).f(x)是一元二次函数, g(x)2xf(x),且g(x1)g(x)2x1x2,f(x)对于一切实数x,y都有f(xy)f(y)(x2y1)x成立,且f(1)0。(1)求f(0)f(x)与g(x).的值;(2)求
f(x)的解析式。
f(x)满足f(x2)f(x2),且图象在y轴上截距为1,在x轴上截得的线段长为22,求f(x)的表达式.(四).解方程组法 7.设函数求
1f(x)是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式3f(x)2f()4x,x f(x)的解析式.练习
求函数的解析式
例1.已知f(x)= x22x,求f(x1)的解析式.(代入法 / 拼凑法)
变式1.已知f(x)= 2x1,求f(x2)的解析式.
变式2.已知f(x+1)=x22x3,求f(x)的解析式.
例2.若f [ f(x)]=4x+3,求一次函数f(x)的解析式.(待定系数法)
变式1.已知f(x)是二次函数,且fx1fx12x24x4,求f(x).
例3.已知f(x)2 f(-x)=x,求函数f(x)的解析式.
(消去法/ 方程组法)
变式1.已知2 f(x) f(x)=x+1,求函数f(x)的解析式.
变式2.已知2 f(x)f 1x=3x,求函数f(x)的解析式.
例4.设对任意数x,y均有fxy2fyx22xyy23x3y,求f(x)的解析式.(赋值法 / 特殊值法)
5.三角函数式 篇五
学习目标
1、通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法。
2、能灵活的根据条件恰当地选取选择解析式,体会二次函数解析式之间的转化。
3、从学习过程中体会学习数学知识的价值,从而提高学习数学知识的兴趣。
教学过程
一、合作交流 例题精析
1、一般地,形如y=ax2+bx+c (a,b,c是常数,a0)的函数,叫做二次函数,所以,我们把________________________叫做二次函数的一般式。
例1 已知二次函数的图象过(1,0),(-1,-4)和(0,-3)三点,求这个二次函数解析式。
小结:此题是典型的根据三点坐标求其解析式,关键是:(1)熟悉待定系数法;(2)点在函数图象上时,点的坐标满足此函数的解析式;(3)会解简单的三元一次方程组。
2、二次函数y=ax2+bx+c用配方法可化成:y=a(x+h)2+k,顶点是(-h,k)。配方: y=ax2+bx+c=__________________=___________________=__________________=a(x+)2+。对称轴是x=-,顶点坐标是(-,), h=-,k=, 所以,我们把_____________叫做二次函数的顶点式。
例2 已知二次函数的图象经过原点,且当x=1时,y有最小值-1, 求这个二次函数的解析式。
小结:此题利用顶点式求解较易,用一般式也可以求出,但仍要利用顶点坐标公式。请大家试一试,比较它们的优劣。
3、一般地,函数y=ax2+bx+c的图象与x轴交点的横坐标即为方程ax2+bx+c=0的解;当二次函数y=ax2+bx+c的函数值为0时,相应的自变量的值即为方程ax2+bx+c=0的解,这一结论反映了二次函数与一元二次方程的关系。所以,已知抛物线与x轴的两个交点坐标时,可选用二次函数的交点式:y=a(x-x1)(x-x2),其中x1 ,x2 为两交点的横坐标。
例3 已知二次函数的图象与x轴交点的横坐标分别是x1=-3,x2=1,且与y轴交点为(0,-3),求这个二次函数解析式。
想一想:还有其它方法吗?
二、应用迁移 巩固提高
1、根据下列条件求二次函数解析式
(1)已知一个二次函数的图象经过了点A(0,-1),B(1,0),C(-1,2);
(2)已知抛物线顶点P(-1,-8),且过点A(0,-6);
(3)二次函数图象经过点A(-1,0),B(3,0),C(4,10);
(4)已知二次函数的图象经过点(4,-3),并且当x=3时有最大值4;
(5)已知二次函数的图象经过一次函数y=-x+3的图象与x轴、y轴的交点,且过(1,1);
(6)已知抛物线顶点(1,16),且抛物线与x轴的两交点间的距离为8;
2、如图所示,已知抛物线的对称轴是直线x=3,它与x轴交于A、B两点,与y轴交于C点,点A、C的坐标分别是(8,0)(0,4),求这个抛物线的解析式。
三、总结反思 突破重点
1、二次函数解析式常用的有三种形式:
(1)一般式:_______________ 0)
(2)顶点式:_______________ 0)
(3)交点式:_______________ 0)
2、本节课是用待定系数法求函数解析式,应注意根据不同的条件选择合适的解析式形式,要让学生熟练掌握配方法,并由此确定二次函数的顶点、对称轴,并能结合图象分析二次函数的有关性质。(1)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。(2)当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。(3)当已知抛物线与x轴的.交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)。
四、布置作业 拓展升华
1、已知二次函数的图象经过(0,0),(1,2),(-1,-4)三点,那么这个二次函数的解析式是_______________。
2、已知二次函数的图象顶点是(-1,2),且经过(1,-3),那么这个二次函数的解析式是_______________。
3、已知二次函数y=x2+px+q的图象的顶点是(5,-2),那么这个二次函数解析式是_______________。
4、已知二次函数y=ax2+bx+c的图象过A(0,-5),B(5,0)两点,它的对称轴为直线x=2,那么这个二次函数的解析式是_______________。
5、已知二次函数图象与x轴交点(2,0)(-1,0)与y轴交点是(0,-1),那么这个二次函数的解析式是_______________。
6、已知抛物线y=ax2+bx+c与x轴交于A、B两点,它们的横坐标为-1和3,与y轴的交点C的纵坐标为3,那么这个二次函数的解析式是_______________。
7、已知直线y=x-3与x轴交于点A,与y轴交于点B,二次函数的图象经过A、B两点,且对称轴方程为x=1,那么这个二次函数的解析式是_______________。
8、已知一抛物线与x轴的交点是A(-2,0)、B(1,0),且经过点C(2,8),那么这个二次函数的解析式是_______________。
9、在平面直角坐标系中, AOB的位置如图所示,已知AOB=90,AO=BO,点A的坐标为(-3,1)。
(1)求点B的坐标。
(2)求过A,O,B三点的抛物线的解析式;
6.三角函数公式 篇六
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
两角和差
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
和差化积
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
积化和差
sinαsinβ = [cos(α-β)-cos(α+β)] /2
cosαcosβ = [cos(α+β)+cos(α-β)]/2
sinαcosβ = [sin(α+β)+sin(α-β)]/2
cosαsinβ = [sin(α+β)-sin(α-β)]/2
诱导公式
sin(-α) = -sinα
cos(-α) = cosα
tan (—a)=-tanα
sin(π/2-α) = cosα
cos(π/2-α) = sinα
sin(π/2+α) = cosα
cos(π/2+α) = -sinα
sin(π-α) = sinα
cos(π-α) = -cosα
sin(π+α) = -sinα
cos(π+α) = -cosα
tanA= sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
sinα=2tan(α/2)/[1+tan^(α/2)]
cosα=[1-tan^(α/2)]/1+tan^(α/2)]
tanα=2tan(α/2)/[1-tan^(α/2)]
其它公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
证:
A+B=π-C
tan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得证
同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
7.变式探索三角问题一例 篇七
1. 题 根
问题:在△ABC中, a, b, c分别是角A, B, C所对的边, 已知b2- c2= a2- ac.
(1) 求B的值; (2) 若b = 2槡3, 求sin A + sin C的取值范围.
分析这是一个关于解三角形的问题, 是高考三角函数的一大考查题型, 主要根据三角形的特征, 考查正弦定理、余弦定理以及三角形有关面积问题的应用等. 掌握好这一题型, 是决胜高考的一大保障. 解 (1) 略. 下面根据对第二问的理解, 结合正弦定理和余弦定理的应用, 作如下解法探析:解三角形是三角函数的一大主要组成部分, 其与图像、性质的有机结合, 体现了三角函数的统一性. 通过对上述结论的应用, 发现角B确定, 尽管A, C都不确定, 但A + C是定值, C可以随着角A的变化而变化, 那么sin A + sin C可以表示成关于角A的函数关系式, 利用角A的范围求范围即可.
说明:利用三角形三内角之间的关系, 通过三角函数两角和与差公式以及辅助角公式, 将所求结论转化为与角A有关的msin (ωA + φ) 的形式, 通过整体代换的方式, 利用角A的范围根据三角函数的图像与性质求范围, 这是我们处理有关三角函数问题所经常采用的一种方法. 这体现了三角函数图像与性质和解三角形的有机的统一.
2. 变式探究
对于试题的第二问, 笔者认为上述问题对于三角形的叙述没有作任何的限制, 因此在解答过程中可以充分利用“三角形两边之和大于第三边”这一性质来判定取值的下限. 如果对该三角形进行限制时, 那会有怎样的效果呢?
分析对于变式1, 由12 = a2+ c2- ac可以得到12 =a2+ c2- ac≥2ac - ac = ac, 当且仅当a = c时取“ = ”.
由变式1及第一问的结论, 发现若两者结合起来, 就是三角形的面积的表示. 由此, 结合这一想法, 还可对试题的结论做如下变化:
3. 本 质
基本不等式反应了这样的一个关系, 对于任意的正数a, b, 满足由此还可以变式成为:, 取到等号的条件都为“a = b”. 若刨除变式1, 可以发现, 对于原问以及其他的几个变式, 都有一个共同的基础, 那就是在余弦定理下得到的:12 = a2+ c2- ac, 通过对上述基本不等式的变化, 由等式到不等式, 是基本不等式的精髓体现. 本类题的解决方式就展现为“以解三角形应用为载体, 体现基本不等式多元化”, 体现了高考数学试题的综合性, 同时也充分说明了数学不同模块之间的互动与渗透.
从变式的变化以及解决问题的统一性可以看到数学不同模块之间的互动与渗透. 回归问题的表述, 又可以看到怎样的变化呢? 其实可以看到, 无论如何改变 (添加) 条件, 还是对结论的变更, 本题的关键条件还是在于由 (1) 问得到的B =π, 以及b = 2槡3. 在三角形中, 这是一个典型的对边与3对角的问题. 那么在三角形中, 如果确定一组对边和对角, 那么我们知道这个三角形是具有不确定性的, 但这个变化的三角形, 具有怎样的一个特点呢? 如果能够抓住这个变化的三角形所具有的稳定的特点, 那么问题的解决也就可以“任尔风吹雨打, 我自岿然不动”了!
由正弦定理可知, 任意的一个三角形中, 对边与对角的正弦值比值为常数, 这个常数就是该三角形外接圆的直径.也就是说这个变化的三角形虽然只确定了一组对边对角, 但这个三角形却存在一个稳定的外接圆. 利用这个稳定的外接圆, 可以创造性地解决问题, 甚至可以把所以与之关联的问题进行归源.
8.二次函数解析式的求法 篇八
当已知条件是图象上三个点坐标时选择一般式方程:y=ax2+bx+c(a≠0);
当已知抛物线与x轴的两交点坐标时选择交点式方程:y=a(x-x1)(x-x2)(a≠0);
当已知二次函数图象顶点坐标或对称轴方程与最大值或最小值时选择顶点式方程:y=a(x-h)2+k(a≠0)。
1.根据代数条件求二次函数解析式
【例1】已知抛物线经过点(1,0),(-5,0),且顶点纵坐标为9[]2,求这个二次函数的解析式。
【分析】 设一般式,将已知条件直接代入将得到一个三元一次方程组,计算较繁,进一步分析,(1,0),(-5,0)是抛物线与x轴两交点,由此可知抛物线对称轴为直线x=-2, 所以顶点坐标为(-2,9[]2).
解:∵点(1,0),(-5,0)是抛物线与x的两交点,
∴ 抛物线对称轴为直线x=-2,
∴ 抛物线的顶点坐标为(-2,9[]2),
设抛物线的解析式为y=ax2+bx+c,则有
a+b+c=025a-5b+c=0,4a+2b+c=9[]2,解之得a=-1[]2,b=-2,c=5[]2
∴ 所求二次函数解析式为y=-1[]2x2-2x+5[]2.
2.根据几何图形的性质求二次函数的解析式
【例2】 已知开口向下的抛物线y=ax2+bx+c与x轴交于A(x1,0),B(x2,0)(x1
【分析】 我们可把已知点C(0,5)代入函数解析式,再由a+b+c=0和S△ABC=15这两个条件进行求解。
解法1:∵ C(0,5), ∴ c=5,OC=5,
∵ a+b+c=0,
∴ a+b+5=0, ∴ b=-5-a.
∴ 解析式为y=ax2+(-5-a)x+5,∵ S△ABC=1[]2×AB•5=15.
∴ AB=6,即|x1-x2|=6.
又x1
两边平方得(x2-x1)2=36,
∴ (x1+x2)2-4x1x2=36,(5+a[]a)2-4×5[]a=36,7a2+2a-5=0.
解得a1=5[]7,a2=-1.
∵ 抛物线开口向下,∴a1=5[]7舍,
∴a2=-1,∴ y=-x2-4x+5.
解法2:由解法1可得AB=6,
∵ a+b+c=0,
∴ (1,0)在抛物线上.
又抛物线开口向下且过(0,5),
∴ B(1,0), ∴ OB=1,
则OA=AB-OB=5,A在x轴负半轴上,∴ A(-5,0).
设y=a(x-1)(x+5),把(0,5)代入得-5a=5 ,∴ a=-1.
∴ y=-x2-4x+5.
【小结】 比较以上两种解法,解法2简捷,如果题目中不给开口方向,那么就有两种答案,用解法1直接求得两个解,而解法2就可能丢解 。
几何条件求抛物线解析式时需根据图形性质求线段长再转化成点坐标,在转化过程中注意点的位置与点坐标的符号。
3.根据二次函数图象的性质求解析式的开放型问题
【例3】 (2006•四川乐山)若二次函数y=ax2+bx+c的图象满足下列条件:
① 当x<2时,y随x的增大而增大;
②当x≥2时,y随x的增大而减小。
则这样的二次函数解析式可以是.
【分析】 根据条件①、②可知二次函数开口向下,对称轴为2,这样我们知道a值为负,-b[]2a=2,我们可令a=-1,则b=4,c可取任意值。
解:y=-x2+4x+3。
【例4】 (2006•武汉)已知二次函数的图象开口向下,且经过原点,请写出一个符合条件的二次函数的解析式。
【分析】 如果设二次函数的解析式为y=ax2+bx+c,因为图象开口向下,所以a为负数,图象过原点,即c=0,满足这两个条件的解析式有无数个。
解:y=-x2+3x.
【三角函数式】推荐阅读:
三角与反三角函数12-01
三角函数教案01-31
锐角三角函数课件08-10
三角函数教案设计12-04
三角函数专题学案07-26
锐角三角函数应用教案07-30
初中数学三角函数公式11-25
高中数学三角函数例题12-15
常用数学三角函数公式01-18
锐角三角函数2教案03-02