数学《等式的性质》教学反思

2024-11-18

数学《等式的性质》教学反思(精选8篇)

1.数学《等式的性质》教学反思 篇一

等式性质(1)

本节为全章起始节,是后继学习解一元一次方程的基础.针对教材及学生认知的特点,设计时,我有如下思考:

1.本节课从提出间题,引起学生的认知冲突引出学习的必要性.在每个环节的安排中,突出了问题的设计,教师通过一个个的问题,把学生的思维激发起来,从而使学生主动、有效地参与到学习中来.

2.重视学生多元智能的开发.教师对教科书上的两幅图采取了两种不同的处理方法.既有直观的实验演示,又有学生的图形观察;既要求学生从实验中归纳结论,又要求学生理解图形用实验验证.对发现的结论用自己的语言、文字语言、字母表达式表示出来.让学生充分地进行实验、观察、归纳、表达、应用.

3.突出对等式性质的理解和应用.实验演示、观察图形、语言叙述、字母表示、初步应用等都是为了使学生能理解性质,在解方程的过程中,要求学生说明每一步变形的依据,解题后及时地进行小练所有这些都围绕本节课的重点,也为后续的学习打下基础.

4.教学效果:

这堂课老师教得轻松,学生学得愉快,每个学生都参与到活动中去,投入到学习中来,使学习的过程充满快乐和成功的体验,促使学生自主学习,勤于思考和勇于探究,形成良好的学习品质.

由于这堂课活动大,热热闹闹中,胆大、性格开朗的学生特别活跃,也容易引起老师的注意,而对那些胆小性格较内向的学生就注意不够.个别理解能力和接受能力慢一些的学生,给予他们的帮助还不到位,这些学生课后作业完成不够好.

2.数学《等式的性质》教学反思 篇二

苏教版《义务教育课程标准实验教科书·数学》五年级下册第3~4页例3、例4, “试一试”、“练一练”, 练习一第4~6题。

教材简析:

本课内容包括两部分, 一部分是等式的性质 (一) , 即等式两边同时加上或者减去同一个数, 所得的结果仍然是等式;另一部分是利用等式的这一性质解一步计算的方程。这些内容是在学生认识了等式和方程的基础上进行教学的, 它是今后学习解多步方程的基础。在过去的小学数学教材里, 学生是运用四则运算各部分之间的关系解方程, 这样的思路只适宜解比较简单的方程, 而且和中学教材不一致。《数学课程标准》从学生的长远发展和中小学数学教学的衔接出发, 要求小学阶段的学生能“理解等式的性质, 会利用等式的性质解简单的方程”。关于等式性质的内容, 教材分两段教学:本课只学习第一段, 即等式两边同时加上或者减去同一个数, 所得的结果仍然是等式。教材中, 等式的这一性质是通过四幅层层递进的天平图引导学生发现的。关于解方程, 教材先用天平呈现了数量关系, 再让学生列方程并学习解方程, 同时学会正确的书写格式和检验方法。由于不再利用四则运算各部分之间的关系解方程, 因此, 暂时只解未知数不是减数的一步计算的方程。

教学目标:

1.让学生在具体情境中初步理解“等式的两边同时加上或减去同一个数, 所得的结果仍然是等式”, 会用等式的性质解简单的方程。

2.让学生在观察、分析、抽象、概括和交流的过程中, 进一步积累数学活动的经验, 感受解方程的思想方法, 发展初步的抽象思维能力。

3.让学生在学习和探索的过程中, 进一步培养主动与他人合作交流、自觉检验等习惯, 获得一些成功的体验, 进一步树立学好数学的信心。

教学重点:

会用等式性质 (一) 解简单的方程, 书写规范, 自觉检验。

教学难点:

理解等式性质 (一) , 积累数学活动经验, 发展数学能力。

教学过程:

一、复习引入

1. 提问:什么是方程?你觉得概念中哪些词语比较重要?

2. 判断下列各式, 哪些是等式, 哪些是方程?

3. 谈话:上节课我们已经认识了等式和方程, 今天我们继续学习与等式和方程有关的知识。

设计意图:通过对等式和方程意义的简单复习, 为本课学习利用等式的性质解方程做好准备。

二、探索新知

1. 教学例3。

(1) 课件出示课本例3第一行的左图, 提问:观察天平图, 你能用一个等式表示图中的意思吗? (板书:20=20)

如果在左边加上一个10克的砝码, 天平会怎样?

要使天平恢复平衡, 可以怎么办? (在右边也加上一个10克的砝码) 出示右图。

提问:你能用一个等式表示天平现在的状况吗? (板书:20+10=20+10)

(2) 出示第二行图。

谈话:仔细观察这组图, 把结果填在书上。

指名说出填写成的等式。

(板书:X=50 X+20=50+20)

谈话:观察这两组图, 分析比较方程两边发生的变化和结果, 用一句话来说说你的理解。

引导得出:等式两边同时加上同一个数, 结果仍然是等式。

设计意图:通过图一、图二的教学, 让学生通过观察天平的变化感受等式的两边都加上同一个数, 结果仍然是等式。由不含未知数的等式, 过渡到含有未知数X的等式易被学生接受。在观察两组图分析等式变化的基础上及时让学生初步概括自己的发现, 为后面概括等式的性质做了准备。

(3) 同时出示第三行和第四行图。

谈话:仔细观察这两组图, 完成书上的填空, 再比较你所写出的等式, 用一句话说说你的理解, 和同桌交流你的发现。指名说出自己填写成的等式。

(板书:50+a=50+a 50+a-a=50+a-a)

提问:砝码上的a表示什么意思?

(板书:X+20=70 X+20-20=70-20)

提问:你又有什么发现?

引导得出:等式两边同时减去同一个数, 结果仍然是等式。

设计意图:图三、图四的教学是在学生已有知识的基础上通过独立思考、小组讨论交流进行的。在前两面组图教学的基础上, 这样安排教学活动是可行的, 能使学生在学习中发现, 在发现中学习, 同时培养合作意识。

(4) 教师指着四组等式, 提问:能不能用一句话来概括你们刚才的发现?

(板书:等式两边同时加上或减去同一个数, 所得的结果仍然是等式。)

谈话:这就是等式的性质。 (板书课题) 请你朗读等式的性质, 找出关键的字词, 说说你的理解。 (等式的两边必须同时进行同一种运算;加、减的数必须是同一个数。)

设计意图:等式的性质由学生自己归纳出来, 培养了学生的总结概括能力, 也让学生亲身体验到发现的快乐。

(5) 练习反馈:独立完成“练一练”第1题

再请学生说一说填写的依据, 为什么填“+25”和“-18”?加减号能写错吗?可以填其他数吗?

2. 教学例4。

(1) 出示例4挂图, 提问:你能根据图中的意思列出方程吗?

学生观察, 列出方程 (板书:X+10=50) 。

(2) 提问:怎样求出方程中未知数X的值呢?

让学生独立思考, 不懂的问题和同组同学交流, 能解决的就小组内交流。同时指名板演。

全班交流:例4中还有什么不懂的地方提出来, 能由学生解决的就由学生解决, 学生解决不了的教师解决。

在交流方法时, 学生可能有两种不同的想法:一是从天平两端可以同时去掉10克的砝码, 想到在方程两边都减10;二是直接根据等式性质, 在方程的两边都减去10, 结果仍然是等式。

根据学生反馈, 教师肯定两种方法。

谈话:今天我们利用等式的性质求X的值, 在求解的过程中我们应该注意些什么呢?结合黑板上的板演强调:

一要写“解”字。

二要根据等式的性质, 使方程的左边只剩下X。这道题需要把方程的两边都减去10。

三是每个等式占一行, 各行的等号要上下对齐。

四是检验, 只要把X的值代入原方程, 看看左右两边是不是相等。

(3) 小结:求方程中未知数X的值的过程, 叫做解方程。

设计意图:先让学生看图列出方程, 再提出“怎样求X的值”的问题, 这样让学生通过对图的观察, 独立思考, 然后交流各自的方法, 使学生得到求X值的启示:在天平的左右两边各去掉10克砝码就可以了。这样就很容易联系到等式的性质, 有利于理解用等式性质解方程的道理。对方程的书写格式和检验方法, 也作出了明确的要求和示范, 让学生一开始就掌握了正确的书写格式, 同时培养了良好的学习习惯。

(4) 完成“试一试”和“练一练”的第2题。

学生独立完成后4人小组交流互阅, 重点帮助有困难的学生, 针对学生出错的地方及时分析错误原因, 帮助他们弄懂。

三、巩固新知

练习一的第4、5、6题。

第4、6题做在书上, 第5题写在作业本上。

设计意图:让学生独立完成课堂上的作业, 是教师检查学生学习的一种手段, 同时也是检验学生对当堂学习情况的一个反馈。这个师生双边活动的过程有利于教师了解学生对知识的掌握情况和自己这节课的教学状况。

四、学习回顾

提问:通过这节课的学习, 你发现了什么?知道了什么?有哪些收获?

总评:

1. 在直观情境中, 按“形象感受→抽象概括”的方式教学等式的性质。用天平呈现的直观情境形象地表示等式两边发生的变化及结果, 有利于学生的直观感受。又在学生观察现象、分析等式变化的基础上及时地抽象、概括出等式的性质, 使学生进一步积累了数学活动的经验, 初步发展了抽象概括能力。

2. 循序渐进地教学等式的性质。在引导学生发现等式性质的过程中逐步推进:先从不是方程的等式过渡到方程, 再由加同一个数过渡到减同一个数。这样的设计符合学生的认知规律。

3. 在学习和探索过程中, 注意培养学生的独立思考能力, 在独立思考的基础上培养交流能力和合作意识。

4. 有层次地安排学生的学习活动。学习新知时, 先让学生独立思考, 然后同桌交流, 再小组合作;在练习中, 先是同桌互相检查, 最后是独立体验。

3.不等式基本性质的应用 篇三

1. 不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变;

2. 不等式的两边都乘以(或除以)同一个正数,不等号方向不变;

3. 不等式的两边都乘以(或除以)同一个负数,不等号方向改变.

这三条基本性质是进行不等式变形的主要依据,现列举几例分析如下,供同学们复习时参考.

例1判断正误:

(1)若a>b,则ac>bc;

(2)若a>b,则ac2>bc2;

(3)若ac>bc,则a>b;

(4)若ac2>bc2,则a>b.

[分析:](1)中是在a>b两边同乘以c,而c是什么数并不确定,若c>0,由不等式的基本性质2知,ac>bc;若c<0,由不等式的基本性质3知,ac

(2)中,当c=0时,ac2=bc2.故(2)是错误的.

对于(3),在不等式两边同除以c,因为不知道c是正数、负数或0,与(1)类似,可推出结论是错误的.

(4)中是在ac2>bc2两边同除以c2,而c2>0(为什么c≠0 ?) ,故(4)是正确的.

解: (1)错误;(2)错误;(3)错误;(4)正确.

[点评:]解这类题的关键是对照不等式的三条基本性质,分析从条件到结论到底应该运用哪一条性质,运用不等式性质的条件是否具备.

例2有理数a、b、c在数轴上对应点的位置如图1所示,下列式子中正确的是().

A. b+c>0B. a+b

C. ac>bc D. ab>ac

[分析:]由数轴上点的位置可以确定a、b、c之间的大小关系及它们各自的正负性,再根据不等式的基本性质对选项逐一分析,即可得出答案.

解: 对于A,由图知c<0c,两边同加上a后,根据不等式的基本性质1,有a+b>a+c,故B不正确;对于C,由图知a>b>0,c<0,根据不等式的基本性质3,有acc,a>0,根据不等式的基本性质2,有ab>ac,故应选D.

[点评:]解答此题的关键是既要能从数轴上看出a、b、c的大小关系及它们各自的正负性,还要考虑运用不等式的三条基本性质.

例3已知a<0,-1

[分析:]由a<0,b<0,可得ab>0,ab2<0.由-1a.

解: 因为a<0,-10.

又-1a.

所以a

[点评:]灵活运用不等式的基本性质是解决这类题的关键.要特别注意,运用基本性质3时,不等号的方向要改变!

4.等式的性质教学反思 篇四

一、让学生通过动手、操作、观察中去发现等式的性质

老师先出示天平,并在天平两边各放一个20克的砝码,“你能用式子表示出两边的关系?”生写出20=20;教师在天平的一边增加一个10克砝码,“这时的关系怎么表示?”生写出20+10>20,“这时天平的两边不相等,怎样才能让天平两边相等?”生交流得出在天平的另一边增加同样重量的砝码;然后依次出现后续的三幅天平图,学生观察,教师板书,并组织学生小组讨论交流:“你有什么发现吗?”通过全班交流,在交流中教师应逐步提示,因为这是一个全新的知识,得出等式的性质。最后,让学生自己写几个等式看一看。通过具体的操作为学生探究问题,寻找结论提供了真实的情境,富有启发性、引领性,让学生经历了解决问题的过程,并在问题的解决中发现并掌握了知识。

二、让学生运用等式的性质解方程

引入了等式的性质,其目的就是让学生应用这一性质去解方程,第一次学习解方程,学生心理上难免会有些准备不足,为了帮助学生应用等式的性质解方程,课前布置了学生预习,课中我先让学生尝试练习,但巡视中发现学生没有根本理解,我就利用天平所显示的数量关系,引导学生发现“在方程的两边都减去10,使方程的左边只剩下x”,并详细讲解解方程的书写格式,包括检验。通过这样有步骤的练习,帮助学生逐渐掌握解方程的方法。然后让学再次通过修正,试一试,巩固解方程的知识。本节课达到了预期的效果。

5.等式的基本性质教学反思 篇五

身为一名到岗不久的人民教师,我们的任务之一就是教学,通过教学反思可以很好地改正讲课缺点,教学反思应该怎么写呢?下面是小编为大家收集的等式的基本性质教学反思,仅供参考,欢迎大家阅读。

等式的基本性质教学反思1

《等式的基本性质》教学反思等式的基本性质是解方程的认知基础,也是解方程的重要理论依据,因此学习和理解等式的性质就显得尤为重要。起初,我们在设计这节课时,四条性质的教学力量分布得比较平均,等式两边同加、同减、和同乘的实验由教师演示,等式两边同除的实验再放手让学生独立完成。

在教学之后,我们发现这样的设计,重点不够突出,在经过了网络研讨和集体反思之后,最终形成了将等式两边同加的这条性质作为重点讲解内容,其它的三条性质在第一条性质之后,由学生通过观察、理解、操作等学习方法,共同探索得出结论,教师只是给予适时的点拨,总结。加法是学生学习计算的基础,因此在教学等式同加的性质上,我们设计了两个层次的实验。第一层次,在天平两边同时放上同样的物品,第二层次,在天平的两边同时放上等质量的不同物品,让学生观察现象,并总结归纳出结论。第一个层次的实验,学生通过教师的直观操作演示,很容易得出,只要天平两边加上同样的物品,天平就会保持平衡。然后,教师引导学生构建出天平与等式之间的联系,将天平上的实物,通过测量,抽象到等式的计算中,使学生初步形成:在等式的两边同时加上相等的数,等式不变。

实验过后,有些学生会形成思维的定势,只是认为在天平两边加同样的物品,天平才会平衡。为了打破学生的这种思想,我们设计了第二层次的实验,即在天平的两边同时放上等质量的不同物品。通过这一层次的实验,让学生清楚地意识到:天平是否保持平衡,不是取决于放的物品是相同的,而是真正取决于所放物品的质量是否相同。这样的教学设计,将学生的思维引入到了对事物的本质探究上,使学生明确对知识的探索不要仅停留在表面,而要进行更深入的思考。教师在引导学生进行实验的同时,也注意到将等式与实验进行结合,两个实验之后,学生对于等式的同加性质有了更深入的理解,能够较为准确地概括出等式的性质。

这一环节在实验的基础上让学生灵活的运用字母表示数的知识,在理性的思考,形象的演示的基础上,在推理后验证自己的想法,不仅学生的数学思维得到有效的训练,还使学生对等式的性质有了一定的认识。有了以上的实验基础,为学生更深入的研究等式的性质做了坚实的铺垫。在教学等式两边同减、同乘、同除的性质时,教师便可以逐渐放手,让学生经历观察、实验、猜测、计算、推理、验证的过程中,积极参与验证自己的猜想,在实验的同时获得了成功的喜悦,感受到思考的乐趣,对等式的性质有初步的了解,为后面学习解方程奠定了良好的基础。

等式的基本性质教学反思2

以前的教材中,在学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等求方程中的未知数。而现行的教材是借用天平游戏使学生理解等式的基本性质,在用等式的基本性质解方程。为初中学习移项、合并同类项等方法作准备。

教授这节课前,我先让学生自己预习,小组互说操作,完成设计好的导学。最后我再课件操作验证学生的结论,一步步引入等式的基本性质。

本节课,根据学生已有知识水平,从学生的生活实际出发,合理运用教材提供的素材,充分挖掘教材;课堂教学的过程应始终体现学生自主探究的教学理念,注意激活学生已有的数学经验,引导学生自己去思考;课上学生们紧跟我的思路,认真思考,积极的参加小组活动,学生表现很积极。

1、等式的性质体现了数学的对称美,教学中让学生在15分钟时间内充分利用天平的直观性,让学生观察、分析现实生活中的现象,并尝试用数学知识来描述这种现象,突出数学与日常生活的紧密联系,使学生获得关于等式性质的知识,并养成认真观察的学习态度。通过直观演示,帮助学生感悟怎样才能使天平的两端保持平衡,引导学生以等式的基本性质为解方程的基本方法,生动直观地呈现解方程的原理。这样设计既重视过程,又重视结论;既重视知识的教学,又重视能力的培养。在教学中采取先扶后放、动手实验操作的形式,也为学生提供了更多的参与学习的机会。培养了自主学习、动手操作等能力,体现了以学生为主导,教师为主体。

2、猜想入手,激发学习兴趣。猜想是学生感知事物作出初步的未经证实的判断,它是学生获取知识过程中的重要环节。因此,在教学中鼓励学生大胆猜想:在一个等式两边同时乘或除以同一个数,所得结果还会是等式吗?这时学生就会跃跃欲试,从而激发了学习的兴趣。学生一旦做出某种猜测,他就会把自己的思维与所学的知识连在一起,就会急切地想知道自己的猜想是否正确,于是就会主动参与,关心知识的进展,从而达到事倍功半的教学效果。

3、学生展示环节非常好,不仅仅展示了实验过程、现象,总结了规律,在展示过程中,能积极补充、质疑,个别同学质疑的问题很有价值。

等式的基本性质教学反思3

《等式的基本性质》是五年级第二学期认识方程的第二、三课时。等式的基本性质是解方程的认知基础,也是解方程的重要理论依据,因此学习和理解等式的性质就显得尤为重要。这学期我们学习等式的两个性质,因此把等式两边同加的这条性质作为重点讲解内容,另一条性质在第一条性质之后,由学生通过观察、理解、操作等学习方法,共同探索得出结论,教师只是给予适时的点拨,总结。加法是学生学习计算的基础,因此在教学等式的性质一时,通过课件演示,第一层次,在天平两边同时放上同样的物品,并用等式表示(50=50)。第二层次,问:怎样在天平的两边增加砝码,使天平仍然保持平衡?得出两个等式50+10=50+10;50+20=50+20;……50+a=50+a问:你发现了什么?学生清楚地意识到:天平是否保持平衡,不是取决于放的物品是相同的,而是真正取决于所放物品的质量是否相同。也就是等式两边同时加上同一个数,所得的结果仍然是等式。这样的设计,将学生的思维引入到了对事物的本质探究上,使学生明确对知识的探索不要仅停留在表面,而要进行更深入的思考。教师在引导学生进行实验的同时,也注意到将等式与课件演示进行结合学生对于等式的同加性质有了更深入的理解,能够较为准确地概括出等式的性质。有了这样的学习基础,为学生更深入的研究等式的性质做了坚实的铺垫。在教学等式两边同减、同乘、同除的性质时,教师便逐渐放手,让学生经历观察、实验、猜测、计算、推理、验证的过程中,积极参与验证自己的猜想,在实验的同时获得了成功的喜悦,感受到思考的乐趣,对等式的性质有初步的了解,为后面学习解方程奠定了良好的基础。

等式的基本性质教学反思4

本节课我采用从生活中假设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比、猜想、验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间、生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而示得,口欲言而示能”的境界,使他们有兴趣进入数学课堂,为学习新知识做好准备。在这一环节上,留给学生思考的时间有点少。

下来出示的问题1从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质。这一环节上展现给学生一个实物,使学生获得直观感受。

问题2、3的设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是选好,在引导学生探究的过程中时间控制得不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。

过问题4让学生比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握、发展学生的辩证思维。

在运用符号评议的过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予。这样既调动了学生的学习兴趣,也培养了学生的符号评议表达能力。

练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答音量的时候有点耽误时间。

让学生通过总结反思,一是进一步学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育丰功,用自信蕴育自信,学生以更大的热情投入致以捕捞学习中去。

本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛活跃。其中不存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步完善自己的课堂教学。

等式的基本性质教学反思5

数学知识体系是一个前后连贯性很强的知识系统,在空间与图形领域,中小学数学主要体现为由直观几何、实验几何向论证几何逐渐过渡。初中数学教师在教学中要注意与小学教学相衔接,适当复习小学内容,在小学的基础上提高。下面从中小学衔接的角度,对“平行四边形的性质”(新人教版)这节课做了一些反思。

一、反思备课

备教材:

备课时,我首先查阅了本届学生小学时学过的教材。发现,小学教材中“平行四边形”的定义用粗体作了明确界定,“对边相等”的特征学生是用度量或折叠的方法得到的。平行四边形的面积是通过割补转化为长方形进行重点学习的。所以学生应该对平行四边形的概念和特征已经有所认识并会求其面积。

“平行四边形”是全章重点内容之一,它是在学生已掌握了平行线的性质、全等三角形和多边形的有关知识的基础上研究的。平行四边形是平面几何的又一典型图形,它既是以前知识的综合应用也是下一步研究各种特殊平行四边形的基础,具有承上启下的作用。矩形、菱形、正方形的性质和判定都是在平行四边形的基础上扩充的,它们的探索方法也都与平行四边形的性质和判定方法一脉相承。梯形的性质、三角形中位线定理等的推证,也都是以平行四边形的有关定理为依据的。而“平行四边形的性质”又是本章的第一节,这一节的学习对学平行四边形的判定和其它特殊四边形起着关键的作用。教材中平行四边形的“对边相等”、“对角相等”、“对角线互相平分”三个性质是分两部分说明的,因这节课是采用探索式教学法,预计学生在同一节课中就能够得到这三个性质,所以把三个性质放在一节课中进行处理。

备学生:

为了清楚的了解学生的认知情况,我深入学生中间,调查了学生对平行四边形的掌握程度。发现,将近90%的学生能够说出平行四边形的定义;50%多的学生了解“平行四边形对边平行且相等”这一特征;而对“平行四边形对角相等”和“对角线互相平分”的性质,只有很少一部分学生因超前学习才了解。鉴于学生的认知结构,我把探索平行四边形的性质放在了角和对角线方面。

备教法:

《数学课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。我看了一位老师针对平行四边形上的一节公开课。这位老师可能是为了调动学生的主体性,让学生对“平行四边形”下一个定义。结果,学生把平行四边形的定义和所有判定方法全部说了出来,并说出这样定义的原因。听起来真是婆说婆有理,公说公有理,难以分辨用哪一个做定义更合适。最后老师说习惯上用“两组对边分别平行”来定义。看了这节课后再结合小学教材和学生的认知情况,我认为,小学教材已对“平行四边形”作了明确叙述,在“平行四边形”是如何定义的这一方面再做文章只能又陷入老师给学生解释为什么不能用平行四边形判定(学生并不知道是判定)来定义,而定义本身常常又是一个规定性的东西。因此,我在这个地方采取让学生事先准备好两张完全相同的三角形纸片,然后在课堂上让学生拼出平行四边形并把拼的图形展示在黑板上,在调动学生积极性的同时,既能发现学生对平行四边形的理解情况,也为下面平行四边形性质的证明做好铺垫。

在探索平行四边形性质上,采取自主探索、合作交流的方式,并把探索到的结论和证明过程填写在事先发给的探究报告里,使学生的思维和落实密切联系在一起。让学生体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,感受公理化思想。

恰当的利用多媒体课件。为了让学生对平行四边形的三条性质有更明确的认识,我从旋转的角度准备了形象生动的性质探索课件。

整节课采取探索式证明方法,即采取观察、猜想、直观验证、推理证明、得出性质的方法。向学生渗透化复杂为简单,化新知为旧知的“转化”的`数学思想方法。

二、反思上课

进入初中以后,随着学生逻辑思维能力和抽象思维能力的加强,不能再仅局限于一些结论的获得,而要注重结论的推导过程,揭示知识的来龙去脉,也就是不仅要知其然还要知其所以然。教材也要求学生要对发现到的结论进行推理论证。

对“平行边形的对边相等”这一性质在小学是通过观察、测量对边的长度进行比较得到的。能否证明这一结论呢?学生在学多边形知识时曾经采取把多边形分割成三角形来研究,所以课堂上当对这一结论进行证明时,学生很快想到把四边形分割成三角形利用全等的知识来解决。但学生在推理时符号语言说的还不太顺畅,推理也还缺乏规范性。所以在学生的叙述下教师进行规范的推理板书,给学生做出示范。

等式的基本性质教学反思6

等式的基本性质是学生在刚刚认识了等式与方程的基础上进行教学的,《等式的基本性质》教学反思。它是系统学习方程的开始,其核心思想是构建等量关系的数学模型。

本节课的学习是学生在实验的基础上,掌握等式的两个基本性质,引导学生通过比较,发现规律,并为今后运用等式的基本性质解方程打基础。

由于等式的基本性质是解方程的基础和依据,所以我在教学时给予特别重视,加法是学生学习计算的基础,因此在教学等式同加的性质上,我们设计了两个层次的实验。

第一层次,在天平两边同时放上同样的物品,第二层次,在天平的两边同时放上等质量的不同物品,让学生观察现象,并总结归纳出结论,教学反思《《等式的基本性质》教学反思》。第一个层次的实验,学生通过教师的直观操作演示,很容易得出,只要天平两边加上同样的物品,天平就会保持平衡。

然后,教师引导学生构建出天平与等式之间的联系,将天平上的实物,通过测量,抽象到等式的计算中,使学生初步形成:在等式的两边同时加上相等的数,等式不变。

实验过后,有些学生会形成思维的定势,只是认为在天平两边加同样的物品,天平才会平衡。为了打破学生的这种思想,我们设计了第二层次的实验,即在天平的两边同时放上等质量的不同物品。

通过这一层次的实验,让学生清楚地意识到:天平是否保持平衡,不是取决于放的物品是相同的,而是真正取决于所放物品的质量是否相同。

这样的教学设计,将学生的思维引入到了对事物的本质探究上,使学生明确对知识的探索不要仅停留在表面,而要进行更深入的思考。教师在引导学生进行实验的同时,也注意到将等式与实验进行结合,两个实验之后,学生对于等式的同加性质有了更深入的理解,能够较为准确地概括出等式的性质。

总之,数学教学要给学生留出大量的习题训练时间,给学生消化和熟悉巩固的机会是很有必要的,所以在以后的教学中,我会时时提醒自己精讲多练,尽量多给自主练习的时间和空间。

等式的基本性质教学反思7

教师的情绪也比较平淡,没有给学生创设轻松愉快自然的氛围,使得前半部分的课堂有点沉闷,敢于大胆发言的学生也比较少。由此可知:教师进入课堂就要立刻调动自己的情绪,使学生有轻松活泼的感觉,学生才会调动自己的情绪,将注意力集中到教师所传授的知识上,大胆地发表自己的想法。课堂也才会有活力。

从学生的反应来看,这种提出问题让学生先猜测的教学方法,因为平时训练的少,教师突然放手,学生不知所措,不知道如何去思考。学生还习惯于在老师的引导下去掌握新知,巩固新知,然后学会解题。即学生的创新能力的培养还不够,需要加强。

同时也提醒教师在设计问题时要从本班学生的实际情况出发,要有层次,有坡度,使学生的思考有方向,有目标,一步一个台阶,最终达到预期的效果。课堂上教师在发现学生出现愣神时,及时将问题简单清晰化是明智的。这个现象在含加法的方程中也出现过,如:75+x=150,有学生写:75+x-x=150—75,x=75。分析原因在于:教学中的例题,多数是X在运算符号的前面,然后根据等式的性质使左边只剩下X时,都是左边加几,等式两边就同时减几,学生形成思维定势,只看左边运算符号后面的数,说明学生对等式的性质的理解不透彻,解方程时是“照葫芦画瓢”,并没有真正掌握解方程的方法,学生灵活运用的能力薄弱。

等式的基本性质教学反思8

在教学活动中,我有以下活动觉得比较好的:

建立知识结构,进行新课的引入和知识的迁移.上课伊始,我书写了等式(方程)一章的部分知识结构,并且有由等式的有关概念到不等式的有关概念的类比线路图,从而引入课题,开始检查前置学习的情况.这样处理,学生对这个知识内容的整体把握就能够高屋建瓴,数学学习的能力意识就能够形成。

6.等式性质教学反思 篇六

商丹高新学校 张彦刚

《等式的性质》这部分内容是在学生已学用方程表示简单情境中的数量关系的基础上,通过天平这一直观教具,引导学生探索和发现等式性质,它是解方程的认知基础,因此学习和理解等式的性质就显得尤为重要。根据教材内容和学情,我将教学重点确定为:掌握等式的基本性质;教学难点为:理解并掌握等式的性质,能根据具体情境列出相应的方程。

一、成功之处

1.游戏热身,点燃热情。

课堂开始,我设计了一个请学生用身体模仿天平的热身游戏,伸开两臂,犹如人体天平,我用课件给出天平两边不同的重量或是相同的重量,让学生模仿不同的天平状态,学生玩得高兴,学得轻松,他们对天平只要两边重量相等才会平衡加深了认识。

2.先扶后放,研究性质。

在教学中,我将等式的第一个性质作为引导重点研究内容,让学生仔细观察第一个天平图,并说一说:通过图你知道了什么?学生比较轻松观察到:天平的左边放了一把茶壶,右边放了两个茶杯,天平保持平衡,从而发现一个茶壶的重量=2个茶杯的重量。接着通过课件动态展示在天平的两边同时各放上一个茶杯,引导学生思考:此时天平会发生什么变化呢?为什么?你是怎么想的?通过一系列不断追问,鼓励学生完整说出自己的思考过程。然后课件动态再演示这一过程,接着提出不同的问题:如果同时加上两个、三个、五个、六个同样的茶杯,天平会怎样呢?为什么?这样学生有理有据地表述自己的观点。同时引导学生构建出天平与等式之间的联系,将天平上的实物抽象到等式的计算中,从而一步步引导学生发现“等式的两边同时加上或减去同一个数,等式的两边相等”的性质。然后再放手让学生通过观察、理解、操作,共同探索得出等式的第二个性质:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。我尽可能地放手,给予适时地点拨,总结。在“为什么等式两边不能除以0?”这个问题时组织学生交流,使他们理解:0不能做除数。3.开放练习,激活思维。

为了激活学生思维,我将巩固练习设计为思维开放的题目,使学生积极主动思考。我设置了以下题目:

(1)如果2x-5=9,那么2x =9+()(2)如果5=10+x ,那么5x-()=10(3)如果3x =7,那么6x =()(4)如果5x =15,那么x =()

先让学生回忆等式的性质,再利用等式的性质填空。对于不同层次的学生,他们的思维广度和深度是不同的,做到了使不同的学生在数学上获得不同的发展。

二、改进之处

1.在等式性质的探究中,为了加强对比,我觉得应该再增加在天平的两边同时加、减、乘、除去不同质量的物品,让学生发现这时天平不平衡,通过这一层次的实验,从而让学生清楚地加深加上对“同一个数”的认识,进行更深入地思考。

2.对于等式的性质应不仅仅停留在说的这一环节,而应在实验的基础上让学生灵活地运用字母表示数的知识,将等式写出来加以表示,这样不仅有效地训练学生数学的思维,还使学生对等式的性质有了更深一层的认识,为以后的学习做好铺垫。

7.利用凸函数性质巧证积分不等式 篇七

1.预备知识

定义对x1, x2∈[a, b], λ∈ (0, 1) , 函数f (x) 都有

则称f (x) 为凸函数, 并且仅当x1=x2时等号成立.

若 (1) 式的不等号反向时, 则称为凹函数.

引理1设f (x) 在[a, b]上的二阶可导函数, 如果有f″ (x) ≥0, 那么f (x) 是[a, b]上的凸函数.

引理2 (泰勒公式) 设f (x) 在含有x0的某个区间 (a, b) 内具有直到 (n+1) 阶导数, 则对x∈ (a, b) , 都有

其中, , ξ是介于x0和x之间的某个值.

2.主要结果和应用

定理[a, b]上的二阶可导函数, 如果有f″ (x) ≥0, 那么

其中λk是正数, k=1, 2, 3, …, n, 且.

证明记, 那么由引理2 (泰勒公式) ,

可得.

其中ξk是在xk和x0之间的一个常数.由题设f″ (x) ≥0, 于是

证毕.

特别地, 可以得到以下推论.

推论设函数f (x) 在[a, b]上连续, 在 (a, b) 内二阶可导, 如果有f″ (x) ≥0, g (x) 是区间[c, d]上的可积函数, a≤g (x) ≤b, 那么有

例1设g (x) 是区间[0, 1]上的可积函数, 0≤g (x) ≤1, 求证:

证明设, 那么, 这里区间[a, b]=[c, d]=[0, 1], 于是利用前面的 (3) 式可以得到, 将代入表达式中, 即得 (4) 式.证毕.

例2设g″ (x) <0, 证明:

证明由g″ (x) <0, 知-g (x) 是一个凸函数.而xn是一个正值函数且满足0≤xn≤1, 于是由 (4) 式的结果可知

证毕.

通过以上例题可以看出, 利用凸函数的性质证明有关积分不等式, 可以使难度较大且证明过程复杂的问题转化成证明比较容易, 证明过程简单的问题, 关键是寻找合适的凸函数.

摘要:凸函数的应用领域非常广泛, 特别是在不等式的证明中, 运用它解题显得巧妙、简练.

关键词:凸函数,不等式,积分

参考文献

[1]M.A.克拉斯诺西尔斯基, R.B.鲁季斯基.凸函数和奥尔里奇空间[M].北京:科学出版社, 1962.

[2]同济大学应用数学系.高等数学:第三版 (上册) [M].北京:高等教育出版社, 2006.

8.数学《等式的性质》教学反思 篇八

1. 下列x的取值中,使不等式x-1>3成立的是()

A. x=8B. x=-8C. x=10D. x=-10

2. 对于任意实数a,下列不等式中总成立的是()

A. -2a<2aB. -2a<2(-a)C. -2+a<2+aD. -a<a

3. 若x为实数,则|x|+x的值()

A. 一定大于0B. 不可能小于0C. 可能小于0 D. 可能是全体实数

4. 若a>b>0,则不列不等式中不正确的是()

A. a-b>b-aB. >>0C. -a<-bD. >

5. 若x<y,则下列不等式中,一定成立的个数是()

①x+m<y+m;②x-m<y-m;③xm<ym;④<;⑤xm2<ym2;⑥x2<y2.

A. 1B. 2C. 3D. 4

6. 如果a<0,则()

A. 2007a<2008aB. -a<-aC. πa>3.141592aD. -a<-a

7. 若a<-1,则a、a2、三者的大小满足()

A. a2>a>B. >a>a2 C. a>a2> D. a2>>a

8. 已知实数a、b、c在数轴上对应的点如下图所示,则下列式子正确的是()

A. cb>abB. ac>abC. cb<abD. c+b>a+b

二、填空题(每题5分,共30分)

9. 用不等号连接:

(1)3×(-9)-4×(-9). (2)当-1<b<0时,b;bb2.

10. 小明的语文、英语两科的平均成绩为m分.若使语文、英语、数学三科的平均成绩超过n分,则数学成绩a(分)满足.

11. 若-3x+4<-2x-5,则x9.

12. 若ax>b,ac2<0,则x.

13. 用不等式表示:

(1)x的3倍与 y的的差是正数:.

(2)m的5倍比n的立方小:.

14. 若a>b,则ab<b2成立的条件是.

三、比较大小(每题5分,共15分)

15. x2-2x+3与-2x+3.

16. (x+3)(x-5)与(x+2)(x-4).

17. x2-4x+3与x2-6x+9.

四、计算题(18~19题每题9分,20题13分,共31分)

18. 某厂原计划在5月份生产汽车a辆.现需增产10%,而本年5月份又有7天假期,要想完成任务,请你写出每天汽车产量y(辆)应满足的关系式.

19. 若2≤a≤8, ≤b≤4a,c=a+b,请你确定c的范围.

20. 比较下列算式结果的大小(在横线上填“<”“>”或“=”):

42+322×4×3, (-2)2+12 2×(-2)×1,

()2+

2 2××, 22+22 2×2×2.

观察、归纳,写出能反映这种规律的一般结论,并说明其中的道理.

上一篇:冬季校车安全管理下一篇:公司信贷真题