初二期末几何证明题复习

2024-08-30

初二期末几何证明题复习(10篇)

1.初二期末几何证明题复习 篇一

28.(本小题满分10分)

如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP-CQ。设AP=x

(1)当PQ∥AD时,求x的值;

(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;

(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围。

21.(本小题满分9分)

如图,直线yxm与双曲线y

(1)求m及k的值; k相交于A(2,1)、B两点. xyxm,(2)不解关于x、y的方程组直接写出点B的坐标; ky,x

(3)直线y2x4m经过点B吗?请说明理由.

(第21题)

28.(2010江苏淮安,28,12分)如题28(a)图,在平面直角坐标系中,点A坐标为(12,0),点B坐标为(6,8),点C为OB的中点,点D从点O出发,沿△OAB的三边按逆时针方向以2个单位长度/秒的速度运动一周.

(1)点C坐标是),当点D运动8.5秒时所在位置的坐标是,);

(2)设点D运动的时间为t秒,试用含t的代数式表示△OCD的面积S,并指出t为何值时,S最大;

(3)点E在线段AB上以同样速度由点A向点B运动,如题28(b)图,若点E与点D同时出发,问在运动5秒钟内,以点D,A,E为顶点的三角形何时与△OCD相似(只考虑以点A.O为对应顶点的情况):

题28(a)图题28(b)图

(10江苏南京)21.(7分)如图,四边形ABCD的对角线AC、BD相较于点O,△ABC≌△BAD。求证:(1)OA=OB;(2)AB∥CD.(10江苏南京)28.(8分)如图,正方形ABCD的边长是2,M是AD的中点,点E从点A

出发,沿AB运动到点B停止,连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连结EG、FG。

(1)设AE=x时,△EGF的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;

(2)P是MG的中点,请直接写出点P的运动路线的长。

23.(本题8分)如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,∥BF,连接BE、CF.

(1)求证:△BDF≌△CDE;

(2)若AB=AC,求证:四边形BFCE是菱形.

CE

27.(本题8分)如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P,连接EP.

(1)如图②,若M为AD边的中点,①,△AEM的周长=_____cm;

②求证:EP=AE+DP;

(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.

27.(本题满分12分)如图1所示,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75º,以CD为一边的等边△DCE的另一顶点E在腰AB上.(1)求∠AED的度数;

(2)求证:AB=BC;

(3)如图2所示,若F为线段CD上一点,∠FBC=30º.

DF求 FC 的值.

图1 E C

E 图2 C

2.初二上几何证明题008 篇二

1.C已知:如图,在△ABC中,BE、CF分别是边AC、AB上的高,BP = AC,CQ = AB,求证:AP = AQ. A Q

FE

CB

2.C如图,已知∠BDA =∠CEA,CE与BD交于点P,PB = PC,求证:AB = AC.

A

ED

CB

3.C如图,在△ABC中,AB=AC,BD与CE相交于点O,BO=CO.求证:∠B=∠C.

A

ED

BC

4.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,求证:⑴OD=OC;⑵∠ECD=∠EDC;⑶OE是CD的中垂线.

A

O

C B

5.C如图,在∠MON的两边分别截取OA = OB,OC = OD,如果连结AD、BC相交于点P;

M求证:OP平分∠MON. C A O

B

D N

C如图:已知,AB = AD,∠ABC =∠ADC,求证:△ABC ≌ △ADC.

C

DB

3.初二数学期末复习——命题与证明 篇三

初二()班姓名责任人:张志堂

一、知识回顾:

1.对某一件事情作出正确或不正确的判断的句子叫做命题。

下列语句中,属于命题的是().

(A)直线AB和CD垂直吗(B)过线段AB的中点C画AB的垂线

(C)同旁内角不互补,两直线不平行(D)连结A,B两点

2.命题由题设和结论两不分组成。

指出下列命题的条件和结论:

(1)三条边对应相等的两个三角形全等;

题设:

结论:

(2)对顶角相等;

题设:

结论:

(3)角平分线上的点到这个角两边的距离相等。

题设:

结论:

3.命题分为真命题(正确的命题)和假命题(不正确的命题)。

(1)下列命题中,属于假命题的是()

(A)若a⊥c,b⊥c,则a⊥b(B)若a∥b,b∥c,则a∥c

(C)若a⊥c,b⊥c,则a∥b(D)若a⊥c,b∥a,则b⊥c

(2)下列四个命题中,属于真命题的是().

(A)互补的两角必有一条公共边(B)同旁内角互补

(C)同位角不相等,两直线不平行(D)一个角的补角大于这个角

4.要判定一个命题是真命题,需要证明。

证明的三个步骤:(1);(2);(3)。

5.要想说明一个命题是假命题,只需举一个反例。举反例的要求是:命题的条件,而命题的结论。

举反例说明下列命题是假命题:

(1)对于不为零的实数c,关于x的方程xcc1的根是c。x

(2)有两条边和一个角对应相等的两个三角形全等。

6.反证法的步骤:假设命题结论

。用反证法证明:在三角形的内角中,至少有一个角大于或等于60°。已知:∠A,∠B,∠C是△ABC的内角

求证:∠A,∠B,∠C中至少有一个角大于或等于60°.证明:假设,即∠A___60°,∠B___60°,∠C__60° 则这与________________________________相矛盾.所以______不成立,所求证的结论成立.7.例1:如图,ΔABC中,∠A=60,BE、CD分别平分∠ABC和∠ACB,交点为P。请证明:BC=BE+CD。

例2(1)一边上的中线等于这边的一半的三角形是直角三角形。

A

E

B

D

C

(2)直接运用这个结论解答题目:一个三角形一边长为2,这边上的中线长1,另两边之和为

二、回家作业

1.下列语句不是命题的是()

A、两点之间线段最短B、不平行的两条直线有一个交点C、x与y的和等于0吗?D、对顶角不相等。

2.命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角

是对顶角;④同位角相等。其中假命题有()

A、1个B、2个C、3个D、4个 3.如图,△ABC中,ACB90,BE平分∠ABC,DEAB,垂足

为D,如果AB=5cm,BC=3cm,那么AEDE的值为()A、2㎝B、3㎝C、4㎝D、5㎝

4.如图,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,第3题图

EF⊥AB于F,则下列结论中不正确的是()

EA、∠ACD=∠BB、CH=CE=EFC、AC=AFD、CH=HDH

5.已知下列命题:①锐角大于它的余角;②锐角与钝角之和等于平角;

ADB

③互补的两个角一定是一个锐角,另一个为钝角;④平行于同一条直线的两直线平行.其中,正确命题的个数为()A、0B、1个C、2个D、3个

6.在下列命题:①钝角的补角是锐角;②两个无理数的商仍为无理数;③相等的角是对顶角;

④若x是实数,则x2 + 1>0;⑤一个锐角与一个钝角的和等于一个平角.是真命题的有。(用序号表示)

7.把命题:三角形的内角和等于180° 改写如果,那

么。8.如图,△ABC为直角三角形,BC为斜边,将△ABP绕点A

逆时针旋转后,能与ABP重合,如果AP=3,那么PP的长等于。

9.命题“直角都相等”的题设是________,结论

是____________.

10.用反证法证明命题“三角形中最多有一个是直角”时,应假设________________11.求证:两条直线被第三条直线所截,如果同旁内角不互补,那么这两条直线不平行。已知:如图,直线l1,l2被直线l3所截,∠1+∠2180°。求证:l1与l2。证明:假设则∠1+∠2180°

这与矛盾,故不成立,所以。

/

/

12.已知如图,在△ABC中,CH是外角∠ACD的角平分线,BH是∠ABC的平分线, ∠A=58°.求∠H的度数.13.如图在ΔABC中AB=AC,∠BAC=90,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F ⑴求证:PE=PF。

⑵已知AF=12,CF=5.求ΔPEF的面积。

14.如图,已知四边形ABCD是边长为2的正方形,以对角线BD为边作正三角形BDE,过E

作DA的延长线的垂线EF,垂足为F。

(1)找出图中与EF相等的线段,并证明你的结论;(2)求AF的长。

4.初二上几何证明001 篇四

EA 24 BC2、已知:如图所示△ABC中,BD⊥AC于D,CE⊥AB于E,M为BC的中点,求证:∠MED=∠MDE.A

D

E

CBM3、已知:如图所示,△ABC中,AD平分∠BAC,BE⊥AD且交AD延长线于E,F为AB的中点,求证:EF∥AC.A

BC E4、已知:如图,△ABC中,∠ACB=90°,D为AB的中点,BE⊥CD于F,交AC于E, 求证:∠A=∠CBE.` C

E

F BAD5、已知:如图,AD平分∠BAC,AD=BD,AC=

C

5.初一几何证明题 篇五

1、已知ΔABC,AD是BC边上的中线。E在AB边上,ED平分∠ADB。F在AC边上,FD平分∠ADC。求证:BE+CF>EF。

1、已知ΔABC,BD是AC边上的高,CE是AB边上的高。F在BD上,BF=AC。G在CE延长线上,CG=AB。求证:AG=AF,AG⊥AF。

3、已知ΔABC,AD是BC边上的高,AD=BD,CE是AB边上的高。AD交CE于H,连接BH。求证:BH=AC,BH⊥AC。

4、已知ΔABC,AD是BC边上的中线,AB=2,AC=4,求AD的取值范围。

5、已知ΔABC,AB>AC,AD是角平分线,P是AD上任意一点。求证:AB-AC>PB-PC。

6、已知ΔABC,AB>AC,AE是外角平分线,P是AE上任意一点。求证:PB+PC>AB+AC。

7、已知ΔABC,AB>AC,AD是角平分线。求证:BD>DC。

8、已知ΔABD是直角三角形,AB=AD。ΔACE是直角三角形,AC=AE。连接CD,BE。求证:CD=BE,CD⊥BE。

9、已知ΔABC,D是AB中点,E是AC中点,连接DE。求证:DE‖BC,2DE=BC。

10、已知ΔABC是直角三角形,AB=AC。过A作直线AN,BD⊥AN于D,CE⊥AN于E。求证:DE=BD-CE。

四边形

1、已知四边形ABCD,AB=BC,AB⊥BC,DC⊥BC。E在BC边上,BE=CD。AE交BD于F。求证:AE⊥BD。

2、已知ΔABC,AB>AC,BD是AC边上的中线,CE⊥BD于E,AF⊥BD延长线于F。求证:BE+BF=2BD。

3、已知四边形ABCD,AB‖CD,E在BC上,AE平分∠BAD,DE平分∠ADC,若AB=2,CD=3,求AD。

4、已知ΔABC是直角三角形,AC=BC,BE是角平分线,AF⊥BE延长线于F。求证:BE=2AF。

5、已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖AB交BC于G。求证:CD=BG。

6、已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖BC交AB于G。求证:AC=AG。

7、已知四边形ABCD,AB‖CD,∠D=2∠B,若AD=m,DC=n,求AB。

8、已知ΔABC,AC=BC,CD是角平分线,M为CD上一点,AM交BC于E,BM交AC于F。求证:ΔCME≌ΔCMF,AE=BF。

9、已知ΔABC,AC=2AB,∠A=2∠C,求证:AB⊥BC。

10、已知ΔABC,∠B=60°。AD,CE是角平分线,求证:AE+CD=AC

全等形

1、知ΔABC是直角三角形,AB=AC,ΔADE是直角三角形,AD=AE,连接CD,BE,M是BE中点,求证:AM⊥CD。

2、已知ΔABC,AD,BE是高,AD交BE于H,且BH=AC,求∠ABC。

3、已知∠AOB,P为角平分线上一点,PC⊥OA于C,∠OAP+∠OBP=180°,求证:AO+BO=2CO。

4、已知ΔABC是直角三角形,AB=AC,M是AC中点,AD⊥BM于D,延长AD交BC于E,连接EM,求证:∠AMB=∠EMC。

5、已知ΔABC,AD是角平分线,DE⊥AB于E,DF⊥AC于F,求证:AD⊥EF。

6、已知ΔABC,∠B=90°,AD是角平分线,DE⊥AC于E,F在AB上,BF=CE,求证:DF=DC。

7、已知ΔABC,∠A与∠C的外角平分线交于P,连接PB,求证:PB平分∠B。

8、已知ΔABC,到三边AB,BC,CA的距离相等的点有几个?

9、已知四边形ABCD,AD‖BC,AD⊥DC,E为CD中点,连接AE,AE平分∠BAD,求证:AD+BC=AB。

6.高考几何证明题 篇六

高考几何证明题

输入内容已经达到长度限制

∠B=2∠DCN

证明:

∵CN⊥CM,∴∠2+∠3=90°,∴∠1+∠4=90°;

又∠1=∠2,∴∠3=∠4,∴∠BCD=2∠DCN;

∵AB//DE,∴∠B=∠BCD;

于是∠B=2∠DCN。

11

输入内容已经达到长度限制

∠B=2∠DCN

证明:

∵CN⊥CM,∴∠2+∠3=90°,∴∠1+∠4=90°;

又∠1=∠2,∴∠3=∠4,∴∠BCD=2∠DCN;

∵AB//DE,∴∠B=∠BCD;

于是∠B=2∠DCN。

12、

空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。

如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.

立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。

以下用向量法求解的简单常识:

1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得 或对空间一定点O有

2、对空间任一点O和不共线的三点A,B,C,若: (其中x+y+z=1),则四点P、A、B、C共面.

3、利用向量证a‖b,就是分别在a,b上取向量 (k∈R).

4、利用向量证在线a⊥b,就是分别在a,b上取向量 .

5、利用向量求两直线a与b的夹角,就是分别在a,b上取 ,求: 的问题.

6、利用向量求距离就是转化成求向量的模问题: .

7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.

13

空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。

如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.

立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。

以下用向量法求解的简单常识:

1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得 或对空间一定点O有

2、对空间任一点O和不共线的三点A,B,C,若: (其中x+y+z=1),则四点P、A、B、C共面.

3、利用向量证a‖b,就是分别在a,b上取向量 (k∈R).

4、利用向量证在线a⊥b,就是分别在a,b上取向量 .

5、利用向量求两直线a与b的夹角,就是分别在a,b上取 ,求: 的问题.

6、利用向量求距离就是转化成求向量的模问题: .

7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.

首先该图形能建坐标系

如果能建

则先要会求面的法向量

求面的法向量的方法是 1。尽量在土中找到垂直与面的向量

2。如果找不到,那么就设n=(x,y,z)

然后因为法向量垂直于面

所以n垂直于面内两相交直线

可列出两个方程

两个方程,三个未知数

然后根据计算方便

取z(或x或y)等于一个数

然后就求出面的一个法向量了

会求法向量后

1。二面角的求法就是求出两个面的法向量

可以求出两个法向量的夹角为两向量的数量积除以两向量模的乘积

如过在两面的.同一边可以看到两向量的箭头或箭尾相交

那么二面角就是上面求的两法向量的夹角的补角

如果只能看到其中一个的箭头和另一个的箭尾相交

那么上面两向量的夹角就是所求

2。点到平面的距离就是求出该面的法向量

然后在平面上任取一点(除平面外那点在平面内的射影)

求出平面外那点和你所取的那点所构成的向量记为n1

7.初一几何证明题答案 篇七

2已知AC平分角BAD,CE垂直AB于E,CF垂直AD于F,且BC=CD

(1)求证:△BCE全等△DCF

3.如图所示,过三角形ABC的顶点A分别作两底角角B和角C的平分线的垂线,AD垂直于BD于D,AE垂直于CE于E,求证:ED||BC.4.已知,如图,pB、pC分别是△ABC的外角平分线,且相交于点p。

求证:点p在∠A的平分线上。

回答人的补充2010-07-1900:101.在三角形ABC中,角ABC为60度,AD、CE分别平分角BAC角ACB,试猜想,AC、AE、CD有怎么样的数量关系

2.把等边三角形每边三等分,经其向外长出一个边长为原来三分之一的小等边三角形,称为一次生长,如生长三次,得到的多边形面积是原三角形面积的几倍

求证:同一三角形的重心、垂心、三条边的中垂线的交点三点共线。(这条线叫欧拉线)求证:同一三角形的三边的中点、三垂线的垂足、各顶点到垂心的线段的中点这9点共圆。~~(这个圆叫九点圆)

3.证明:对于任意三角形,一定存在两边a、b,满足a比b大于等于1,小于2分之根5加

14.已知△ABC的三条高交于垂心O,其中AB=a,AC=b,∠BAC=α。请用只含a、b、α三个字母的式子表示AO的长(三个字母不一定全部用完,但一定不能用其它字母)。

5.设所求直线为y=kx+b(k,b为常数.k不等于0).则其必过x-y+2=0与x+2y-1=0的交点(-1,1).所以b=k+1,即所求直线为y=kx+k+1(1)过直线x-y+2=0与Y轴的交点(0,2)且垂直于x-y+2=0的直线为y=-x+2(2).直线(2)与直线(1)的交点为A,直线(2)与直线x+2y-1=0的交点为B,则AB的中点为(0,2),由线段中点公式可求k.6.在三角形ABC中,角ABC=60,点p是三角ABC内的一点,使得角ApB=角BpC=角CpA,且pA=8pC=6则pB=2p是矩形ABCD内一点,pA=3pB=4pC=5则pD=3三角形ABC是等腰直角三角形,角C=90O是三角形内一点,O点到三角形各边的距离都等于1,将三角形ABC饶点O顺时针旋转45度得三角形A1B1C1两三角形的公共部分为多边形KLMNpQ,1)证明:三角形AKL三角形BMN三角形CpQ都是等腰直角三角形2)求三角形ABC与三角形A1B1C1公共部分的面积。

已知三角形ABC,a,b,c分别为三边.求证:三角形三边的平方和大于等于16倍的根号3(即:a2+b2+c2大于等于16倍的根号3)

初一几何单元练习题

一.选择题

1.如果α和β是同旁内角,且α=55°,则β等于()

(A)55°(B)125°(C)55°或125°(D)无法确定

2.如图19-2-(2)

AB‖CD若∠2是∠1的2倍,则∠2等于()

(A)60°(B)90°(C)120°(D)150

3.如图19-2-(3)

∠1+∠2=180°,∠3=110°,则∠4度数()

(A)等于∠1(B)110°

(C)70°(D)不能确定

4.如图19-2-(3)

∠1+∠2=180°,∠3=110°,则∠1的度数是()

(A)70°(B)110°

(C)180°-∠2(D)以上都不对

5.如图19-2(5),已知∠1=∠2,若要使∠3=∠4,则需()

(A)∠1=∠2(B)∠2=∠

3(C)∠1=∠4(D)AB‖CD

6.如图19-2-(6),AB‖CD,∠1=∠B,∠2=∠D,则∠BED为()

(A)锐角(B)直角

(C)钝角(D)无法确定

7.若两个角的一边在同一条直线上,另一边相互平行,那么这两个角的关系是()

(A)相等(B)互补(C)相等且互补(D)相等或互补

8.如图19-2-(8)AB‖CD,∠α=()

(A)50°(B)80°(C)85°

答案:1.D2.C3.C4.C5.D6.B7.D8.B

初一几何第二学期期末试题

1.两个角的和与这两角的差互补,则这两个角()

A.一个是锐角,一个是钝角B.都是钝角

C.都是直角D.必有一个直角

2.如果∠1和∠2是邻补角,且∠1>∠2,那么∠2的余角是()

3.下列说法正确的是()

A.一条直线的垂线有且只有一条

B.过射线端点与射线垂直的直线只有一条

C.如果两个角互为补角,那么这两个角一定是邻补角

D.过直线外和直线上的两个已知点,做已知直线的垂线

4.在同一平面内,两条不重合直线的位置关系可能有()

A.平行或相交B.垂直或平行

C.垂直或相交D.平行、垂直或相交

5.不相邻的两个直角,如果它们有一条公共边,那么另一边互相()

A.平行B.垂直

C.在同一条直线上D.或平行、或垂直、或在同一条直线上

答案:1.D2.C3.B4.A5.A回答人的补充2010-07-1900:211.如图所示,一只老鼠沿着长方形逃跑,一只花猫同时从A点朝另一个方向沿着长方形去捕捉,结果在距B点30cm的C点处捉住了老鼠。已知老鼠与猫的速度之比为11:14,求长方形的周长。设周长为X.则A到B的距离为X/2;X/2-30:X/2+30=11:14X=500cm如图,梯形ABCD中,AD平行BC,∠A=2∠C,AD=10cm,BC=25cm,求AB的长解:过点A作AB‖DE。∵AB‖DE,AD‖BC∴四边形ADEB是平信四边形∴AB=DE,AD=BE∵∠DEB是三角形DEC的外角∴∠DEB=∠CDE+∠C∵四边形ADEB是平信四边形∴∠A=∠DEB又∵∠A=2∠C,∠DEB=∠CDE+∠C∴∠CDE+∠C∴DE=CE∵AD=10,BC=25,AD=BE∴CE=15=DE=AB如图:等腰三角形ABCD中,AD平行BC,BD⊥DC,且∠1=∠2,梯形的周长为30CM,求AB、BC的长。因为等腰梯形ABCD,所以角ABC=角C,AB=CD,AD//BC所以角ADB=角2,又角1=角2,所以角1=角2=角ADB,而角ABC=角C=角1+角2且角2=角ADB所以角ADB+角C=90度,所以有角1+角2+角ADB=90度所以角2=30度因此BC=2CD=2AB所以周长为5AB=30所以AB=6,BC=12回答人的补充2010-07-0311:25如图:正方形ABCD的边长为4,G、F分别在DC、CB边上,DG=GC=2,CF=1.求证:∠1=∠2(要两种解法提示一种思路:连接并延长FG交AD的延长线于K)

1.连接并延长FG交AD的延长线于K∠KGD=∠FGC∠GDK=∠GCFBG=CG△CGF≌△DGKGF=GKAB=4BF=3AF=5AB=4+1=5AB=AFAG=AG△AGF≌△AGK∠1=∠

22.延长AC交BC延长线与E∠ADG=∠ECG∠AGD=∠EGCDG=GC△ADG≌△EGF∠1=∠EAD=CEAF=5EF=1+4=5∠2=∠E所以∠1=∠2如图,四边形ABCD是平行四边形,BE平行DF,分别交AC于E、F连接ED、BF求证∠1=∠2

答案:证三角形BFE全等三角形DEF。因为FE=EF,角BEF=90度=角DFE,DF=BE(全等三角形的对应高相等)。所以三角形BFE全等三角形DEF。所以∠1等于∠2(全等三角形对应角相等)

就给这么多吧~~N累~!回答人的补充2010-07-1900:341已知ΔABC,AD是BC边上的中线。E在AB边上,ED平分∠ADB。F在AC边上,FD平分∠ADC。求证:BE+CF>EF。

2已知ΔABC,BD是AC边上的高,CE是AB边上的高。F在BD上,BF=AC。G在CE延长线上,CG=AB。求证:AG=AF,AG⊥AF。

3已知ΔABC,AD是BC边上的高,AD=BD,CE是AB边上的高。AD交CE于H,连接BH。求证:BH=AC,BH⊥AC。

4已知ΔABC,AD是BC边上的中线,AB=2,AC=4,求AD的取值范围。

5已知ΔABC,AB>AC,AD是角平分线,p是AD上任意一点。求证:AB-AC>pB-pC。

6已知ΔABC,AB>AC,AE是外角平分线,p是AE上任意一点。求证:pB+pC>AB+AC。

7已知ΔABC,AB>AC,AD是角平分线。求证:BD>DC。

8已知ΔABD是直角三角形,AB=AD。ΔACE是直角三角形,AC=AE。连接CD,BE。求证:CD=BE,CD⊥BE。

9已知ΔABC,D是AB中点,E是AC中点,连接DE。求证:DE‖BC,2DE=BC。

10已知ΔABC是直角三角形,AB=AC。过A作直线AN,BD⊥AN于D,CE⊥AN于E。求证:DE=BD-CE。

等形2

1已知四边形ABCD,AB=BC,AB⊥BC,DC⊥BC。E在BC边上,BE=CD。AE交BD于F。求证:AE⊥BD。

2已知ΔABC,AB>AC,BD是AC边上的中线,CE⊥BD于E,AF⊥BD延长线于F。求证:BE+BF=2BD。

3已知四边形ABCD,AB‖CD,E在BC上,AE平分∠BAD,DE平分∠ADC,若AB=2,CD=3,求AD。

4已知ΔABC是直角三角形,AC=BC,BE是角平分线,AF⊥BE延长线于F。求证:BE=2AF。

5已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖AB交BC于G。求证:CD=BG。

6已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖BC交AB于G。求证:AC=AG。

7已知四边形ABCD,AB‖CD,∠D=2∠B,若AD=m,DC=n,求AB。

8已知ΔABC,AC=BC,CD是角平分线,M为CD上一点,AM交BC于E,BM交AC于F。求证:ΔCME≌ΔCMF,AE=BF。

9已知ΔABC,AC=2AB,∠A=2∠C,求证:AB⊥BC。

10已知ΔABC,∠B=60°。AD,CE是角平分线,求证:AE+CD=AC

全等形4

1已知ΔABC是直角三角形,AB=AC,ΔADE是直角三角形,AD=AE,连接CD,BE,M是BE中点,求证:AM⊥CD。

2已知ΔABC,AD,BE是高,AD交BE于H,且BH=AC,求∠ABC。

3已知∠AOB,p为角平分线上一点,pC⊥OA于C,∠OAp+∠OBp=180°,求证:AO+BO=2CO。

4已知ΔABC是直角三角形,AB=AC,M是AC中点,AD⊥BM于D,延长AD交BC于E,连接EM,求证:∠AMB=∠EMC。

5已知ΔABC,AD是角平分线,DE⊥AB于E,DF⊥AC于F,求证:AD⊥EF。

6已知ΔABC,∠B=90°,AD是角平分线,DE⊥AC于E,F在AB上,BF=CE,求证:DF=DC。

7已知ΔABC,∠A与∠C的外角平分线交于p,连接pB,求证:pB平分∠B。

8已知ΔABC,到三边AB,BC,CA的距离相等的点有几个?

9已知四边形ABCD,AD‖BC,AD⊥DC,E为CD中点,连接AE,AE平分∠BAD,求证:AD+BC=AB。

8.中考几何证明题集锦(精选) 篇八

1、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30º,EF⊥AB,垂足为F,连结DF.

(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.(10分)

E2、已知,如图,在正方形ABCD中,点E、F分别在AB上和AD的延

长线上,且BE=DF,连接EF,G为EF的中点.求证:⑴CE=CF;

⑵DG垂直平分AC.EB3、在△ABC中,AC=BC,ACB90,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作FH于点H.判断FH与FC的数量关系并加以证明.

(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.(12分)

A

A

FC,交直线AB

F

DE

F

D

C

C

1E

2B

H4、如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.⑴ 求证:△AMB≌△ENB;

⑵ ①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由; ⑶ 当AM+BM+CM的最小值为分

BC

31时,求正方形的边长.(14

9.七下几何证明题8(范文) 篇九

1. 如图,△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且

B,C在AE的异侧,BD⊥AE于D,CE⊥AE于E。

求证:BD=DE+CE

3.如图,ABC为等边三角形,点M,N分别在BC,AC上,且BMCN,AM与BN交于Q点。求AQN的度数。

E 2.如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形,并说明理由.C

A

D4.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,①求证:△BCE≌△ACD; ②求证:CF=CH;③判断△CFH的形状并说明理由.

5.如图,在ΔABC中,AD平分∠BAC,DE∕∕AC,EF⊥AD交BC延长线于F。

求证:∠FAC=∠B

6.已知:在⊿ABC中BD、CE是高,在BD、CE或其延长线上分别截取BM=AC、CN=AB,求证:MA⊥NA。

7.如图,AB=6,AC=8,D为BC 的中点,求AD的取值范围。

A

C

8.如图,AB=CD,E为BC的中点,∠BAC=∠BCA,求证:AD=2AE。

B E C D

9.如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.A

B

DEC

10.已知:如图AD为△ABC的中线,AE=EF,求证:BF=AC

E

BD C

11.如图,已知:△ABC

中,AB=AC,D在AB上,E在AC的延长线上,DF=EF, DE交BC于点F。

求证:BD=CE

E

012.已知:在⊿ABC中,∠A=90,AB=AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证:∠

ADB=∠FDC。

13.如图,BC>BA,BD平分∠ABC,且AD=CD,求证:∠A+∠C=180。

B

14.已知:如图,等腰三角形ABC中,AB=AC,A=108°,BD平分ABC。

求证:BC=AB+DC。

B

15.如图7,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

16.如图,AB∥CD,AE、DE分别平分∠BAD各∠ADE,求证:AD=AB+CD。

A

10.几何证明题 篇十

姓名:_________班级:_______

一、互补”。

E

D

二、证明下列各题:

1、如图,已知∠1=∠2,∠3=∠D,求证:DB//EC.E D

3ACB2、如图,已知AD//BC,∠1=∠B,求证:AB//DE.AD BCE3、如图,已知∠1+∠2=1800,求证:∠3=∠4.EC

A1 O

4B

D F4、如图,已知DF//AC,∠C=∠D,求证:∠AMB=∠ENF.E DF

N

M

AC B5、如图,在三角形ABC中,D、E、F分别为AB、AC、BC上的点且DE//BC、EF//AB,求证:∠ADE=∠EFC.C

EF

AB D6、如图,已知EC、FD与直A线AB交于C、D两点且∠1=∠2,1求证:CE//DF.CE

FD

2B7、如图,已知∠ABC=∠ADC,BF和DE分别是∠ABC和∠ADC的平分线,AB//CD,求证:DE//BF.FDC

A E8、如图,已知AC//DE,DC//EF,CD平分∠BCA,求证:EF平分∠BED.B

F

ED

AC9、如图,AB⊥BF,CD⊥BF, ∠A=∠C,求证: ∠AEB=∠F.CFBDE10、如图,AD⊥BC,EF⊥BC,∠1=∠2,求证:DG//AB.A

EGBCDF11、在三角形ABC中,AD⊥BC于D,G是AC上任一点,GE⊥BC于E,GE的延长线与BA的延长线交于F,∠BAD=∠CAD,求证:∠AGF=∠F.F

A

G

BCDE12、如图,∠1=∠2,∠3=∠4,∠B=∠5,求证:CE//DF.F

E 4G1AD 5 2B13、如图,AB//CD,求证:∠BCD=∠B+∠D.A

CBED14、如上图,已知∠BCD=∠B+∠D,求证:AB//CD.15、如图,AB//CD,求证:∠BCD=∠B-∠D.BA

ED

C16、如上图,已知∠BCD=∠B-∠D,求证:AB//CD.17、如图,AB//CD,求证:∠B+∠D+∠BED=3600.BA

E

上一篇:小学生作文事件评论下一篇:关于开学的满分作文800字左右