分式方程的应用(精选8篇)
1.分式方程的应用 篇一
《分式方程的应用》说课稿
各位评委、老师:
大家好!
今天我说课的题目是《分式方程的应用》。我将从“学习内容定位、学习目标认定、重难点确立、学情分析、教学策略、教学过程”五个方面对这一课的教学设计进行说明,具体如下:
一、学习内容定位
本节内容在教材中所处的地位和作用:《分式方程的应用》是新人教版八年级数学下册16.3分式方程中第三课时内容。它是分式方程解法的延展与最终归宿,也是本章学习的重点与难点。从知识的掌握来看,本节课是对前面所学知识的深化和运用;从学生的学习发展来看,它将为研究数学问题提供研究思想与方法,利用分式方程解决社会热点问题,是中考必考内容。在初中数学知识体系中作用重要,意义重大。
二、学习目标认定:
1、知识目标:指导学生亲身经历“实际问题——分式方程——求解——解释解的合理性”的过程,学会从题中寻找等量关系,掌握列分式方程解实际问题的方法。
2、能力目标:引导学生面对生活,关注社会热点、焦点问题,运用所学数学方程思想解决生活中的实际问题。指导学生在互动合作学习中发展能力,强化方程思想应用意识。
三、学习重难点
1、学习重点:审题、寻找等量关系,将实际问题转化成分式方程的数学模型。
2、学习难点:寻求解决问题的不同方法,审题设元、寻找等量关系、列出方程、正确解答。
四、学情分析
在初一时,学生就学习了“列一元一次方程解应用题”,明白遇到实际问题可以列方程解决,但分析问题能力、审题能力、寻找数量关系的能力较弱,依然影响学生学习。上一节通过学习“分式方程”的解法,使学生会解分式方程,理解了增根的含义,会检验分式方程的根,为继续学习列分式方程解应用题奠定了基础。
五、教学策略
1、难点突破
通过学生小组合作学习,从不同角度展示找出的等量关系,在交流中质疑、在质疑中辨析、在辨析中统一认识,掌握寻找等量关系的一般方法。
2、学法分析
让学生根据教材和教师提供的预习学案先进行自我探究,然后在小组内交流探究心得与疑难问题,在质疑辨析、互动交流中归纳总结,纠错矫枉,达成共识,实现学习目标。
3、教法分析
(1)情境互动法:整节课始终围绕“分式方程的应用”这条主线,通过创设学习情境,引导学生从实际问题中抽象出分式方程,体验解题过程,学会寻找等量关系,掌握列分式方程解决实际问题的方法步骤。
(2)点拨指导法:在学生合作学习,展示交流的过程中,教师对学生的错误点、易混点、疑难点以及学习中应注意事项、方法规律、适时点拨,进而达到强调重点、突破难点的.目的,将讨论交流推向高潮、引向深入。
六、教学过程
(1)情境导入、通过学生生活中司空见惯的门面房出租信息,引出要学习解决的问题,激发学生学习兴趣,导入新课。
(2)学情调查、收集学生自学中存在的问题,全面掌握学生学习情况,为组织大家深入学习做好准备。
(3)合作探究、通过学生小组合作学习,观察比较,归纳总结,纠错矫枉,感悟寻找等量关系,掌握分析问题,解决问题的方法。
(4)点评指导:学生进行学习成果展示时,教师对如何寻找等量关系进行点评,强调易错易混之处,让学生在互动交流中掌握重点、突破难点。
(5)达标检测、这既是学生对分式方程的理解和应用,也是方程知识的拓展与延伸,应由学生独立完成以达到检测学习效果的目的,帮助教师全面掌握学生学习目标达成情况。
(6)总结反思、引导学生对所学知识进行理解吸收、内化整合,初步掌握列方程解应用题的方法。总结教学过程中的得与失,查缺补漏,促进学生整体提高。
以上是我的教学设计,敬请各位领导、专家、同行,批评指正!
2.分式方程的应用 篇二
undefined
去分母, 整理得: (a+b) [c2+c (a+b) +ab]=0.
∴ (a+b) (c+a) (c+b) =0.
∴a+b=0或a+c=0或b+c=0.
由以上可知, 如果三个数的倒数和等于这三个数的和的倒数, 那么这三个数中必有两个互为相反数。根据这一原理, 可使形如undefined的方程得到巧妙解答。
例1 解方程undefined
解:∵ (x-2) + (2x-1) + (3x+2) =6x-1,
∴原方程等价于 (x-2) + (2x-1) =0,
或 (x-2) + (3x+2) =0,
或 (2x-1) + (3x+2) =0.
由 (x-2) + (2x-1) =0得:x=1,
由 (x-2) + (3x+2) =0得:x=0,
由 (2x-1) + (3x+2) =0得:undefined
经检验, 原方程的根是:undefined
例2 解方程undefined
解:原方程可变形为:
undefined
∴原方程价于 (2x+3) + (5-3x) =0,
或 (2x+3) + (-x-2) =0,
或 (5-3x) + (-x-2) =0.
由 (2x+3) + (5-3x) =0得:x=8,
由 (2x+3) + (-x-2) =0得:x=-1,
由 (5-3x) + (-x-2) =0得:undefined
经检验, 原方程的根是:undefined
例3 解方程undefined
解:原方程可变形为:
undefined
∴原方程等价undefined,
或undefined,
或undefined
由undefined得:undefined,
由undefined得:undefined,
由undefined得:x=0.
3.给分式方程应用题归归类 篇三
一、营销类应用性问题
例1 某校办工厂将总价值为2 000元的甲种原料与总价值为4 800元的乙种原料混合后,其单价比原甲种原料每斤少3元,比原乙种原料每斤多1元,问:混合后的原料每斤是多少元?
分析:市场经济中,常遇到营销类应用性问题,这类问题中与价格有关的量是单价、总价、平均价等,要了解它们各自的意义,从而建立它们之间的关系式.
解:设混合后的原料单价为每斤 [x]元,则原甲种原料的单价为每斤([x]+3)元,原乙种原料的单价为每斤([x]-1)元,混合后的总价值为(2 000+4 800)元, 混合后的重量为[2 000+4 800x]斤,甲种原料的重量为[2 000x+3]斤,乙种原料的重量为[4 800x-1]斤, 依题意,得
[2 000x+3]+[4 800x-1]=[4 800+2 000x]
解得
[x]=17
经检验,[x]=17是原方程的根.
所以[x]=17. 即混合后的原料每斤 17元.
总结:营销类应用性问题,涉及进货价、售货价、利润率、单价、混合价、赢利、亏损等概念,要结合实际问题对它们各自表述的意义有所了解.同时,要掌握好基本公式,巧妙建立关系式.这类问题与现实生活息息相关,因而成为中考常考的热点问题.
【练习1】
A、B两名采购员去同一家饲料公司购买同一种饲料两次,两次饲料的价格有变化.两名采购员的购货方式不同,其中采购员A每次购买1 000千克,采购员B每次用去800元而不管购买饲料多少,问:谁的购货方式合算?为什么?
二、工程类应用性问题
例2 某工程由甲,乙两队合做6天完成,厂家需付甲,乙两队共8 700元;乙,丙两队合做10天完成,厂家需付乙,丙两队共9 500元;甲,丙两队合做5天完成全部工程的[23],厂家需付甲,丙两队共5 500元.
(1)求:甲,乙,丙各队单独完成全部工程各需多少天?
(2)若工期要求不超过15天完成全部工程,问:由哪个队单独完成此项工程花钱最少?请说明理由.
分析:这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量.对于工期,一般情况下把整个工作量看成1,设甲,乙,丙各队完成这项工程所需时间分别为x天,y天,z天,可列出分式方程组.
解:(1)设甲队单独做需x天,乙队单独做需y天,丙队单独做需z天,依题意,得
[ 6([1x+1y])=1
10([1y]+[1z])=1
5([1x]+[1z])=[23] ]
[解得x=10y=15z=30]
经检验,[x]=10,[y]=15,[z]=30是原方程组的解.
(2)设甲队做一天厂家需付a元,乙队做一天厂家需付b元,丙队做一天厂家需付c元,根据题意,得
[6(a+b)=8 70010(b+c)=9 5005(c+a)=5 500]
[解得a=800b=650c=300]
由(1)可知完成此工程不超过既定工期只有两个队:甲队和乙队.
此工程由甲队单独完成需花费10a=8 000元;此工程由乙队单独完成需花费15b=9 750元.
所以,由甲队单独完成此工程花钱最少.
技巧点拨:在(1)的求解时,把[1x],[1y],[1z]分别看成一个整体,可把分式方程组转化为整式方程组来解.
【练习2】
某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期3天才能完成.现由甲、乙两队合做2天,剩下的工程由乙队独做,恰好在规定日期内完成,问:规定的日期是多少天?
【练习3】
今年某大学在招生录取时,为了防止数据输入出错,2 640名学生的成绩数据由两位教师分别向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知教师甲的输入速度是教师乙的2倍,结果甲比乙少用2小时输完.问:这两位教师每分钟各能输入多少名学生的成绩?
三、浓度应用性问题
例3 有含盐15%的盐水40千克,要使盐水含盐20%,还需要加入多少千克盐?
分析:浓度问题的基本关系是[溶质溶液=浓度].此问题中变化前后三个基本量的关系如下表:
[\&溶液\&溶质\&浓度\&加盐前\&40\&40×15%\&15%\&加盐后\&40+[x]\&40×15%+[x]\&20%\&]
解:设还需要加入[x]千克盐.根据浓度问题的基本关系可列方程
[40×15%+x40+x=20%]
解得
[x]=2.5
经检验,[x]=2.5是方程的解,即再加入2.5千克盐,盐水的含盐量就能达到20%.
【练习4】
甲容器有浓度为20%的盐水40L,乙容器有浓度为25%的盐水30L,如果往两个容器中加入了等量的水后,它们的浓度相等,那么应加入多少升水?
四、货物运输应用性问题
例4 一批货物准备运往某地,有甲,乙,丙三辆卡车可雇用.已知甲,乙,丙三辆车每次运货量不变,且甲,乙两车每次运货物的吨数为1∶3,若甲,丙两车合运相同次数运完这批货物时,甲车共运了120吨;若乙,丙两车合运相同次数运完这批货物时,乙车共运了180吨.这批货物共有多少吨?
分析:货物总吨数和三种车每种车可运吨数均为未知数,但可根据所用次数得到等量关系
[120甲车每次运货吨数=剩余货物吨数丙车每次运货吨数;]
[180乙车每次运货吨数=剩余货物吨数丙车每次运货吨数.]
这两个式子可整理成仅含货物总吨数这一未知数的方程,求解即可.
解:设货物的总吨数为[x]吨,甲车每次运a吨,乙车每次运3a吨,丙车每次运b吨.根据题意可得
[120a=x-120b ①1803a=x-180b ②]
解得
[x]=240
经检验,[x]=240是方程的解,即这批货物共有240吨.
【练习5】
4.分式方程应用题工程问题 篇四
学习目标:
1、知识与技能:.分析题意找出等量关系,会列出分式方程解决实际问题.2、过程与方法:通过解决实际问题提高学生把实际问题转化为数学问题的能力。
3、情感态度与价值观:加强学生应用数学知识于实际问题的兴趣和意识。学习过程:
自主探究 甲、乙二人做某种机器零件,已知甲每小时比乙多做2个,甲做10个所用时间与乙做6个所用的时间相等,求甲、乙每小时各做多少个? 分析:题目中的两个等量关系是:
解
(一)设甲每小时做x个,那么乙每小时做个,根据题意,得
解
(二)设甲做10个所用的时间与乙做6个所用的时间为y小时,根据题意,得
练习:1.某工厂计划x天内生产120件零件,由于采用新技术,每天增加生产3件,因此提前2天完成计划,列方程为()
A.
120x2120x2B.120x120
x23 C.120x2120x3D. 120120xx2
3
2.小王做90个零件所需要的时间和小李做120个零件所用的时间相同,又知每小时小王与小李两人共做35个机器零件.求小王、小李每小时各做多少个零件?设小王每小时做x个零件,根据题意可列方程.合作探究甲队单独做一项工程刚好如期完成,乙队单独完成这项工程要比预期多用3天.若甲、乙两队合作2天,余下的工程由乙队单独做也正好如期完成,则规定的工期是多少天?
分析:题目中的两个等量关系是:
解:设
练习:1.新农村,新气象,农作物播种全部实现机械化.已知一台甲型播种机4天播完一块地的一半,后来又加入一台乙型播种,两台合播,1天播完这块地的另一半.求乙型播种单独播完这块地需要几天?设乙型播种单独播完这块地需要x天,根据题意可列方程.
2.某市为缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,须将原定的工作效率提高12%,问原计划完成这项工程用多少个月?
达标检测:
1.为改善居住环境,柳村拟在村后荒山上种植720棵树,由于共青团员的支持,实际每日比原计划多种20棵,结果提前4天完成任务,原计算每天种植多少棵? 解:设原计划每天种植x棵,根据题意得方程________.
2.在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.
5.初中数学分式方程应用综合练习题 篇五
3、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。求A、B每小时各做多少个零件。
4、陈明同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元,后因人数增加到原定人数的2倍,享受优惠,一共只需480元,参加活动的每个同学平均分摊的费用比原计划少4元,求原定的人数是多少?
5、甲、乙两个工程队共同完成一项工程,乙队先单独做1天, 再由两队合作2天就完成全部工程,已知甲队与乙队完成此工作时间比是2:3,求甲、乙两队单独完成此项工程各需多少天?
6、市政工程公司修建6000米长的河岸,修了30天后,从有关部门获知汛期将提前,公司决定增派施工人员以加快速度,工效比原来提高了20%,工程恰好比原计划提前5天完成。求该公司完成这项工程实际的天数。
8、已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?
9、A,B两地相距135千米,有大,小两辆汽车同时从A地开往B地,大汽车比小汽车晚到4小时30分钟.已知大、小汽车速度的比为2:5,求两辆汽车的速度.12、A、B两地距80千米,一公共汽车从A到B,2小时后又从A同方向开出一辆小汽车,小汽车车速是公共汽车的3倍,结果小汽车比公共汽车早40分钟到达B地,求两车速度。
13、某市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,需要将原定的工作效率提高12%。问原计划这项工程用多少个月。
14、.某空调厂的装配车间,原计划用若干天组装150台空调,厂家为了使空调提前上市,决定每天多组装3台,这样提前3天超额完成了任务,总共比原计划多组装6台,问原计划每天组装多少台?
16、某人在公路上匀速行走,环路公共汽车每隔4分钟就有一辆与之迎面相遇;每隔6分钟就有一辆从后越过此人;汽车站每隔几分钟双向各发一辆车?
17、甲乙两人分别从A、B两地同时出发,相向而行。甲走8米后两人第一次相遇,然后甲继续向前到B立即返回,乙继续向前走到A立即返回,两人在距离B地6米处第二次相遇,求A、B两地的距离。
18、重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。
20、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。已知B的速度是A的速度的3倍,求两车的速度。
21、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半。乙型拖拉机单独耕这块地需要几天?
22、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。求A、B每小时各做多少个零件。
23、甲有25元,这些钱是甲、乙两人总数的20%。乙有多少钱?
24、某甲有钱400元,某乙有钱150元,若乙将一部分钱给甲,此时乙的钱是甲的钱的10%,问乙应把多少钱给甲?
25、我部队到某桥头狙击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。
26、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。已知水流的速度是3千米/时,求轮船在静水中的速度。
27、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。求先遣队和大队的速度各是多少?
28、某人现在平均每天比原计划多加工33个零件,已知现在加工3300个零件所需的时间和原计划加工2310个零件的时间相同,问现在平均每天加工多少个零件。
29、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
32、某项紧急工程,由于乙没有到达,只好由甲先开工,6小时后完成一半,乙到来后俩人同时进行,1小时完成了后一半,如果设乙单独x小时可以完成后一半任务,那么x应满足的方程是什么?
33、走完全长3000米的道路,如果速度增加25%,可提前30分到达,那么速度应达到多少?
34、对甲乙两班学生进行体育达标检查,结果甲班有48人合格,乙班有45人合格,甲班的合格率比乙班高5%,求甲班的合格率?
35、某种商品价格,每千克上涨1/3,上回用了15元,而这次则是30元,已知这次比上回多买5千克,求这次的价格。
36、小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书,科普书的价格比文学书的价格高出一半,因此他们买的文学书比科普书多一本,这种科普和文学书的价格各是多少?
37、甲种原料和乙种原料的单价比是2:3,将价值2000元的甲种原料有价值1000元的乙混合后,单价为9元,求甲的单价。
38、某商品每件售价15元,可获利25%,求这种商品的成本价。
39、某商店甲种糖果的单价为每千克20元,乙种糖果的单价为每千克16元,为了促销,现将10千克的乙种糖果和一包甲种糖果混合后销售,如果将混合后的糖果单价定为每千克17.5元,那么混合销售与分开销售的销售额相同,这包甲糖果有多少千克?
40、两地相距360千米,回来时车速比去时提高了50%,因而回来比去时途中时间缩短了2小时,求去时的速度
41、某车间加工1200个零件,采用新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10小时,采用新工艺前后每时分别加工多少个零件?
42.某水泵厂在一定天数内生产4000台水泵,工人为支援四化建设,每天比原计划增产25%,可提前10天完成任务,问原计划日产多少台?
43.现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务。求原来每天装配的机器数.44.某车间需加工1500个螺丝,改进操作方法后工作效率是原计划的21倍,所以加工完比原计划少用9小时,求原计划和改进操2作方法后每小时各加工多少个螺丝?
45.打字员甲的工作效率比乙高25%,甲打2000字所用时间比乙打1800字的时间少5分钟,求甲乙二人每分钟各打多少字?
46.某人骑自行车比步行每小时多走8千米,已知他步行12千米所用时间和骑自行车走36千米所用时间相等,求这个人步行每小时走多少千米?
47.某校少先队员到离市区15千米的地方去参加活动,先遣队与大队同时出发,但行进的速度是大队的1.2倍,以便提前半小时到达目的地做准备工作,求先遣队和大队的速度各是多少.48.供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度.49.轮船顺流航行66千米所需时间和逆流航行48千米所需时间相等,已知水流速度每小时3千米,求轮船在静水中的速度.51.一个两位数,个位上的数比十位上的数大4,用个位上的数去除这个两位数商是3,求这个两位数.52.大小两部抽水机给一块地浇水,两部合浇2小时后,由小抽水机继续工作1小时完成.已知小抽水机独浇这块地所需时间等于大抽水机独浇这块地所需时间的1
6.分式方程的教学方案 篇六
1.经历在实际问题中运用分式方程的过程,了解分式方程的意义,体会分式方程的模型思想.
2.会解可化为一元一次方程的分式方程.
3.了解分式方程增根产生的原因,会检验分式方程的根.
4.通过学习分式方程的解法,理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,体会数学中的转化思想.
二、重、难点
重点:
(1)可化为一元一次方程的分式方程的解法.
(2)分式方程转化为整式方程的方法及其中的转化思想.
难点:增根产生的原因
三、学习过程
(一)复习并引入新课
1、什么叫方程?什么叫方程的解?
2、阅读课本P76页“交流与发现”,完成课本上的.填空。并思考所列方程有怎样的特点?
(二)探究新知
1、总结分式方程的定义:中含有求知数的方程,叫做分式方程.
巩固练习:判断下列方程中,哪些是分式方程.为什么?
(1)2x+x-15=10(2)x-1x=2
(3)12x+1-3=0(4)2x3+x-12=0
2、阅读课本P77—78例1、例2并思考:
(1)与解一元一次方程有什么异同点?解分式方程必需要.
(2)总结解分式方程的步骤:
巩固练习:解下列分式方程:
(1)(2)
3、自学课本P78—79页例3、例4,进一步熟练解分式方程的步骤.
巩固练习:(1)21-x+1=x1+x
(2)61-x2=31-x
四、当堂小结:
本节课你的收获是:
不足有:
五、当堂测试:
解下列方程
(1)(2)
7.关于分式方程解决实际问题的思考 篇七
要缓解这一矛盾, 首先要学生学会进行数学阅读。其实, 自从我们开始学习数学, 就从来没有离开过数学阅读, 不仅离不开, 而且势必在先, 它是学习数学的敲门砖, 是数学素养和智力腾飞的翅膀。我在实践中发现, 很多学生把数学当作语文、英语一样来阅读, 那是因为他们不了解数学阅读的特殊性, 结果书读百遍, 其意却没有自现。其实, 数学阅读有它较为特殊的方法和技巧。教师要教学生如何阅读数学中的实际问题, 就是教数学阅读的思想和方法。
通常数学中的应用问题都是从实际出发, 为给学生创造一个实际情境, 有很多描述性的语言, 而这些语句在做题时都是些无关紧要的话。因此, 教师应该带领学生一起阅读, 对哪些为了创设情境的语句进行删减, 或将繁琐冗长的描述性语句简练, 使学生会用通俗的语言把应用题的大致内容描述出来。通过这样的方法描述出的题目, 学生便会很容易找到题目中量的关系。
例:南水北调东线工程已经开工, 某施工单位准备对一段长2240米的河堤进行加固。由于采用新的加固模式, 现在计划每天加固的长度比原计划增加了20米, 因而完成河堤加固工程所需天数比原计划缩短2天, 则现在每天加固河堤多少米?
读题, 可发现一条长2240米的河堤需加固, 有原计划和实际两种方案, 现实际每天比原计划多了20米, 时间缩短2天。因此, 将描述性语句去掉后, 将此题改为较好理解的形式为:“一段长2240米的运河河堤, 现在每天加固的长度比原计划增加20米, 所需天数比原计划短2天, 求现在每天加固的长度。”为方便学生做题, 可让学生用铅笔将题目中的描述性语句划去, 明确所求, 即实际工作效率。
其次, 初步通读简化, 把握整体脉络后, 鼓励学生有针对性地阅读, 找出题目中提到的“量”, 以及各个量之间的关系。
题目简化完后, 找出题目中有几个量。一般情况下, 分式方程的实际应用都是三个量, 将这三个量的关系式写在题目旁边。同样以上题为例, 此题中的三个量是:工作总量s, 工作效率v, 工作时间t。这三者之间的关系式:工作总量=工作效率*工作时间, 即s=vt。通过这三个量之间关系的转化可以得到:工作效率=工作总量/工作时间, 工作时间=工作总量/工作效率。其中工作总量为2240米的河堤, 这个在此题中不管是原计划还是实际都是不变的量, 即已知。而原计划与实际的工作效率v和工作时间t都是未知的, 但是都有一定的关系。由“现在每天加固的长度比原计划增加20米”可知:v (现) =v (原) +20。又由“所需天数比原计划短2天”可知:t (现) =t (原) -2, 由于效率高了, 同样的工作总量, 时间就会缩短, 这是符合实际情况的。
最后, 根据三个量之间的关系和题意列出方程。
思考方式一:一个已知量, 两个未知量:其中一个未知量设未知数, 则根据题目中给的另一个未知量的关系列方程。
情况一:设工作效率, 根据实际工作时间与原计划工作时间的关系列方程。
(1) 若设原计划的工作效率为x米/天。根据实际与原计划的工作时间的关系列方程, 即t (现) =t (原) -2, 则有x2+22400=x2240-2。需要注意的是: (x+20) 才是我们所要求的。
(2) 若设现实际的工作效率为x米/天。根据实际和原计划的工作时间的关系列方程, 即t (现) =t (原) -2, 则有x2-22400+2=x2240。这里求出的x就是所求。
情况二:设工作时间, 由实际工作效率与原计划工作效率的关系列方程。
设原计划需要x天。根据实际与原计划的工作效率的关系列方程, 由v (现) =v (原) +20, 则有22x40+20=x-22240。这里求出x之后, 需把2240/ (x-2) 才是所求的解。
设现实际需要x天。根据实际与原计划的工作效率的关系列方程, 由v (现) =v (原) +20, 则有22x40=x+22240+20。这里求出x之后, 需把2240/x才是所求的解。
以上两种情况是找同一个量在两种情况下的关系, 即实际工作效率=原计划工作效率+20;实际工作时间=原计划工作时间-2, 以及变形列出方程的的方法比较容易想到。
思考方式二:可以用两个公式表示:原计划工作总量=原计划工作效率*原计划工作时间;实际工作总量=实际工作效率*实际工作时间。下面, 我们也用表格的形式观察分析。
情况一:设原计划工作效率为x米/天时, 实际工作效率为 (x+20) 米/天, 原计划工作时间=原计划工作总量/原计划工作效率。即22x40, 则实际工作时间=原计划工作时间-2,
即22x40=-2。
再根据实际工作总量=实际工作效率*实际工作时间, 可以得到: (x+20) × (x2240-2) =2240, 求出x的值, 带入22x40-2求所要求的值。
情况二:设原计划的时间为x天, 根据实际工作总量=实际工作效率×实际工作时间, 可以得到: (x-20) × (x2240+20) =2240, 求出x的值, 代入22x40-2求所要求的值。
这样的方法得到一个方程, 通过化简后得到一个一元二次方程, 现阶段我们无法求解, 我们只是学习它的思考方式。
总之, 分式方程的实际应用一般有三个量, 两个未知量中一个设未知数, 我们可以找同一个量在两种情况下的关系 (例v现=v原+20) 列方程, 如思考方式一的方法。我们也可以找一种情况下三个量的关系 (例实际工作总量=实际工作效率*实际工作时间) 来列方程, 如思考方式二。当然, 对于这道题来说, 情况一中的 (2) 比较简单一点, 其余的三种方法比较繁琐, 不能直接求出答案。需要注意的是:大部分分式方程的题都有这两种分析方法。因此, 当引导学生发现这种规律后, 练习每道题都让学生试着用这两种思路 (变形类除外) 去解。
8.分式方程的根与增根 篇八
分式方程的根与增根
能够使分式方程成立的未知数的值叫分式方程的根;增根是在分式方程化为整式方程的过程中,若整式方程的根使最简公分母为0(根使整式方程成立,而在分式方程中分母为0),那么这个根叫做原分式方程的增根。
例题1:解方程 ①
解:两边同乘以(x+3)(x-3),得
(x+3)(x-3)-18=3(x-3) ②
解这个方程得:x1=-3,x2=6
检验:当x=-3时,(x+3)(x-3)=0,所以x=-3不是原方程的解;
当x=6时,(x+3)(x-3)≠0,左边=,右边=,左边=右边。
所以:x=6是原方程的解。
说明:显然,方程①中未知数的取值范围是x≠3且x≠-3,而在去分母化为方程②后,此时未知数x的取值范围扩大为全体实数,所以求得的x值恰好使最简公分母为0,x的值就是增根。本题中方程②的解x=-3,恰好使公分母为0,所以x=-3是方程的增根,x=6是原方程的解。
增根是如何产生的
从例题1可以看出x=-3虽然是整式方程的根,但却使得最简公分母为0,所以不是分式方程的根,而是原分式方程的增根。也就是说,所得的整式方程与原方程已经不是同解方程了。那么,增根就是在去分母的过程中产生的。其实,去分母的依据是等式基本性质,即在等式的两边同时乘以一个不为0的整式,等式仍然成立,而在例题中两边同乘的是一个含有未知数x的整式,也就不能保证它的值一定不为0,我们去分母的时候就已经默许了条件(x+3)(x-3)≠0,才得到整式方程。即所得的整式方程与原方程已经不是同解方程,这样便产生了增根。
例题2:使关于x的方程产生增根的a的值是多少呢?
要正确解答此题就要理解增根是如何产生的,增根是去分母后的整式方程的根,是使原分式方程分母为零的未知数的值。
解:去分母并整理,得:
(a2-2)x-4=0
因为原方程的增根为x=2,
把x=2代入(a2-2)x-4=0,
得a2=4
所以a=±2
说明:做此类题首先将分式方程转化为整式方程,然后找出使公分母为零的未知数的值即为增根,最好将增根代入转化得到的整式方程中,求出原方程中所含字母的值。其实也不仅是分式方程可以产生增根,类似的,可想到若在整式方程(x+3)=0两边同时乘以(x-4),得到(x+3)(x-4)=0也同样会产生增根。由此可知,增根并不是分式方程特有的。
解分式方程如何避免增根
以例题1为例,可将原方式方程通分整理如下:
对于上式中,当(x+3)=0时,分式的分母等于0,此时,分式无意义,所以(x+3)≠0;那么可以继续化简为,即(x-6)=0,得x=6。也就是说,我们可以先把方程的一切非零项移到左边,通过恒等变形将方程的左边化成一个分式,右边是零的形式。然后,再找出分子分母的公因式并约去,就可以得到一个新方程并且与原方程是同解方程。解新方程得到的根就是原方程的根,避免了增根的产生。
不容忽视的增根
分式方程的增根问题与一元二次方程根的几种情况相结合会使问题更加复杂化,也使得这一类问题的答案对学生们而言更加的扑朔迷离。下面通过几个例题解析一下与增根有关的此类问题。
例题3:当k为何值时,方程只有一个实数根,并求出此实数根。
解:原方程可化为:x2+2x-k=0
(1)要原方程只有一个实数根,只要方程x2+2x-k=0有两个相等的实数根,且不为原方程的增根,所以由Δ=4+4k=0,得k=-1。把k=-1代入x2+2x-k=0,解之得x1=x2=-1
(2)要原方程只有一个实数根,只要方程x2+2x-k=0有两个不相等的实数根且其中有一个是原方程的增根,
所以由Δ=4+4k>0,得k>-1。
又原方程的增根为x=0或x=1,把x=0或x=1分别代入x2+2x-k=0,得k=0,或k=3。把k=0代人x2+2x-k=0,解之得x1=0(增根),x2=-2;把k=3代人x2+2x-k=0,解之得x1=1(增根),x2=-3。
综上所述,原方程的根为:
(a)当k=-1时,原方程只有一个实数根x=-1;(b)当k=0时,原方程只有一个实数根x=-2;(c)当k=3时,原方程只有一个实数根x=-3。
在分式方程教学中,教师要深入钻研教材,全面完整地分析分式方程的增根是如何产生的,并引导学生正确理解、完整掌握、准确解答分式方程的增根问题,从而真正提高学生的解题能力,提高教学效果。
【分式方程的应用】推荐阅读:
分式方程解决实际问题06-18
2017学年八年级数学上册15.3分式方程第2课时教案06-14
分式应用题奥数题07-17
列方程解应用题的一般步骤是什么08-22
一元一次方程及应用10-29
小学数学方程及其应用题教案11-02
《分式的概念》说课稿07-11
分式的基本性质教案10-22
《分式的乘除》的说课稿10-10